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TRANSVERSE VIBRATION OF A VISCOELASTIC EULER-
BERNOULLI BEAM BASED ON EQUIVALENT 

VISCOELASTIC SPRING MODELS 

Chao FU1, Xiao YANG2 

In this paper, the transverse vibration of the viscoelastic Euler-Bernoulli 
cracked beam is investigated. By Laplace transform and generalized Dirac delta 
functions, the equivalent stiffness of the viscoelastic cracked beam is derived with 
considering the transverse crack as a massless viscoelastic torsion spring. Utilizing 
the separation of variables method, the frequency equation of the viscoelastic 
cracked beam is established. By numerical examples, the effects of the crack 
location, crack depth, and number of cracks on the eigenfrequencies of the simple-
supported viscoelastic cracked beam are discussed. 

Keywords: viscoelastic; crack effect; natural frequency; decrement coefficient. 

1. Introduction 

Viscoelastic materials [1] are widely used in civil, mechanical, and 
aerospace engineering, etc. Up to now, there are a number of approaches to 
analyze the vibration characteristics of the viscoelastic beams reported in the 
literatures, i.e. complex modal approach [2], Finite element method [3], transfer 
matrix method [4], and et al. [5]. Supposing that the deflection mode shape of the 
simple-supported beam is ( ) i( , ) sin π e tw x t n x L ω= , Lei et al. [5] presented the 
governing equations of motion for the viscoelastic Euler-Bernoulli and 
Timoshenko beams with the nonlocal theory models and analyzed the influences 
of velocity-dependent external damping on the dynamics characteristics of the 
beams. However, there are only a few published papers [6-7] concerned about the 
effects of cracks or defects on the vibration properties of the viscoelastic beams 
structures so far. Therefore, it is needed to discuss the vibration of a viscoelastic 
cracked beam. 

With the standard linear solid constitutive equation, the main purpose in 
the present paper is to investigate the vibration properties of the viscoelastic 
Euler-Bernoulli cracked beam by using the exact analytical method (EAM). At 
first, the equivalent stiffness of the viscoelastic cracked beam is derived with 
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regarding the transverse crack as a massless viscoelastic torsion spring. Then, the 
frequency equation of the viscoelastic cracked beam is established based on the 
separation of variables method and Laplace transform，and the exact analytical 
expressions are presented to analyze the viscoelastic cracked beam with open 
cracks. Finally, the effects of the crack location, crack depth, and number of 
cracks on the vibration properties of the viscoelastic cracked beams are 
numerically investigated. 

2. Formulation of the problem 

2.1. Equivalent bending stiffness of a viscoelastic beam 

According to the constitutive equation of standard linear solid model, the 
relaxation modulus ( )Y t  defined in time domain and Laplace domain are given as 
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Here 1E  and 2E  are the elastic modulus of elastic elements, 2η  is the viscous 
coefficient of a viscous element, ν  is the Poisson's ratio, and 
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We consider a viscoelastic rectangular beam with length L (x axis), width 
b (y axis) and height h (z axis). Here ( , )w x t  and ( , )x tϕ  denote the transverse 
deflection of the axial line and rotation angle of the beam cross section subjected 
to the distributed transverse load ( , )q x t , respectively. According to the hypothesis 
of the Euler-Bernoulli beam theory, the axial normal strain, rotation angle, and 
normal stress of the cross section are given as 
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Here ( )Y t  is the first derivative of ( )Y t  with respect to the time t, and the asterisk 

* denotes the convolution, i.e. 
0
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The bending moment ( , )M x t  of the beam cross section is  
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Here the moment of inertia of the neutral axis is given as 2d d
A

I y y z= ∫∫ . Then, the 
Laplace transform of bending moment and axial bending curvature are given as 
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Obviously, ( )sY s I  is the bending stiffness of the viscoelastic intact beam 
in Laplace domain. The superscript －  denotes the Laplace transform of the 
function with respect to the time t , and s  is the Laplace transform parameter. 

In this paper, we suppose that the transverse crack ( 1, 2, , )j j N=   is 
always open, which means the crack can be equivalent as a massless viscoelastic 
torsion spring [8]. Let us denote the bending moment and equivalent viscoelastic 
torsion spring of the crack j at the location x=xj by Mj(t) and kj(t), respectively, 
and the rotation angleΔj(t) of the equivalent torsion spring in time domain and 
Laplace domain can be expressed as 
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Based on the crack effect and Laplace transform, the rotation angle of the 
cracked beam in time domain and Laplace domain can be expressed as, 
respectively 
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Here ( )H x  is the Heaviside function [9]. 
Denote the equivalent bending stiffness of a viscoelastic beam with open 

cracks by e( ) ( , )EI x t , the bending moment of the cracked beam in time domain and 
Laplace domain are given as, respectively 
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Utilizing the first derivative of the second equation of Eq. (7) with respect 
to the coordinate x, and then combining the second equation of Eq. (6) and Eq. 
(8), the equivalent bending stiffness of the viscoelastic cracked beam in Laplace 
domain can be written as 
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Here ( )xδ  is the Dirac delta function [9]. 

2.2. Vibration of a viscoelastic cracked beam 

According to the expression for the rectangular cross section beams by 
references [10-12], the equivalent stiffness of crack j ( 1, ,j N= ⋅ ⋅ ⋅ ) in time domain 
and Laplace domain are given as, respectively, 

( ) ( ), ( ) ( ).j j j jk t IY t k s IY sµ µ= =                           (10) 

Here the parameter { }2
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By substituting Eqs. (9), (10) and the second equation of Eq. (1) into the 
second equation of Eq. (8), and using the inverse Laplace transform,  
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The free vibration equation of the Euler-Bernoulli beam [13] is 
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Introduce the following dimensionless variables and parameters 
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Combining the dimensionless forms of Eqs. (11) and (12) 
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3. Solutions 

Based on the separation of variables method [13], the vibration solutions 
can be assumed as 
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Here *( )W ξ  and *( )M ξ  are the dimensionless mode functions of the transverse 
displacement and bending moment for the cracked beam, *( )T t  is the function 
dependent with time *t . 

Eq. (14) can be rewritten as 
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The left side and right side of Eq. (16) are independent with the 
dimensionless coordinate ξ  and time *t , respectively, so the above equation is 
equal to a constant [13], which can be defined as 4Y− , and 
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Considering free vibration of the viscoelastic beam, the time function [4] 
can be expressed as  

** i( ) e .tT t ω=                                        (19) 
Here i 1= − , ω  is the complex eigenfrequency, and the real part and imaginary 
part of ω  are the natural frequency and decrement coefficient [2,4,14], 
respectively. 

Substituting Eqs. (15) and (19) into Eqs. (17) , (18) and the dimensionless 
form of Eq. (11), respectively 
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By the Laplace transformation of Eq. (21) and the first equation of Eq. 
(23), one obtain 
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Here ( 1,2,3,4)mC m =  are the undetermined functions, and 
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Combining Eqs. (24) and (25), and utilizing the inverse Laplace transform, 
we obtain 
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If 10 1j Nξ ξ ξ< < < < < <  , and mξ ξ= , Eq. (28) can be rewritten as 
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Substituting Eq. (29) into Eqs. (27) and (28), respectively, the 
dimensionless functions of *( )W ξ  and *( )F ξ  are expressed as 
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Utilizing the first derivative of Eq. (33) with respect to the variable ξ ,  
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Then, by substituting Eq. (32) into Eq. (22), and applying the first 
derivative with respect to the variable ξ , the dimensionless mode functions of the 
bending moment and shearing force can be derived (due to the space limitation, 
the exact expressions are not given at all). 

By the boundary conditions, the set of linear equations is derived to 
determine the functions { }C  

[ ]{ } = 0.A C                                   (35) 

Here [ ]A  is a 4×4 coefficient vector, and { } { }T
1 2 3 4, , ,C C C C=C . 

If there exists a nonzero solution of { }C , the determinant of the 
coefficients vector is zero, i.e. 

[ ]det 0.=A                                   (36) 
By utilizing Matlab programs, the complex eigenfrequency ω  can be 

obtained with the different boundary conditions.  
The dimensionless boundary conditions of a simply-supported viscoelastic 

beam with an arbitrary number of cracks are given as  
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4. Numerical results and discussion 

4.1. Validation 

To verify the correctness and applicability of the present exact analytical 
method (EAM), the numerical example for comparisons have been provided. Let 

1E →∞  and 1 0d → , the present model is degenerated into the Kelvin-Voigt intact 
model. Lee and Oh [3] analyzed vibration of the simple-supported Kelvin-Voigt 
intact beam based on the spectral finite element method. The geometric and 
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physical parameters are 1 mL = , 0.2 mb = , 0.0015 mh = , 
37800 kg mρ = , 

11 2
2 2 10  N mE = × , 1 2 9999E E =  and 4

2 26.8 10 Eη −= × . The first five 
eigenfrequencies are shown in table 1. It is noticed that the results of the present 
method are in excellent agreement with those of reference [3].  

Table 1 
First five eigenfrequencies of the simply-supported Kelvin-Voigt beam  

 EAM Ref.[3] 
1st 3.4439+0.0253i 3.444+0.025i 
2nd 13.7702+0.4054i 13.771+0.405i 
3rd 30.9283+2.0523i 30.930+2.052i 
4th 54.7215+6.4862i 54.724+6.486i 
5th 84.6325+15.8356i 84.636+15.836i 

4.2. Vibration characteristic of a viscoelastic cracked beam 

For a standard linear solid beam under the simple-supported boundary 
conditions, we suppose that the geometric parameters are 1 mL = , 3500 kg mρ =  
and 20L h = . According to the fitting results of the Douglas fir beams by Yahyaei-
Moayyed and Taheri [15], the material parameters are 1 14 GPaE = , 2 39.68 GPaE =  
and 3

2 6.9 10  GPa hη = × ⋅ . Additionally, in order to analyze the effect of viscous 
coefficient on the vibration properties of the viscoelastic beam, the viscous 
coefficient is taken as 4 12

2 6.9 [10 ,10 ]η ∈ ×  according to the references [4,7,14]. 
At first, the effect of viscous coefficient on the vibration properties of the 

simply-supported viscoelastic intact beam is considered. Based on the standard 
linear solid model (SLS) and Kelvin-Voigt model (KV), the first three 
eigenfrequencies are obtained by the present EAM in tables 2 and 3, respectively. 
Let 1E →∞ , the present solutions are degenerated into the results of the KV intact 
beam. For the sake of simplicity, the real part (natural frequency) and imaginary 
part (decrement coefficient) of the k-th eigenfrequency kω  are defined by Re( )kω  
and Im( )kω , respectively. With the viscous coefficient 2η  increasing, it is seen that 
the first three decrement coefficients Im( )kω  ( 1,2,3)k =  first increase, and then 
decrease. In addition, when 4 7

2 6.9 [10 ,10 ]η ∈ × , Im( )kω  increases with the order of 
mode function increasing. While 8 12

2 6.9 [10 ,10 ]η ∈ × , the decrement coefficient 
seems to be a constant. A similar conclusion had been presented by Peng [16] 
based on the results of the Euler-Bernoulli elastic beam resting on the viscoelastic 
foundation. 

Besides, for SLS intact beam, the natural frequency Re( )kω  increases with 
the viscous coefficient 2η  increasing, and then it remains a constant when 

9
2 6.9 10η ≥ × . While for KV intact beam, Re( )kω  decreases with 2η  increasing, and 
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it reduces to zero when 7
2 6.9 10η = × . The above conclusion is consistent with the 

results of the KV Timoshenko beam presented by Chen [14] to some degree. 
While 9

2 6.9 10η ≥ × , the natural frequencies of SLS beam and KV beam remain 
some certain constants. 

Table 2 

The first three eigenfrequencies of the simply-supported viscoelastic beam based on SLS 
model with different viscous coefficient η2 

η2 Re(ω1) Im(ω1) Re(ω2) Im(ω2) Re(ω3) Im(ω3) 
6.9×104 648.09 0.09511 2592.38 1.52169 5832.895 7.70332 
6.9×105 648.10 0.95102 2592.84 15.20608 5838.093 76.75614 
6.9×106 648.81 9.46795 2636.86 141.0728 6234.933 508.7931 
6.9×107 699.26 57.14699 2994.61 97.93233 6774.891 100.866 
6.9×108 752.96 10.10045 3015.00 10.15595 6784.138 10.15892 
6.9×109 753.80 1.01591 3015.21 1.01596 6784.23 1.01596 
6.9×1010 753.80 0.10160 3015.21 0.10160 6784.23 0.10160 
6.9×1011 753.80 0.01016 3015.21 0.01016 6784.23 0.01016 
6.9×1012 753.80 0.00102 3015.21 0.00102 6784.23 0.00102 

Table 3 

The first three eigenfrequencies of the simply-supported viscoelastic beam based on KV 
model with different viscous coefficient η2 

η2 Re(ω1) Im(ω1) Re(ω2) Im(ω2) Re(ω3) Im(ω3) 
6.9×104 1268.86 1.398 5075.87 223.367 11420.3 113.23 
6.9×105 1268.92 13.979 5071.03 223.67 11364.7 1132.3 
6.9×106 1261.27 139.795 455.72 2236.89 1472.7 11327.8 
6.9×107 0 1986.02 0 44503.7 0 235572 
6.9×108 0 29408.7 417995 287924 1105187 287925 
6.9×109 123588 28792.5 506779 28792.5 1141728 28792.5 
6.9×1010 126866 2879.25 507588 2879.25 1142087 2879.2 
6.9×1011 126898 287.92 507596 287.92 1142091 287.9 
6.9×1012 126899 28.79 507596 28.79 1142091 28.79 

Table 4 

The first eigenfrequency of the simply-supported SLS beam with a single crack for different 
viscous coefficient η2 and crack location ξ1 

 ξ1=0.1 ξ1=0.2 ξ1=0.3 ξ1=0.4 ξ1=0.5 
η2 Re(ω1) Im(ω1) Re(ω1) Im(ω1) Re(ω1) Im(ω1) Re(ω1) Im(ω1) Re(ω1) Im(ω1) 

6.9×104 642.02 0.0933 626.75 0.0889 609.46 0.0841 596.71 0.0806 592.12 0.0794 
6.9×105 642.03 0.9333 626.75 0.8894 609.47 0.8410 596.72 0.8062 592.12 0.7938 
6.9×106 642.72 9.2921 627.40 8.8571 610.06 8.3772 597.27 8.0317 592.67 7.9089 
6.9×107 692.13 56.592 674.22 55.166 654.00 53.502 639.12 52.240 633.77 51.778 
6.9×108 745.89 10.099 728.10 10.096 707.97 10.923 693.13 10.090 687.78 10.089 
6.9×109 746.73 1.0159 728.96 1.0159 708.86 1.0159 694.03 1.0159 688.69 1.0159 
6.9×1010 746.74 0.1016 728.97 0.1016 708.87 0.1016 694.04 0.1016 688.69 0.1016 
6.9×1011 746.74 0.0102 728.97 0.0102 708.87 0.0102 694.04 0.0102 688.69 0.0102 
6.9×1012 746.74 0.0010 728.97 0.0010 708.87 0.0010 694.04 0.0010 688.69 0.0010 
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Table 5 

The first eigenfrequency of the simply-supported SLS cracked beam for different viscous 
coefficient η2 and crack number N 

 N=0 N=1 N=2 N=4 N=8 
η2 Re(ω1) Im(ω1) Re(ω1) Im(ω1) Re(ω1) Im(ω1) Re(ω1) Im(ω1) Re(ω1) Im(ω1) 

6.9×104 648.09 0.0951 592.12 0.0794 569.2 0.0734 530.3 0.0637 471.6 0.0504 
6.9×105 648.10 0.9510 592.12 0.7938 569.2 0.7336 530.3 0.6367 471.6 0.5035 
6.9×106 648.81 9.4680 592.67 7.9089 569.7 7.3105 530.7 6.3473 471.8 5.0231 
6.9×107 699.26 57.1470 633.77 51.778 607.1 49.419 562.2 45.217 495.2 38.503 
6.9×108 752.96 10.1005 687.78 10.089 661.1 10.083 615.7 10.071 547.3 10.048 
6.9×109 753.80 1.0159 688.69 1.0159 662.0 1.0159 616.7 1.0159 548.4 1.0159 
6.9×1010 753.80 0.1016 688.69 0.1016 662.0 0.1016 616.7 0.1016 548.5 0.1016 
6.9×1011 753.80 0.0102 688.69 0.0102 662.0 0.0102 616.7 0.0102 548.5 0.0102 
6.9×1012 753.80 0.0010 688.69 0.0010 662.0 0.0010 616.7 0.0010 548.5 0.0010 

Next, to consider the effect of cracks, a simple-supported viscoelastic 
beam with the symmetrically distributed cracks N is considered. Here the crack 
location is ( )1j j Nξ = +  ( 1, ,j N=  ), and crack depth is 0.4jd h = . The effects of 
the viscous coefficient 2η  and crack number on the first eigenfrequency 1ω  for 
different viscoelastic beam models are analyzed, respectively. In tables 4 and 5, it 
is found that the decrement coefficient 1Im( )ω  and natural frequency 1Re( )ω  of the 
SLS beam decrease with the crack location ( 1 0.5ξ ≤ ) and crack number increasing 
when 4 7

2 6.9 [10 ,10 ]η ∈ × , which indicates that the crack has a significant influence 
on the vibration characteristics of the viscoelastic beam. While 8 12

2 6.9 [10 ,10 ]η ∈ × , 

1Im( )ω  remains a certain constant, that reveals the crack has less effect on the 
decrement coefficient for a higher value of 2η .  

To sum up, for a higher value of 2η , the effects of crack depth and crack 
number on the decrement coefficient Im( )kω  of the viscoelastic beam are very 
limited. Therefore, the following analyses are mainly focused on the effects of 
crack depth and crack number on the natural frequency Re( )kω  of the viscoelastic 
beams. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.7

0.8

0.9

1.0

 

 

Di
m

en
sio

nl
es

s n
atu

ra
l f

re
qu

en
cy

 ra
tio

  λ
1

Crack depth d/h  
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.7

0.8

0.9

1.0

 

 

Di
m

en
sio

nl
es

s n
atu

ra
l f

re
qu

en
cy

 ra
tio

  λ
2

Crack depth d/h  
0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.85

0.90

0.95

1.00

1.05

 

 

Di
m

en
sio

nl
es

s n
atu

ra
l f

re
qu

en
cy

 ra
tio

  λ
3

Crack depth d/h  
(a) First frequency ratio (b) Second frequency ratio (c) Third frequency ratio 

Fig. 1. The first three frequencies ratio of the simply-supported beam with two symmetric cracks 
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To consider the effect of crack, we suppose that 0nω  and nω  are the n-th 
eigenfrequency of the viscoelastic intact and cracked beam, respectively, then 

0Re( ) Re( )n n nλ ω ω=  is the corresponding n-th natural frequency ratio. In the case of 
a viscoelastic beam with two symmetric cracks, the depths of cracks are equal to 
each other. Fig. 1 shows the first three natural frequency ratios of the cracked 
beam based on the present EAM. It is noticed that, when the cracks are located at 
the critical positions, i.e. 1 1 3ξ =  and 2 2 3ξ = , the 3rd natural frequency ratio is 

3 1λ = , which reveals that 3λ  is independent with the crack depth, in fig. 1(c). 

0.0 0.2 0.4 0.6

0.5

0.6

0.7

0.8

0.9

1.0

 

 

Di
m

en
sio

nl
es

s n
atu

ra
l f

re
qu

en
cy

 ra
tio

  λ
1

Crack depth d/h

 N = 1
 N = 2
 N = 3
 N = 4
 N = 6
 N = 8

 
0.0 0.2 0.4 0.6

0.5

0.6

0.7

0.8

0.9

1.0

 

 

 N = 1
 N = 2
 N = 3
 N = 4
 N = 6
 N = 8

Di
m

en
sio

nl
es

s n
atu

ra
l f

re
qu

en
cy

 ra
tio

 λ 2

Crack depth d/h  
(a) First frequency ratio (b) Second frequency ratio 

Fig. 2. Variations of the first two frequencies ratio versus crack depth d/h of the simply-supported 
cracked beam with different crack number N 

In the case of a viscoelastic beam with N  symmetric cracks, the crack 
depths are equal to each other. The first two natural frequency ratios of the 
cracked beam are present in fig. 2. It can be seen that the first two natural 
frequency ratios decrease with the crack depth and crack number increasing 
generally. In addition, in fig. 2(b), when 1N =  that means the crack is located at 
the mid-span position, the 2nd natural frequency ratio is 2 1λ = . The reason is 
possibly that the mid-span moment of the 2nd modal functions is null.  

5. Conclusions 

In this paper, the vibration characteristics of an Euler-Bernoulli 
viscoelastic cracked beams based on the standard linear solid model and Kelvin-
Voigt model are investigated. Some conclusions arising from the numerical 
results can be summarized as follows: (1) For the simple- supported viscoelastic 
intact beam with SLS and KV models, the viscous coefficient has a significantly 
different effect on the first three decrement coefficients. (2) The crack has a 
complicated influence on the vibration characteristics of the viscoelastic beams. 
And for a higher value of viscous coefficient, the effects of crack depth and crack 
number on the decrement coefficient are very limited. (3) For the simple-
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supported cracked beam with SLS model, the first three natural frequencies 
decrease with the crack number and crack depth increasing.  
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