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REMARKABLE STAR FAMILIES

Mihai REBENCIUC', Ioana PISICA?

In aceastd lucrare generalizim notiunea de filtru pe o multime X prin
notiunea de pseudo-filtru pe X (ca familii stelate particulare ); in acest demers
folosim segmentele determinate pe X si in mod esential segmentele nedeterminate
(inclusiv segmentul final) pe X care formeaza latici algebrice (ca sisteme de
Inchidere algebrice — in contextul partitionarii lui P(P(X)) in familii stelate si familii
reziduale). In final laticile algebrice ale pseudo-filtrelor pe X, respectiv ale filtrelor
pe X (ca pseudo-filtre particulare ) sunt asociate unor operatori partiali de
inchidere pe P(X) - si sunt mentionate unele dezvoltari ale familiilor stelate.

In this paper we generalize the notion of filter on a set X using the notion of
pseudo-filter on X (as particular starred families); in this conquest we use the
determined segments on X and essentially the undetermined segments (including the
final segment) on X which form algebraic lattices (as algebraic closure systems - in
the context of partitioning P(P(X)) in starred families and residual families). Finally
the algebraic lattices of the pseudo-filters on X, respectively of the filters on X (as
particular pseudo-filters) are associated to partial closure operators on P(X) —and
some developments of the starred families are mentioned.
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1. Introduction

In some mathematical disciplines (like sets theory or topology — see [5] -
[8], respectively [1] - [4]) and in some fields of computer science and other
technical sciences (for example, power engineering) the void family or families
containing the void set are eliminated from families over a space set X (which is
contextually non-ordinary, see consideration 2.1.i and where a space set is a set
which has urelements as members, see [6]); in the following, these constitute the
set of residual (non-star) families over X, denoted as nST(X) (see consideration
2.1.1 again). It appears naturally that the set of star families ST(X) comes to
complete a binary partition of 2(2(X)) (see consideration 2.1.i again and again).
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The first examples of star families over X are: the family of supersets of an
element x € X, 2x(X) or generally of an subset(part) G of X, 2g(X)
(generalizations of the corresponding neighborhoods’ families) and the pre-filter
over X (in a rephrased definition, see considerations 2.1.ii and 2.1.iii, respectively
[1] - [4]). The determined segments over X (implicitly related to the relation & in
P(X), see consideration 2.1.iv) [G,X]=Ps(X), [@,B] which represent a
particularization of segments concerning more general relational structures are
examples of star families and residual, respectively, frequently used within the
paper; moreover, example 2.1 concerns the pre-filters as determined segments.

Undetermined segments over X (a generalization of determined segments
over X, see Section 3) — the final segment, respectively the initial one over X
[*,X],[@,°] are star families (with the exception of @ and 2(X)), respectively
residual; as a consequence, the pseudo-filter over X (as star final segment over X)
and the filter over X (redefined as pseudo-filter over X that is also pre-filter over
X, see Section 4) are star families. The sets of the above mentioned families —
FS(X), IS(X), respectively P-FIL(X), FIL(X) are closure systems isomorphically
associated to closure operators respectively defined as the closure of the argument
family; in fact, FS(X), IS(X), P-FIL(X), FIL(X) are algebraic closure systems,
therefore algebraic lattices with representation properties. More specifically,
FS(X) and IS(X) are closure systems over 2(X) — isomorphically associated to
closure operators over 2(X) and P-FIL(X), FIL(X) are closure systems over
P*(X) isomorphically associated to closure operators over 2*(X) (as partial
closure operators over 2(X)). Moreover, FS(X), IS(X), P-FIL(X), FIL(X) are co-
domains of closure operators isomorphically associated with each other — which
have “min”-type expressions.

Consideration 2.2.i presents an adaptation to 2(X) of the isomorphic
association of the closure operator — closure system with the deduction of the co-
domain property of the closure system and of the “min”-type expression of the
closure operator (see eq. (1°), (2°)). The representation properties are given in
consideration 2.2.ii. Finally consideration 2.2.iii justifies (essentially) the
maintaining of the isomorphism and of the above representation property in the
case of the partiality (cases P-FIL(X) and FIL(X) from Section 4).

Other contributions:

— The algebraic lattices FS(X), IS(X), P-FIL(X), FIL(X) are tackled in
comparison (see observations 3.2.ii, 4.2.1, 4.3.ii1);
— A proof is given for the equivalence between the definition of a filter as

particular pseudo-filter and the usual definitions (see observations 4.2.ii

and theorem 4.2);

— Example 3.1 proves that determined segments are compact undetermined
segments and gives representations for 2*(X)< FS(X), 5.U {0} € IS(X);



Remarkable star families 99

in example 4.1 segments to the right prove to be compact filters with
7*(X) € P-FIL(X) \ FIL(X).

2. Further considerations

Consideration 2.1.1 (star families) Relative to a space set X={x}
(contextually non-trivial, i.e. at least not void — or stronger |X[>w, in Card)
consider the complete Boole algebras 2(X)={A}2(P(X))={#{A}} (the set of
families of sets over X) — related to <,u,N,c over A(X), respectively over
2(P(X)) and bounded by @, X, respectively by @, 2(X). Denote a star family over
X a family of sets S over X with S#@, @ ¢ S; in fact, ST(X)=2*(P*(X))={S|S star
family over X} is a complete upper semi-lattice (U -semi-lattice) with 2*(X) as
upper bound. The set of residual (non-star) families over X is nST(X)=2(2(X)) \
P*(P*(X))={R| =0 or e 2} — with { ST(X), nST(X)} a partition of P(P(X)).

ii(star families of oversets and associated functions) The supersets family
of preset xe X, 2«(X)={Sxj€P*(X) | xS} is a star family over X; to the family
A< P*(P(X)) we can associate the family AX)=4N Px(X) — star if 4Ax)# @. More
generally, the supersets families of GeP*(X) \ {X}, Ps(X)={Sic;e P*(X) |
GcS}is a star family over X; to the family #€ 2*(2(X)) we can associate the
family A G)=A4#N Ps(X) — star if 4AG)# @. The function associated to the set of
star families {S(x) | xe X} is O 4:X—ST(X), x> S(x); the set DS(X)={D[ |
®4(x)=5(x)} 1s partially ordered by the relation < induced by the relation < in
ST(X), i.e. Bo <D, iff for every xe X, S (x)< S(x). Analogously for set {S(G) |
GeP*(X)\ {X}} <ST(X).

iii(pre-filters) A pre-filter p7Z over X is a star family over X which is, in
addition, < - lower (or to the left) filtered - p7Ze ST(X) and any {A,B} < p7 is
c - lower bounded in pZ, ie. {AB},# @ (reformulation of the classical
definition from [1] — [4]); we denote pFIL(X)={pZ | p7 pre-filter over X}.
Pre-filters over X are characterized by the following property:

P(pF) A family #c 2(X) is centered (with the property of finite intersection —
for any A#4c 4 finite, NA#Q) iff there is pZepFIL(X) so that A4cp?
(reformulation of property 1.3.14 from [1]).

iv(determined segments) Consider the determined segments over X (implicitly
related to the inclusion relation < of 2(X)) [A,X];c=Pa(X) (the segment to the
right over X in AeP*(X) \ {X}), [@,Blic={CeP(X) | CcB} (the segment to
the left over X in Be2*(X) \ {X}), respectively [A,B];c= [A,X]N[®,B] (the
segment bounded over X in A,B) — undeniably void if B A; relatively to 2(X) \
{X}, respectively 2*(X) (P(X) without max, respectively min element) the
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corresponding determined segments over X are [A,—)c=Pa(X) \ {X},
respectively («—,B]jc={Ce?*(X)[Cc<B}. Analogously, the open determined
segments over X are defined (relatively to the strict inclusion relation <) — and
the determined segments over 2(X) (relatively to < - implicitly or to < - see [9]

for more details, including relative to more general relational structures).
Example 2.1 (pre-filters as determined segments) For @A cB we have
[AX], (AX], [AB], (A,B]epFIL(X) — and (®,B], (9,B)eST(X) (and
analogously relative to 2(X) \ {X}, respectively 2*(X)).
Consideration 2.2.i(isomorphism) Consider the sets
CO(P(X))={ C :2(P(X))—P(P(X))|C closure operator over P(X)}, respectively
CS(P(X))={cS = P(P(X)) | ¢S closure system over P(X)}. C has the following
properties:
— Extensiveness, i.e. E(@;
— Monotony, i.e. £ ¢ implies cEcc (9);
— Idempotency, i.e. (C-C)(¢) = C(4) (sufficiently (C-C)4§) < C(4) as
given by the properties of extensiveness and monotony);
cS is M -complete semi-lattice bounded by @ and 2(X) — in fact complete lattice
(in completion cS is V — complete semi-lattice — for ¢S’ < ¢S with VcS’ = sup ¢S’
= C(uUcS”)) ¢S, ie. cSis complete sub-lattice of 2(P(X)) in case of equality).
Function Q: CO(P(X))—CS(P(X)), C > c¢S=FP(C) (1)
(the set of fixed points of C) is correctly defined (see theorem 1.5.7 from [10]); as
consequence, the following equality stands:
cS=codom( C) (1%
which results from (1) — keeping in mind the idempotency property of C.
Reciprocally, the function
2:CS(P(X))—COP(X)), ¢S C, C(g=ncS[4], cS[F]={S ecS | G= 5} (2)
is correctly defined (see theorem 1.5.6 from [10]); in fact, we have the expression:
C (9)=min cS[4] (2
because C (g)=infcS[4] and C (§)ecS with g= C(4), i.e. C(§)ecS[4].
Moreover, the Q, ¥ are bijective functions — ¥=Q"', Q=" and therefore
we have the isomorphism CO(2(X))= CS(2(X)) (see theorem 1.5.8 from [10]).
ii(representable families) By definition, C € CO(P(X)) is algebraic if it
holds the property:
P(ACO)VSeP(X), Se C(G) implies 34,cg finite family over X,

Se C(4).
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By definition, ¢S e CS(P(X)) is algebraic if associated C € CO(P(X)) is algebraic;
cS e CS(A(X)) is algebraic iff it satisfies the condition:

C(ACS)V ¢S’ € 2*(cS) ¢S’ =— upper (or to the right) filtered, L cS’ecS
(see theorem 1.5.13 from [10]).
By definition, a lattice ALP ¢ 2(2(X)) is algebraic if:

— ALP is a complete lattice;

— Any family £e ALP is representable through
£=V ALP®,
where ALP® is a set of compact families £ over X — any V- covering with
families from ALP of £ contains a V- finite under-covering. In particular,
in the case of association (2) with ¢S algebraic closure system over 2(X),
so algebraic lattice £ is a compact family over X iff it holds the following
condition:
C(CF)3 g:c 2(X) finite family, £° =C ()
(see theorems 1.5.18 and 1.5.17 from [10]).

iii(partialness) The isomorphism CO(2(X)) =CS(2(X)) is persistent in

case of partialness, i.e. for C:P(P(X)) — — —P(P(X)) partial closure operator over
2(X) with dom(C)=DO and codom(C y=cS DO cP(P(X)) — isomorphic with
restriction Cp=C|po:DO—DO  because  dom(C p)y=dom(C)nDO=DO,
codom( C p)=C (DO)=cS (in proofs of theorems 1.5.6, 1.5.7, 1.5.8 from [10], the
definition expression (1) from point i or the property of idempotency of C are
used, which depend on dom(C) - also see [11]; evidently restriction Cp verifies
the properties of a closure operator — particularly over 2*(X) for DO < ST(X) (see
consideration 2.1.ii).
In addition, the following still stand:

- condition C(ACS) of algebraic closure system;

- algebraic lattice as algebraic closure system;

- condition C(CF) of compact family
(because the definition expression (1) from point i or the property of idempotency
of C which depend on dom(C) are used in the profs of theorems 1.5.13, 1.5.17,
1.5.18 from [10].
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3. Undetermined segments over sets

Definition 3.1(undetermined segments) A final segment over X (implicitly
relative to the relation of inclusion < in 2 (X)) is a family [e ,X];<; with the
property:

P(FS) VFe[e X], [F.X]c[*,X].

Analogously — but dually, an initial segment [@,*];—jover X is defined, i.e. with
the property:

P(AS) VIe[@,], [@.1]c[D,].

We denote FS(X);c=1{[*, X]ic|[*,X] final segment over X}, respectively
ISX)c={[D,2 ] 1| [ D, ] initial segment over X}.

Observation 3.1.i (alternatives) Relative to 2(X) \ {X}, respectively 2" (X)
(P(X) without max, respectively min) the corresponding undetermined segments
over X are [eo,— ) P(X)\{X} respectively (e,O][g]gP*(X); analogously
for open undetermined segments over X (e, X ], [J,e) respectively (eo,—),
(«).

ii) (intersections) Analogously to the case of bounded segment over X as
intersection of determined segments over X, we can define the undetermined
segment over X as intersection between a final and an initial segment over X —
corresponding to definition 3.1 and cases from point i (for more details, including
more general relational structures, see [12]).

Definition 3.2 (closures of families) The final closure over 2(X) of the
family g€ 2(2(X)) (implicitly relative to the inclusion relation < in 2(X)) is the
family:

C(@ncriFePX) | IGeg, Fe [GX]cy)-

Analogously — but dually, the initial closure over 2(X) - relative to a family
GeP(P(X)) is defined by

“C@PcrlePX) | 3Geg. 1e [0.G]c))™
Theorem 3.1.i (expressions of undetermined segments) For the
undetermined segments [, X ]eFS(X) and [J,e]eIS(X) the following

expressions hold, respectively: ’
[, X ]=U{[F.X]|Fe[eX]}={FeP(X)| IF € [o, X], Fe[F X]},
(D, 1= {[D 1] 1€[D,0J={1eP(X)|IT €[ D, 0], 1 [D.I']}.

ii (closure operators over 2(X)) C,C P(P(X)) = 2(P(X)),
5(9')={Fe¢(X)| 1Geg, Fe[GX]}, 5(9’)={Ie?(X)| 1Geg, 1€[D,G]} are
closure operators over 2(X) — associated respectively to FS(X), IS(X) as closure
systems over 2(X).
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iii (expressions of closures) The following expressions are standing for
families closures:

C (9 =min FS(X)[4], FSX)[4] = {[*, X] eFS(X) | G| *, X]},
C(g)= min ISX)[4], ISX)[F] = {[D, *] €IS (X) | 4= [T, ¢ ]}.
iv (codomains, partition) We have codom(C )= FS(X) — with partition

{C (nST(X))={D,2(X)}, C(ST(X))=FS(X)\{DJ, A(X)}} and
codom (C)=18(X)cnST(X).

Proof. i. We have (by definition) [ ,X]= U { F|Fe [¢,X]} c U {[F, X]|

Fe [o, X]} c[e, X]—and analogously for [(J,e].

ii. Among the definition properties of a closure operator (see consideration

2.2.i), the extensiveness property relative to C - g C (9) is obvious (by
definition), and the monotony property results from the sequence
£cg, FeC(§) iff IE€E, Fe[EX], therefore 3 E €4, F €[ E, X], ie.
Fe C(9).

Finally, the idempotency property (CoC )[(7]== C (9) results from the sequence:
FE(C o C)(g=C(C(9)) iff AF e C(g), Fe[F’,X], therefore 3Geg, F’ e [G,X]
and consequently GCF’cF,i.e. GCF, Fe C (9.

FS(X) is the closure system over 2(X) isomorphically associated to C as closure
operator over 2(X) because we have the isomorphism CO(2(X))~CS(2(X)) and
the equality FS(X)ZFP(E) can be verified (see consideration 2.2.i - (1)); indeed, if

[e,X]eFS(X), then we have C([e ,X])=[*.X] resulting from the sequence

Fe C([+X])iff 3Se[e,X], Fe[S,X] iff Fe[e,X]
and reciprocal, g FP( é) has the expression
g={FeP(X)| 3Geg, Fe[GX]},
thus g€ FS(X) (see point 1).

An analogous procedure can be performed in order to verify the affirmation “C -

closure operator over 2(X)” and the isomorphic association C =[S(X).

iii. The expressions of closures are particularizations of (2) from
consideration 2.2.i for FS(X), IS(X) € CS(2(X)).

iv. The equalities relative to codomains are particularizations of equality
(1’) from consideration 2.2.i for C, C e CO(P(X)), and the inclusion IS(X)
cnST(X) is obvious (by definition). Related to the partition, we have C (9= <
iff g= &, ie. @eFP(C) and enST(X) \ {@} iff C(R={P(X)} because
@ ez C (®) (see point ii); moreover, {ST(X), nST(X)} is a partition of 2(2(X))
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(see consideration 2.1.i and in addition the property of maintaining the
intersection when a section of a univocal relation to the right is taken — for details
in case of binary categorical and (pre-) univocal relations, see [9]).

Observation 3.2.1 (using the inverse). The proof of point ii of the above
theorem can use the inverse of the bijective function Q: CO(2(X))—=CS(A(X)), i.e.
2:CS(P(X)) =CO(P(X)), FS(X)— C with validations FS(X)eCS(?(X)) and
C(¢)= N FS(X)[4], obtaining the equality F S(X)=FP(C) (see consideration
2.2.1).

ii (the algebraic lattices FS(X), IS(X)) As closure system over 2(X), FS(X)
is a complete lattice, bounded by & and 2(X) — but as complete sub-lattice of
2(P(X)) (i.e. the operations V and U coincide, see consideration 2.2.i); in fact
FS(X) \ {&} is lower bounded by {X}eFS(X) and FS(X) \ {A(X)} is upper
bounded by 2*(X) € FS(X).

Particularly, FS(X) is an algebraic closure system over 2(X) (satisfies
C(ACS) from consideration 2.2.ii), so FS(X) is algebraic lattice and as
consequence, any [ e ,X] € FS(X) is represented by:

[¢.X]= U IS(X)",
where fS(X)°c FS(X) is a set of final compact segments [ e ,X]° — that satisfy any
of the two conditions of compact family — finite sub-cover, respectively
C(CF) [e ,X]CZC (4), ¢,=P(X) finite family (see consideration 2.2.i1).

IS(X) is the dual analogous of FS(X):

— IS(X) is a complete lattice, bounded by & and P(X) — but as complete
sub-lattice of 2(A(X)), where IS(X) \ {J} is lower bounded by
{0} eIS(X);

— Particularly, IS(X) is an algebraic closure system over 2(X), so IS(X) is
algebraic lattice with the representation of any initial segment through
[D,e]= UiSX)',
where IS(X)“ < IS(X) is a set of initial compact segments — that satisfy any

of the two conditions of compact family.

iii (about the alternatives of initial star segments) A “star” alternative to
IS(X)cnST(X) is the set (IS(X)={(+—e®]icjl(«®] initial segment over
X} < ST(X) — but which is not a closure system over 2*(X), and ,,associated” (C :
2(P*(X))—2(P*(X)) is not a closure operator over 2*(X) (generally, it does not
hold the extensiveness property — see observation 3.1.i and theorem 3.1, points i,
i1); the same “de-structuring” is also characteristic for the other version of initial
segments like («—, ®) (see observation 3.1.1).

Example 3.1 (undetermined segments as determined segments) Let be A,
Be?*(X), ac A, beB, 5.cP*(X) the family of singletons of X; we have 2(X) =
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[D,X]eFS(X)NIS(X) and PA(X)=[A,X]=C({A}) — in particular 2(X) = [{a},X]
=C ({{a}}) are final compact segments and 2*(X)=( ,X]= E(s.)= C(?*(X))=
U {Px(X) | xe X} is a final segment that is not compact — but it is represented by

the respective union of final compact segments (see considerations 2.1.ii, 2.1.iv,
the proof from point ii of theorem 3.1 and observation 3.2.ii).

Dually, [&,B] = C({B}) — in particular [&,{b}]=C({{b}}) are initial
compact segments and S.U { & }=C(S.)= C( S.U {D})=uU {[D,{x}]| {x}eS.}
is an initial segment that is not compact — but it is represented by the respective
union of initial compact segments.

4, Pseudo-filters over sets

Definition 4.1 (pseudo-filter) A pseudo-filter #Z on X is a starred family on
X and also a final segment on X; we denote P-FIL(X)={7 | 7 pseudo-filter on X}
= ST(X) N FS(X).

Observation 4.1 (the set P-FIL(X)) The set of final residual (non-star)
segments on X is actually the set of improper final segments on X

{D.2(X)} cFS(X); consequently P-FIL(X) = FS(X) \ {@.2(X)}= C (ST(X))
(see theorem 3.1.iv).

Theorem 4.1.i (closure operator over 2*(X)) CP_F:ST(X)ﬁST(X), Cp.r=
C Istx) 1s a closure operator on 2*(X) — associated with P-FIL(X) as closure
system over 2*(X).

ii (expression) We have the following expression:

C p-¢(S )=min P-FIL(X)[S], P-FIL(X)[S]={Z<P-FIL(X) | SC 7.
iii (codomain) We have the following equality:
codom (C p.r)=P-FIL(X).

Proofi. Cp.p is closure operator over 2*(X) — as the restriction on ST(X)
of C as closure operator over 2(X) and P-FIL(X) is the closure system over 2*(X)
associated to Cpr in accordance to isomorphism CO(P*(X))=CS(P*(X)) -
obtained by ,,the partialness” of the isomorphism CO(2(X)) =CS(2(X)) at ST(X)

and the equality P-FIL(X)=FP(C p-r) (see considerations 2.2.i, 2.2.iii); the above
equality results from the equalities:

FS(X) =FP(C), {D,2(X)} = FP(Clsstx), FP(C) = FP(Cp.p) U FP(Clust(x)),
where the last equality with disjunctive union is obtained from the equality (with
disjunctive union)

C = CprU ClasTx))
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(see theorem 3.1 — proof on points ii and iv, respectively [12]).

ii. The closing expression is a particularization of expression (2) from
consideration 2.2.i for P-FIL(X) e CS(?*(X)); this way we have Cp.(S)=min
FS(X)[S]= min P-FIL(X)[S] (see theorem 3.1.iii and observation 4.1)

iii. The equality results from the equalities:

codom (Cp.r) = C(ST(X)) = P-FIL(X)

(see consideration 2.2.iii and observation 4.1).

Observation 4.2.1 (the algebraic lattice P-FIL(X)) As closure system over
P*(X)

P-FIL(X) = FS(X)\ {@,2(X)} = C(ST(X)) = codom(C p.)

(according to observation 4.1 and theorem 4.1.iii) is a complete lattice which is
bounded by {X}=n P-FIL(X), 2*(X)=uw P-FIL(X) — but as a complete sub-lattice
of FS(X) with the same properties (see consideration 2.2.ii and observation 3.2.ii):
— V p-FIL(X) = sup p-FIL(X) = C pr(Up-FIL(X)) = U p-FIL(X), p-
FIL(X) < P-FIL(X);
— Ir}k algebraic lattice P-FIL(X) (as an algebraic closure system on
2 (X)) any pseudo-filter is represented by

7=V p -FIL(X)"= Up -FIL(X)",

where p-FIL(X)°SP-FIL(X) is a set of compact pseudo-filters on X (as

closings of finite starred families on X).

ii (filter) A filter 7 on X can be defined as a pseudo-filter on X which is also a
pre-filter on X - sufficiently 7 is an < - lower (or to the left) filtering family( see
observation 4.1 and consideration 2.1.iii); we notate FIL(X)={7 | 7 filter on X}=
P-FIL(X) N pFIL(X).

The equivalence with the usual definitions (where some of them are
adapted for 2(X)) is settled in the following theorem.

Theorem 4.2 (equivalences) The following equivalences stand:

i. Z s a filter on X iff 7 is a pseudo-filter on X and an c - lower (or to the
left) filtering family — observation 4.2. ii;

ii. Z is a filter on X iff 7 is a pseudo-filter on X and M -semi-lattice
(adaptation of definition 1.3.12 from [1], respectively the adaptation for 2(X) of
conditions (10), (11), page 77 from [10];

iii. 7 is a filter on X iff 7 is a pre-filter on X and final segment on X
(adaptation of definition 1.3.12.b from [1]);

iv. Z is a filter on X iff 7 is starred family on X and verifies

»Eq.VABeP(X), A, BeZiff AnBeZ”

(adaptation for 2(X) of condition (12), page 77 from [10]).
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Proof. The equivalence i < iii is immediate (by definition). In verifying
the following equivalences we use the expression

,E. AnB=infc {A,B}{in7}"".

The equivalence ii<> iv — actually the equivalence (10), (11) < (12) is
verified at page 77 from [10].

The equivalence ii <> iii is only mentioned in [1]. The implication ii = iii
is immediate (by definition and according to expression E); the mutual
implication results by definition and from the dual completeness of 7e P-FIL(X) —
if {A,B}"_#J, then AN B e 7 because we have successively

Ce{AB},, [CX] cZwith A, Be[C,X], AnBe[C,A]N[C,B]c[C,X]
(for details — including more general relational structures see[9]).

Theorem 4.3.i (restriction at pFIL(X)) EF:pFIL(X)—>pFIL(X) which is
defined by Cp = C P-FlpFIL(X) = C lpriLx) 1s the closure operator on 2*(X) —
associated with FIL(X) as closure system on 2*(X).

ii (expression) We have the following expression

Cr(p7)=min FIL(X)[p7], FIL(X)[p7]={7< FIL(X) | p7=7}.
iii (codomain) We have the equality
codom ( C p)=FIL(X).
Proofi. C r is correctly defined because
C P-FlpFIL(X) = (C |sTe0)|pFIL) = C |ST(X) M pFIL(X)= C |pFIL(X)

(see consideration 2.1.iii and [12]); also Cr is closure operator on 2*(X) — as a
closure operator restriction (the restriction at pFIL(X) of Cpr on 2*(X) or
equivalently of C on 2(X)) and FIL(X) is the closure system on 2*(X) associated

to Cp according to the isomorphism CO(P*(X))=CS(P*(X)) (obtained by ,the
partialness” of the isomorphism CO(P(X)) ~CS(P(X)) at pFIL(X)c ST(X)) and
the equality FIL(X)=FP(CF) (see considerations 2.2.i, 2.2.iii); the equality above
results from the equality sequence
P-FIL(X)=FP(C p.f), FIL(X)=P-FIL(X) N pFIL(X)=FP( C p.r) " pFIL(X)=
FP(Cp_rlprix)) = FP(CF)
(see observation 4.2 ii and the proof at point i of theorem 4.1).

ii. The closing expression is a particularization of expression (2) from
consideration 2.2.i for FIL(X) e CS(? (X)).

iii. We have the equalities (according to consideration 2.2.1ii):

codom(C )= C (pFIL(X))=FIL(X).

4.3. are known — but in other context and with other proofs (see [1]).
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ii (other expressions) The closing from the theorem 4.3.ii also has the

following expressions:

Cr(p7)=min P-FIL(X)[ p7]=min FS(X)[ p7]
because EF(p7)=C p_F(p7)=E (p?) (see theorems 4.1.i, 4.3.4, 3.1.ii and
observations 4.1, 4.2.1i).

iil (the algebraic lattice FIL(X)) Generally the set of the filters of a lattice
L is an algebraic closure system on L (more specific, a complete lattice — but not a
sub-lattice of L), so algebraic lattice — with representation expressions of a filter
and of the disjunction of two filters (see consideration 2.2.ii and [10]).

As closure system over 2 (X) FIL(X) is a - complete semi-lattice
bounded by {X}=nFIL(X) — as a m-complete sub-semi-lattice of P-FIL(X) and
V-complete semi-lattice, i.e.

V fIL(X)=sup ﬂL(X)ZE (v fIL(X)) > U fIL(X), fIL(X) c FIL(X (see
observation 4.2.1).

In the algebraic lattice FIL(X), any filter 7 is represented by

7=V fIL(X)",
where fIL(X)c FIL(X) is a set of compact filters on X (as closings of finite pre-
filters on X).

Also we have 71V72:{F1 M F2 | F1 671, F2€ 72}, 71, 7 € FIL(X)

Example 4.1 (pseudo-filter, filters) Let be ac Ae? (X); Pa(X) = [A,X]
= Crr(iA}) = Cr({A}) — in particular Py(X)=[1a}.X]= Cp-r({{a}})= Cr({{a}})
are compact filters ({A}, {{a}} € pFIL(X), but 2 (X)=(<,X] e P-FIL(X) \ FIL(X)
-2 (X) ¢ sections 1, 2pFIL(X) and is represented by the set {P(X) | xe X} of
compact pseudo-filters (see example 3.1 and observation 4.1.).

5. Conclusions

The main purpose of this paper is the generalization - by the notion of
pseudo-filter on a set X of the notion of filter #Z on X which is defined usually (see
[1]—[4]) as a pre-filter on X with the additional property

»P.VFez VSe?P(X), FcS implies Se 7
hereinafter in defining of a pre-filter p7 on X the void family and the families
which contain the void family are eliminated, i.e. the residual families on X and
so p7 is a particular starred family (see [1] - [4], respectively considerations 2.1.1,
2.1.iii). Also, concerning (P(X),<) as a partial order structure the segment to the
right on X [G,X]=Pg(X) is a starred family on X (actually pre-filter on X)) and the
segment to the left on X [@,B] is a residual family on X (see section 1 and
consideration 2.1.iv for details and example 2.1).
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Hereinafter the undetermined segments on X are defined (see definition
3.1) — the final segment [ e ,X] (by the property ,,P(FS)” in which the segment to
the right intervenes and which is equivalent with property ,,P”’) and the initial
segment [@,B] (by duality) and the operational expressions are obtained (see
theorem 3.1.1)). The main results concerning FS(X), IS(X) (the sets of final
segments on X, respectively of initial segments on X) consist in the attributes of
closure systems and codomains, respectively algebraic lattices with representation
properties (for details see section 1 - and theorem 3.1, points ii, iv, respectively
observation 3.2.ii); the proof from points ii and iv of theorem 3.1, respectively the
affirmations from point ii of observation 3.2 are simplified or justified according
to considerations 2.2.1, 2.2.1i.

A pseudo-filter 7 on X is a starred family on X which is also a final
segment on X — and we have P-FIL(X) = ST(X)nFS(X) = FS(X) \ {0,2(X)}
(expressions of the pseudo-filter set on X, see definition 4.1 and observation 4.1);
relatively to P-FIL(X) the closure system and codomain, respectively algebraic
lattice with representation properties attributes are maintained (for details see
sections 1, 2 - and theorem 4.1, points i, ii, respectively observation 4.2.1).

Finally a filter 7 on X can be defined as a pseudo-filter on X which is also
a pre-filter on X (sufficient 7 is an < - lower filtering family) — definition which is
equivalent to the usual definitions (see observation 4.2.ii and theorem 4.2); also
FIL(X) (the set of filters on X) has attributes of P-FIL(X) (for details see sections
1, 2 - and theorem 4.3, points i, iii, respectively observation 4.3.ii1).

We mention that the development of consideration 2.2.iii (see also section
1) may constitute the subject of a separate paper.

From the developments relative to starred families we mention that of
comparability (with the relation < and with other relations), respectively of utility
in different approach of data structures(see [13] and [15], [16] for some
considerations).Also pseudo-filters on a set intervene in the definition of pseudo-
topological structures (see [14]).
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