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REMARKABLE STAR FAMILIES 

Mihai REBENCIUC1, Ioana PISICĂ2 

În această lucrare generalizăm noţiunea de filtru pe o mulţime X prin 
noţiunea de pseudo-filtru pe X (ca familii stelate particulare ); în acest demers 
folosim segmentele determinate pe X şi în mod esenţial segmentele nedeterminate  
(inclusiv segmentul final) pe X care formează latici algebrice (ca sisteme de 
închidere algebrice – în contextul partiţionării lui P(P(X)) în familii stelate şi familii 
reziduale). În final laticile algebrice ale pseudo-filtrelor pe X, respectiv ale filtrelor 
pe X (ca pseudo-filtre particulare ) sunt asociate unor operatori parţiali de 
închidere pe P(X) - şi sunt menţionate unele dezvoltări ale familiilor stelate. 

In this paper we generalize the notion of filter on a set X using the notion of 
pseudo-filter on X (as particular starred families); in this conquest we use the 
determined segments on X and essentially the undetermined segments (including the 
final segment) on X which form algebraic lattices (as algebraic closure systems - in 
the context of partitioning P(P(X)) in starred families and residual families). Finally 
the algebraic lattices of the pseudo-filters on X, respectively of the filters on X (as 
particular pseudo-filters) are associated to partial closure operators on P(X) –and 
some developments of the starred families are mentioned. 
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1. Introduction 

In some mathematical disciplines (like sets theory or topology – see [5] -  
[8], respectively [1] - [4]) and in some fields of computer science and other 
technical sciences (for example, power engineering) the void family or families 
containing the void set are eliminated from families over a space set X (which is 
contextually non-ordinary, see consideration 2.1.i and where a space set is a set 
which has urelements as members, see [6]); in the following, these constitute the 
set of residual (non-star) families  over X, denoted as nST(X) (see consideration 
2.1.i again). It appears naturally that the set of star families ST(X) comes to 
complete a binary partition of P(P(X)) (see consideration 2.1.i again and again). 
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The first examples of star families over X are: the family of supersets of an 
element X∈x , Px(X) or generally of an  subset(part) G of X, PG(X) 
(generalizations of the corresponding neighborhoods’ families) and the pre-filter 
over X (in a rephrased definition, see considerations 2.1.ii and 2.1.iii, respectively 
[1] - [4]). The determined segments over X (implicitly related to the relation ⊆ in 
P(X), see consideration 2.1.iv) [G,X]=PG(X), [׎,B] which represent a 
particularization of segments concerning more general relational structures are 
examples of star families and residual, respectively, frequently used within the 
paper; moreover, example 2.1 concerns the pre-filters as determined segments. 

Undetermined segments over X (a generalization of determined segments 
over X, see Section 3) – the final segment, respectively the initial one over X 
[•,X],[׎,•] are star families (with the exception of ׎ and P(X)), respectively 
residual; as a consequence, the pseudo-filter over X (as star final segment over X) 
and the filter over X (redefined as pseudo-filter over X that is also pre-filter over 
X, see Section 4) are star families. The sets of the above mentioned families – 
FS(X), IS(X), respectively P-FIL(X), FIL(X) are closure systems isomorphically 
associated to closure operators respectively defined as the closure of the argument 
family; in fact, FS(X), IS(X), P-FIL(X), FIL(X) are algebraic closure systems, 
therefore algebraic lattices with representation properties. More specifically, 
FS(X) and IS(X) are closure systems over P(X) – isomorphically associated to 
closure operators over P(X) and P-FIL(X), FIL(X) are closure systems over 
P*(X) isomorphically associated to closure operators over P*(X) (as partial 
closure operators over P(X)). Moreover, FS(X), IS(X), P-FIL(X), FIL(X) are co-
domains  of closure operators isomorphically associated with each other – which 
have  ”min”-type expressions. 
 Consideration 2.2.i presents an adaptation to P(X) of the isomorphic 
association of the closure operator – closure system with the deduction of the co-
domain property of the closure system and of the “min”-type expression of the 
closure operator (see eq. (1’), (2’)).  The representation properties are given in 
consideration 2.2.ii. Finally consideration 2.2.iii justifies (essentially) the 
maintaining of the isomorphism and of the above representation property in the 
case of the partiality (cases P-FIL(X) and FIL(X) from Section 4). 
 Other contributions: 

 The algebraic lattices FS(X), IS(X), P-FIL(X), FIL(X) are tackled in 
comparison (see observations 3.2.ii, 4.2.i, 4.3.iii); 

 A proof is given for the equivalence between the definition of a filter as 
particular pseudo-filter and the usual definitions (see observations 4.2.ii 
and theorem 4.2); 

 Example 3.1 proves that determined segments are compact undetermined 
segments and gives representations for P*(X)∈FS(X), S.∪{׎}∈IS(X); 
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in example 4.1 segments to the right prove to be compact filters with 
P*(X) ∈        P-FIL(X) \ FIL(X). 

 
2. Further considerations 

 
     Consideration 2.1.i (star families) Relative to a space set X={x} 

(contextually non-trivial, i.e. at least not void – or stronger |X|≥ω0 in Card) 
consider the complete Boole algebras P(X)={A},P(P(X))={A={A}} (the set of 
families of sets over X) – related to , , ,     over P(X), respectively over 
P(P(X)) and bounded by ׎, X, respectively by  ׎, P(X). Denote a star family over 
X a family of sets S over X with S≠׎ ,׎S; in fact, ST(X)=P*(P*(X))={S|S star 
family over X} is a complete upper semi-lattice (∪-semi-lattice) with P*(X) as 
upper bound. The set of residual (non-star) families over X is nST(X)=P(P(X)) \ 
P*(P*(X))={R | R =׎ or ׎ R } – with { ST(X), nST(X)} a partition of P(P(X)). 

     ii(star families of oversets and associated functions) The supersets family 
of preset xX,  Px(X)={S[x]P*(X) | xS} is a star family over X; to the family 
AP*(P(X)) we can associate the family A(x)=APx(X) –  star if A(x)≠ ׎. More 
generally, the supersets families of GP*(X) \ {X}, PG(X)={S[G]P*(X) | 
GS}is a star family over X; to the family AP*(P(X)) we can associate the 
family A(G)=APG(X) – star if A(G)≠ ׎. The function associated to the set of 
star families {S(x) | xX} is Φ[S]:X→ST(X), x S(x); the set ΦS(X)={Φ[S] | 
Φ[S](x)=S(x)} is partially ordered by the relation ≤ induced by the relation   in 
ST(X), i.e. Φ[S’]≤ΦS iff for every xX, S’(x)S(x). Analogously for set {S(G) | 
GP*(X) \ {X}}ST(X). 
     iii(pre-filters) A pre-filter pF over X is a star family over X which is, in 
addition,   -  lower (or to the left) filtered  - pFST(X) and any {A,B}  pF is 
  - lower bounded in pF, i.e. {A,B}-

pF≠ ׎ (reformulation of the classical 
definition from [1] – [4]); we denote pFIL(X)={pF | pF pre-filter over X}. 
Pre-filters over X are characterized by the following property: 

P(pF) A family AP(X) is centered (with the property of finite intersection – 
for any AfA finite, Af≠׎) iff there is pFpFIL(X) so that ApF 
(reformulation of property 1.3.14 from [1]). 

iv(determined segments) Consider the determined segments over X (implicitly 
related to the inclusion relation   of P(X)) [A,X][ ]=PA(X) (the segment to the 
right over X in AP*(X) \ {X}),  [׎,B][ ]={CP(X) | CB} (the segment to 
the left over X in BP*(X) \ {X}), respectively [A,B][ ]= [A,X]  the) [B,׎]
segment bounded over X in A,B) – undeniably void if BA; relatively to P(X) \ 
{X}, respectively P*(X) (P(X) without max, respectively min element) the 



100                                                  Mihai Rebenciuc, Ioana Pisică 

corresponding determined segments over X are [A, )[ ]=PA(X) \ {X}, 
respectively ( ,B][ ]={CP*(X)|CB}. Analogously, the open determined 
segments over X are defined (relatively to the strict inclusion relation  ) – and 
the determined segments over P(X) (relatively to   - implicitly or to   -  see [9] 
for more details, including relative to more general relational structures). 
 Example 2.1 (pre-filters as determined segments) For ׎≠AB we have 
[A,X], (A,X], [A,B], (A,B]pFIL(X) – and (׎,B], (׎,B)ST(X) (and 
analogously relative to P(X) \ {X}, respectively P*(X)). 
           Consideration 2.2.i(isomorphism) Consider the sets 
CO(P(X))={C :P(P(X))→P(P(X))|C  closure operator over P(X)}, respectively 

CS(P(X))={cSP(P(X)) | cS closure system over P(X)}. C  has the following 
properties: 

 Extensiveness, i.e. G C (G); 

 Monotony, i.e. EG implies C (E) C (G); 

 Idempotency, i.e. ( C °C )(G) = C (G) (sufficiently (C °C )(G)  C (G) as 
given by the properties of extensiveness and monotony); 

cS is  -complete semi-lattice bounded by ׎ and P(X) – in fact complete lattice 
(in completion cS is ש – complete semi-lattice – for cS’  cS with שcS’ = sup cS’ 

= C ( cS’)) cS’, i.e. cS is  complete sub-lattice of P(P(X)) in case of equality). 

 Function Ω: CO(P(X))→CS(P(X)), C  cS=FP(C )  (1) 

(the set of fixed points ofC ) is correctly defined (see theorem 1.5.7 from [10]); as 
consequence, the following equality stands: 
 cS=codom( C )  (1’) 
which results from (1) – keeping in mind the idempotency property of C . 

Reciprocally, the function 
    Σ:CS(P(X))→CO(P(X)), cS C , C ( G)= cS[G], cS[G]={ S cS | G S } (2) 
is correctly defined (see theorem 1.5.6 from [10]); in fact, we have the expression: 
 C (G)=min cS[G]   (2’) 

because C (G)=inf cS[G] and C (G)cS with G C (G), i.e. C (G)cS[G]. 
Moreover, the Ω, Σ are bijective functions – Σ=Ω-1, Ω=Σ-1 and therefore 

we have the isomorphism CO(P(X))؄ CS(P(X)) (see theorem 1.5.8 from [10]). 

     ii(representable families) By definition, C CO(P(X)) is algebraic if it 
holds the property:  

P(ACO)SP(X), S C (G) implies GfG finite family over X, 

S C (Gf). 
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By definition, cSCS(P(X)) is algebraic if associated C CO(P(X)) is algebraic; 
cSCS(P(X)) is algebraic iff it satisfies the condition: 
  C(ACS) cS’P*(cS) cS’ –  upper (or to the right) filtered,  cS’cS 
(see theorem 1.5.13 from [10]). 
By definition, a lattice ALP  P(P(X)) is algebraic if:  

 ALP is a complete lattice; 

 Any family LALP is representable through  
L=ש ALPc,  
where ALPc is a set of compact families Lc over X – any ש- covering with 
families from ALP of Lc contains a ש- finite under-covering. In particular, 
in the case of association (2) with cS algebraic closure system over P(X), 
so  algebraic lattice Lc is a compact family over X iff it holds the following 
condition:  
C(CF)GfP(X) finite family, Lc =C (Gf)  
(see theorems 1.5.18 and 1.5.17 from [10]). 
 

     iii(partialness) The isomorphism CO(P(X)) ؄CS(P(X)) is persistent in 

case of partialness, i.e. for C :P(P(X)) – – →P(P(X)) partial closure operator over 

P(X) with dom(C )=DO and codom( C )=cSDOP(P(X)) – isomorphic with 

restriction C D=C |DO:DO→DO because dom(C D)=dom(C )DO=DO, 
codom(C D)=C (DO)=cS  (in proofs of theorems 1.5.6, 1.5.7, 1.5.8 from [10], the 
definition expression (1) from point i or the property of idempotency of C  are 
used, which depend on dom(C ) - also see [11]; evidently restriction C D verifies 
the properties of a closure operator – particularly over P*(X) for DOST(X) (see 
consideration 2.1.ii). 
In addition, the following still stand: 

- condition C(ACS) of algebraic closure system;   
- algebraic lattice as algebraic closure system; 
- condition C(CF) of compact family 

(because the definition expression (1) from point i or the property of idempotency 
of C  which depend on dom(C) are used in the profs of theorems 1.5.13, 1.5.17, 
1.5.18 from [10]. 
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3. Undetermined segments over sets 
 
 Definition 3.1(undetermined segments) A final segment over X (implicitly 
relative to the relation of inclusion   in P (X)) is a family [ ,X][ ] with the 
property: 
P(FS) F[ ,X], [F,X] [ ,X]. 
Analogously – but dually, an initial segment [׎,•][ ] over X is defined, i.e. with 
the property:  
P(IS)  I[׎,•], [׎,I]  .[•,׎]
We denote FS(X)[ ]={ ],[ X [ ]| ],[ X  final segment over X}, respectively 
IS(X)[ ]={[ ,  ][ ] | [ ,  ] initial segment over X}. 

Observation 3.1.i (alternatives) Relative to P(X) \ {X}, respectively P*(X) 
(P(X) without max, respectively min) the corresponding undetermined segments 
over X are [ , )[ ]P(X)\{X} respectively ( , ][ ]P*(X); analogously 
for open undetermined segments over X ( X, ], [ ,  ) respectively ( , ), 
( , ). 

ii) (intersections) Analogously to the case of bounded segment over X as 
intersection of determined segments over X, we can define the undetermined 
segment over X as intersection between a final and an initial segment over X – 
corresponding to definition 3.1 and cases from point i (for more details, including 
more general relational structures, see [12]). 

Definition 3.2 (closures of families) The final closure over P(X) of the 
family GP(P(X)) (implicitly relative to the inclusion relation   in P(X)) is the 
family: 

C


(G)[ ]={FP(X) | GG, F [G,X][ ]}. 
Analogously – but dually, the initial closure over P(X) - relative to a family 
GP(P(X))  is defined by    

 “C


(G)[ ]={IP(X) | GG, I ][G,׎]  ]}”. 
 Theorem 3.1.i (expressions of undetermined segments) For the 
undetermined segments [ X, ]FS(X) and [ ,  ]IS(X) the following 
expressions hold, respectively: 

[ X, ]= {[F,X] | F ሿX,ሾ }={FP(X) | F’ ],[ X , F[F’,X]}, 
[ ,  ]= {[ ,I] | Iא[ ,  ]={IP(X)| I’[ ,  ], I[ ,I’]}.  

 ii (closure operators over P(X)) ,C


C


 : P(P(X))P(P(X)),      

C


(G)={FP(X)|GG, F[G,X]}, C


(G)={IP(X)|GG, I[ ,G]} are 
closure operators over P(X) – associated respectively to FS(X), IS(X) as closure 
systems over P(X). 
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 iii (expressions of closures) The following expressions are standing for 
families closures: 

C


(G) = min FS(X)[G], FS(X)[G] = {[ , X] FS(X) | G [  , X]}, 

C


(G)=  min IS(X)[G], IS(X)[G] = {[ ,  ] IS (X) | G [ ,  ]}. 

 iv (codomains, partition) We have codom(C


)= FS(X) – with partition 

{C


(nST(X))={ ,P(X)}, C


(ST(X))= FS(X)\{ , P(X)}} and  

codom (C


)= IS(X) nST(X). 
 Proof. i. We have (by definition) [ ,X]=  { F | F  [ ,X]}   { [F, X] | 
F  [ , X]} [ , X] – and analogously for [ , ]. 
 ii. Among the definition properties of a closure operator (see consideration 
2.2.i), the extensiveness property relative to C


 - G C


(G) is obvious (by 

definition), and the monotony property results from the sequence  
EG, F C


(E) iff EE, F[E,X], therefore   E G, F [ E, X], i.e. 

F C


(G).  

 Finally, the idempotency property (C

 C


)(G) C


(G) results from the sequence: 

Fא(C

 C


)(G)=C


(C


(G)) iff F’ C


(G), F[F’,X], therefore GG, F’ [G,X] 

and consequently GF’F, i.e. GF, F C


(G). 

FS(X) is the closure system over P(X) isomorphically associated to C


 as closure 
operator over P(X) because we have the isomorphism CO(P(X))؄CS(P(X)) and 

the equality FS(X)=FP(C


) can be verified (see consideration 2.2.i - (1)); indeed, if 

[ ,X]FS(X), then we have C


([ ,X])=[ ,X] resulting from the sequence  

 F C


([•,X]) iff S[ ,X], F[S,X] iff F[ ,X] 

and reciprocal, GFP(C


) has the expression   
G={FP(X) | GG, F[G,X]},   
thus GFS(X) (see point i). 

An analogous procedure can be performed in order to verify the affirmation “C

 -  

closure operator over P(X)” and the isomorphic association C

؄IS(X). 

 iii. The expressions of closures are particularizations of (2) from 
consideration 2.2.i for FS(X), IS(X)CS(P(X)). 
 iv. The equalities relative to codomains are particularizations of equality 

(1’) from consideration 2.2.i for C


, C

CO(P(X)), and the inclusion IS(X) 

nST(X) is obvious (by definition). Related to the partition, we have C


(G)=   

iff G=  , i.e. FP(C


) and RnST(X) \ {} iff C


(R)={P(X)} because 

R C


(R) (see point ii); moreover, {ST(X), nST(X)} is a partition of P(P(X)) 
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(see consideration 2.1.i and in addition the property of maintaining the 
intersection when a section of a univocal relation to the right is taken – for details 
in case of binary categorical and  (pre-) univocal relations, see [9]). 
 Observation  3.2.i (using the inverse). The proof of point ii of the above 
theorem can use the inverse of the bijective function Ω: CO(P(X)) CS(P(X)), i.e. 

Σ:CS(P(X)) CO(P(X)), FS(X) C


 with validations FS(X)CS(P(X)) and 

C


(G)=        FS(X)[G], obtaining the equality FS(X)=FP(C


) (see consideration 
2.2.i). 
 ii (the algebraic lattices FS(X), IS(X)) As closure system over P(X), FS(X) 
is a complete lattice, bounded by   and P(X) – but as complete sub-lattice of 
P(P(X)) (i.e.  the operations ש and   coincide, see consideration 2.2.i); in fact 
FS(X) \ {} is lower bounded by {X}FS(X) and FS(X) \ {P(X)} is upper 
bounded by P*(X) FS(X). 

Particularly, FS(X) is an algebraic closure system over P(X) (satisfies 
C(ACS) from consideration 2.2.ii), so FS(X) is algebraic lattice and as 
consequence, any [ ,X] FS(X) is represented by:  

[ ,X]=  fS(X)c, 
where fS(X)cFS(X) is a set of final compact segments [ ,X]c  – that satisfy any 
of the two conditions of compact family – finite sub-cover, respectively  

C(CF) [ ,X]c=C


(Gf), GfP(X) finite family (see consideration 2.2.ii).  
IS(X) is the dual analogous of FS(X): 

 IS(X) is a complete lattice, bounded by   and P(X) – but as complete 
sub-lattice of P(P(X)), where IS(X) \ {} is lower bounded by 
{}IS(X); 

 Particularly, IS(X) is an algebraic closure system over P(X), so IS(X) is 
algebraic lattice with the representation of any initial segment through 
[ , ]=  iS(X)c,  
where IS(X)c IS(X) is a set of initial compact segments – that satisfy any 
of the two conditions of compact family. 

iii (about the alternatives of initial star segments) A “star” alternative to 
IS(X)nST(X) is the set (IS(X)={(←, ][ ]|(←, ] initial segment over 

X}ST(X) – but which is not a closure system over P*(X), and „associated” (C


: 
P(P*(X))→P(P*(X)) is not a closure operator over P*(X) (generally, it does not 
hold the extensiveness property – see observation 3.1.i and theorem 3.1, points i, 
ii); the same “de-structuring” is also characteristic for the other version of initial 
segments like (←, ) (see observation 3.1.i). 
 Example 3.1 (undetermined segments as determined segments) Let be A, 
BP*(X), aA, bB, S•P*(X) the family of singletons of X; we have P(X) =  
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[ ,X]FS(X) IS(X) and PA(X)=[A,X]=C


({A}) – in particular Pa(X) = [{a},X] 

= C


({{a}})  are final compact segments and P*(X)=( ,X]= C


(S•)= C


(P*(X))= 
 {Px(X) | xX} is a final segment that is not compact – but it is represented by 
the respective union of final compact segments (see considerations 2.1.ii, 2.1.iv, 
the proof from point ii of theorem 3.1 and observation 3.2.ii). 

 Dually, [ ,B] = C


({B}) – in particular [ ,{b}]=C


({{b}}) are initial 

compact segments and S• { }=C


(S•)= C


( S• { })= {[ ,{x}] | {x}S•} 
is an initial segment that is not compact – but it is represented by the respective 
union of initial compact segments. 
 

4. Pseudo-filters over sets 
 
 Definition 4.1 (pseudo-filter) A pseudo-filter F on X is a starred family on 
X and also a final segment on X; we denote P-FIL(X)={F | F pseudo-filter on X} 
= ST(X) FS(X). 
 Observation 4.1 (the set P-FIL(X)) The set of final residual (non-star) 
segments on X is actually the set of improper final segments on X 

{ ,P(X)}FS(X); consequently P-FIL(X) = FS(X) \ { ,P(X)}= C


 (ST(X)) 
(see theorem 3.1.iv). 

 Theorem 4.1.i (closure operator over P*(X)) C


P-F:ST(X) ST(X), C


P-F= 

C


|ST(X) is a closure operator on P*(X) – associated with P-FIL(X) as closure 
system over P*(X).  
 ii (expression) We have the following expression:  

C


P-F(S )=min P-FIL(X)[S], P-FIL(X)[S]={FP-FIL(X) | SF}. 
 iii (codomain) We have the following equality:  

       codom (C


P-F)=P-FIL(X). 

 Proof i. C


P-F is closure operator over P*(X) – as the restriction on ST(X)  

of C


 as closure operator over P(X) and P-FIL(X) is the closure system over P*(X) 

associated to C


P-F in accordance to isomorphism CO(P*(X)) CS(P*(X))  - 
obtained by „the partialness”  of the isomorphism CO(P(X)) CS(P(X)) at ST(X) 

and the equality    P-FIL(X)=FP(C


P-F) (see considerations 2.2.i, 2.2.iii); the above 
equality results from the equalities: 

FS(X) = FP(C


), { ,P(X)} = FP(C


|nST(X)), FP(C


) = FP(C


P-F) FP(C


|nST(X)), 
where the last equality with disjunctive union is obtained from the equality (with 
disjunctive union) 

C


 = C


P-F C


|nST(X))  
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(see theorem 3.1 – proof on points ii and iv, respectively [12]). 
 ii. The closing expression is a particularization of expression (2) from 

consideration 2.2.i for P-FIL(X) CS(P*(X)); this way we have C


P-F(S)=min 
FS(X)[S] =    min P-FIL(X)[S] (see theorem 3.1.iii and observation 4.1) 
 iii. The equality results from the equalities:   

 codom (C


P-F) = C


(ST(X)) = P-FIL(X)  
 (see consideration 2.2.iii and observation 4.1). 
 Observation 4.2.i (the algebraic lattice P-FIL(X)) As closure system over 
P*(X)   

  P-FIL(X) = FS(X) \ { ,P(X)} = C


(ST(X)) = codom(C


P-F) 
(according to observation 4.1 and theorem 4.1.iii) is a complete lattice which is 
bounded by {X}= P-FIL(X), P*(X)= P-FIL(X) – but as a complete sub-lattice 
of FS(X) with the same properties (see consideration 2.2.ii and observation 3.2.ii): 

 ڀ p-FIL(X) = sup p-FIL(X) = C


P-F( p-FIL(X)) =  p-FIL(X), p-
FIL(X)            P-FIL(X); 

 In algebraic lattice P-FIL(X) (as an algebraic closure system on 
P*(X)) any pseudo-filter is represented by   

 F = ڀ p -FIL(X)c =  p -FIL(X)c,   
where p-FIL(X)cP-FIL(X) is a set of compact pseudo-filters on X (as 
closings of finite starred families on X). 

ii (filter) A filter F on X can be defined as a pseudo-filter on X which is also a 
pre-filter on X - sufficiently F is an   - lower (or to the left) filtering family( see 
observation 4.1 and consideration 2.1.iii); we notate FIL(X)={F | F filter on X}= 
P-FIL(X) pFIL(X). 
 The equivalence with the usual definitions (where some of them are 
adapted for P(X)) is settled in the following theorem. 
 Theorem 4.2 (equivalences) The following equivalences stand: 

i. F is a filter on X iff F is a pseudo-filter on X and an   - lower (or to the 
left) filtering family – observation 4.2. ii; 

ii. F is a filter on X iff F is a pseudo-filter on X and  -semi-lattice 
(adaptation of definition 1.3.12 from [1], respectively the adaptation for P(X) of 
conditions (10), (11), page 77 from [10];  

iii. F is a filter on X iff F is a pre-filter on X and final segment on X           
(adaptation of definition 1.3.12.b from [1]);  

iv. F is a filter on X iff F is starred family on X and verifies  
,,Eq.A,BP(X), A,BF iff ABF.’’      
(adaptation for  P(X) of condition (12), page 77 from [10]). 
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Proof. The equivalence i  iii is immediate (by definition). In verifying 
the following equivalences we use the expression   

,,E. AB= inf {A,B}{in F}’’.  
 The equivalence ii iv – actually the equivalence (10), (11)  (12) is 
verified at page 77 from [10]. 
 The equivalence ii iii is only mentioned in [1]. The implication ii iii 
is immediate (by definition and according to expression E); the mutual 
implication results by definition and from the dual completeness of FP-FIL(X) – 
if {A,B}-

F ≠ , then ABF because we have successively  
C{A,B}-

F, [C,X] F with A, B[C,X], AB[C,A] [C,B] [C,X] 
(for details – including more general relational structures see[9]). 

 Theorem 4.3.i (restriction at pFIL(X)) C


F:pFIL(X)→pFIL(X) which is 

defined by C


F = C


P-F|pFIL(X) = C


|pFIL(X)  is the closure operator on P*(X) – 
associated with FIL(X) as closure system on P*(X). 
 ii (expression) We have the following expression 

C


F(pF)=min FIL(X)[pF], FIL(X)[pF]={FFIL(X) | pFF}. 
 iii (codomain) We have the equality  

codom (C


F)=FIL(X). 

 Proof i. C


F is correctly defined because  

C


P-F|pFIL(X) = (C


|ST(X))|pFIL(X) = C


|ST(X) pFIL(X)= C


|pFIL(X) 

(see consideration 2.1.iii and [12]); also C


F is closure operator on P*(X) – as a 

closure operator restriction (the restriction at pFIL(X) of C


P-F on P*(X) or 

equivalently of C


 on P(X)) and FIL(X) is the closure system on P*(X) associated 

to C


F according to the isomorphism  CO(P*(X))؄CS(P*(X)) (obtained by „the 
partialness”  of the isomorphism CO(P(X)) ؄CS(P(X)) at pFIL(X)ST(X)) and  

the equality FIL(X)=FP(C


F) (see considerations 2.2.i, 2.2.iii); the equality above 
results from the equality sequence   

P-FIL(X)=FP(C


P-F), FIL(X)=P-FIL(X) pFIL(X)=FP(C


P-F) pFIL(X)= 

FP(C


P-F|pFIL(X)) = FP(C


F)   
(see observation 4.2 ii and the proof at point i of theorem 4.1). 
 ii. The closing expression is a particularization of expression (2) from 
consideration 2.2.i for FIL(X)CS(P*(X)). 
 iii. We have the equalities (according to consideration 2.2.iii):   

codom(C


F)= C


(pFIL(X))=FIL(X).  
 Observation 4.3.i (other proofs) The results from points ii, iii of theorem 
4.3. are known – but in other context and with other proofs (see [1]).  
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 ii (other expressions) The closing from the theorem 4.3.ii also has the 
following expressions:  

C


F(pF)=min P-FIL(X)[ pF]=min FS(X)[ pF] 

because C


F(pF)=C


P-F(pF)=C


(pF) (see theorems 4.1.i, 4.3.i, 3.1.ii and 
observations 4.1, 4.2.ii). 
 iii (the algebraic lattice FIL(X)) Generally the set of the filters of a lattice 
L is an algebraic closure system on L (more specific, a complete lattice – but not a 
sub-lattice of L), so algebraic lattice – with representation expressions of a filter 
and of the disjunction of two filters (see consideration 2.2.ii and [10]). 
 As closure system over P*(X) FIL(X) is a  - complete semi-lattice 
bounded by {X}= FIL(X) – as a  -complete sub-semi-lattice of P-FIL(X) and 
   .complete semi-lattice, i.e-ڀ

fIL(X)=sup fIL(X)=C ڀ


F(  fIL(X))  fIL(X), fIL(X)FIL(X (see 
observation 4.2.i). 
 In the algebraic lattice FIL(X), any filter F is  represented by  
 F=V fIL(X)c, 
where fIL(X)cFIL(X) is a set of compact filters on X (as closings of finite pre-
filters on X). 
 Also we have F1ڀF2={F1  F2 | F1F1, F2F2},  F1, F2 FIL(X). 
 Example 4.1 (pseudo-filter, filters) Let be aAP*(X); PA(X) = [A,X]                

= C


P-F({A}) = C


F({A}) – in particular Pa(X)=[{a},X]= C


P-F({{a}})= C


F({{a}}) 
are compact filters ({A}, {{a}}pFIL(X), but P*(X)=( ,X]P-FIL(X) \ FIL(X)  
- P*(X)    sections 1, 2pFIL(X) and is represented by the set {Px(X) | xX} of 
compact pseudo-filters (see example 3.1 and observation 4.1.). 
 
5. Conclusions 

The main purpose of this paper is the generalization - by the notion of 
pseudo-filter on a set X of the notion of filter F on X which is defined usually (see 
[1] – [4]) as a pre-filter on X with the additional property  

 ,,P • FF,  SP(X), FS implies SF”; 
hereinafter in defining of a pre-filter pF on X the void family and the families 
which contain the void family are eliminated, i.e. the residual families on X and 
so pF is a particular starred family (see [1] - [4], respectively considerations 2.1.i, 
2.1.iii). Also, concerning (P(X), ) as a partial order structure the segment to the 
right on X [G,X]=PG(X) is a starred family on X (actually pre-filter on X) and the 
segment to the left on X [׎,B] is a residual family on X (see section 1 and 
consideration 2.1.iv for details and example 2.1). 
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 Hereinafter the undetermined segments on X are defined (see definition 
3.1) – the final segment [ ,X] (by the property ,,P(FS)” in which the segment to 
the right intervenes and which is equivalent with property ,,P”) and the initial 
segment [׎,B]  (by duality) and the operational expressions are obtained (see 
theorem 3.1.i). The main results concerning FS(X), IS(X) (the sets of final 
segments on X, respectively of initial segments on X) consist in the attributes of 
closure systems and codomains, respectively algebraic lattices with representation 
properties (for details see section 1 - and theorem 3.1, points ii, iv, respectively  
observation 3.2.ii); the proof from points ii and iv of theorem 3.1, respectively the 
affirmations from point ii of observation 3.2 are simplified or justified according 
to considerations 2.2.i, 2.2.ii. 
 A pseudo-filter F on X is a starred family on X which is also a final 
segment on X – and we have P-FIL(X) = ST(X) FS(X) = FS(X) \ {׎,P(X)} 
(expressions of the pseudo-filter set on X, see definition 4.1 and observation 4.1); 
relatively to P-FIL(X) the closure system and codomain, respectively algebraic 
lattice with representation properties attributes are maintained (for details see 
sections 1, 2 - and theorem 4.1, points i, ii, respectively observation 4.2.i). 
 Finally a filter F on X can be defined as a pseudo-filter on X which is also 
a pre-filter on X (sufficient F is an  - lower filtering family) – definition which is 
equivalent to the usual definitions (see observation 4.2.ii and theorem 4.2); also 
FIL(X) (the set of filters on X) has attributes of P-FIL(X) (for details see sections 
1, 2 - and theorem 4.3, points i, iii, respectively observation 4.3.iii). 
 We mention that the development of consideration 2.2.iii (see also section 
1) may constitute the subject of a separate paper. 
 From the developments relative to starred families we mention that of 
comparability (with the relation   and with other relations), respectively of utility 
in different approach of data structures(see [13] and [15], [16] for some 
considerations).Also pseudo-filters on a set intervene in the definition of pseudo-
topological structures (see [14]). 
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