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WAVE PROPAGATION
THROUGH A NOZZLE WITH ELASTIC WALLS

Elena Corina CIPU *

Se studiazda propagarea micilor perturbatii pentru o problema simpld de
curgere-structurd. Este consideratd curgerea unui fluid izentropic, compresibil,
nevdscos printr-o dozd cu pereti elastici. In prezenta structurii elementului frontierd
al fluidului cercetam influenta numarului Mach al miscarii neperturbate asupra
vitezei de propagare a undelor.

Study of small perturbations propagation in a simple flow-structure problem
shall be made. The flow of a compressible inviscid and isentropic fluid through a
nozzle with elastic walls is presented. In presence of a coupling with a structural
element bounding the fluid we investigate the influence of Mach number of the
unperturbed flow on the speed of propagating waves.
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Introduction

We study the propagation of small perturbations in a nozzle with parallel
elastic walls (see [1], [2]). We consider a bi-dimensional inviscid, isentropic and
compressible fluid flow through a nozzle with elastic walls. For initial time we
suppose that the nozzle has straight walls. The study is divided in two parts. We
study in first section the one-dimensional flow and in second the two-dimensional
flow-structure interaction.

1. One-dimensional flow-structure problem

Denoting c(x,t), the local speed of sound, u(x,t) the fluid velocity in x
direction and H(x,t) the nozzle height, u,(x,t) shall be the initial fluid velocity.
The lateral section of the nozzle is illustrated in Fig 1.
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Fig 1. Lateral section of the nozzle.

Under the hypothesis that the walls of the nozzle are so thin that the

motion is governed by the linear beam equation (see [1]) the equations governing
the flow are:

2. 2. 2

i—kcux P il +i(Ht +ugH,)=0, u; +ugu, +——coc, =0,
y—1 y—1 H -

Hy + DH . =m(p; — po)» (1.1)

for y the specific heats ratio, D the bending stiffness, p; the local pressure of the

fluid, p( the outside ambient pressure and m the linear mass of the walls that
shall be supposed unity.

The evolution of small perturbations for the system (1.1) is expressed by
functions ¢',u',H' for c=c,+c', u=u,+u', H=H,+H'. The system for
perturbations shall be obtained if we assume that prime quantities are small
comparing with those in the unperturbed flow denoted with c(,u,H for pg =1,

po = 1. Dropping the prime notation for perturbations and using known relations:
p=po(+ (=DM /2) 77D p = po (14 (y =)M? 12) 07D e iy -1y =
=c? (y =D+ u®/2 we have for first approximation: p— pg =2coc/(y —1)-

(=D . L
. (c(‘% / ;/)l and the system of equations for perturbations is:

2¢, (y =D +couy +2c,ug (y —1)+co(H; +ugH, )/ Hy =0,
(y =D(u; +uguy ) +2cpcy =0, (1.2)

)l/(7—1)

Hﬁ+DHxxxx—2-c0(c§/7 c/(y-1)=0.
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We search for solutions through simple waves such that for k,® # 0

c(x, 1) = p(kx— 1), u(x,t) =y (kx - ot), H(x,t) = h(kx—ot), (1.3)
(y—1
for g, € C(l)(R), he C(4)(R) . From (1.2) with 4y = (c% /}/)l b we find:
2(](1/10 — (0)(0' /(]/ - 1) + Cokl//'-i-CO (kuo — a))h'/ HO =0,
(kuy —o)y'+2cokp'/(y —1)=0 . (1.4)
If kug —w =0 thenp =ct.,y =ct., h=ct. expressing a permanent flow.

We shall continue under the case ku, —® # 0 meaning T # u, in which phase

velocity differs from the flow speed. We can write from (1.4):

P TN .7 Sl )8
(7 —Dikug —@) "~ RS
ki 2 (kug —w)? ,, 24
k4(“0 ;0) o @ (Léoza)) =20 00 (1.5)
gk cok y—1
Solving differential equation (1.5)3 and denoting
8Dk° A,c;
:; a)2+i, 5=a)4+—°c°>0 we shall find the
k*\2D |ku0 —a)| y—1
fundamental solutions:
P 1=sinAg, g o= cosAE, 3 =Sinaé, p 4= cosas; (1.6)
for w? > Vs - wz—i, (1.7)
lkug — o k*\2D |ku0 — o
0= smz: ¢ 2= c0s AL, <03 =%, gy =, (1.8)
for »° < / (1.9)
e —a)| V2D |k”0_‘0|
or ¢ (=sinA&, ¢ y=cosAE, @, = AE+ B, for a)zzi. (1.10)
|ku0 —a)|

In order to investigate the influence of Mach number of the unperturbed
flow on the speed of propagating waves we shall make graphical representations



50 Elena Corina Cipu

of level curves for the function [ (a),k)za)z—ki. We shall use the
Uy — o)

following constants: ¢y =+/1.4, y=1.4025, D of order 10~, Mach number
Mgy =uy/cye[0,13] and w/k e[-1]1]. Representations are made in Figs 2.

and 3.
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C)M0=0.95 d)MO =13
Fig. 3. Variation of Mach number for fixed D=0.001.

From Figs 2. and 3. we conclude that the domain @/k <0 reduces once
Mach number is increasing.

For & = kx — wt we found bounded general solution for (1.3);:
c(x,t) = Fy sin A(kx — at) + F, cos A(kx — o) + F5 sina(kx — ot) + 11
+ Fy cosa(kx — ar), (1-11)

. o
for @* > ———, and in case @’ < L the local speed of sound becomes:
|ku0 - a)| |ku0 - a)|

c(x,1) = Fy sin A(kx — at) + F, cos A(kx — o), %>o,

c(x,t) = Fy sin A(kx — art) + F cos A(kx — o) + F3e* TR 15050 (1.12)

c(x,1) = Fy sin A(kx — o) + Fy cos A(kx — o) + F3e*F = | <0< .
Then from (1.5) after integration we can write:

( Uy — a))z cok
H(x,t)=—"——c(x,0)+ C,; u(x,t) =—————c(x,t) + C,. (1.13

Using initial conditions: c(x,t)=c,C(x), u(x,t) =u,U(x), H(x,t)=H,f(x),
and boundary conditions we can express the constants of integration. Also from
these conditions one obtains a compatibility relation between initial conditions for

: : . kg — @)
existence of motion through simple waves:%coC(x)+Cl =Hyf(x),
Cok
Cok

(= Dkug - o)

coC(x)+Cy =uyU(x), from where:
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ugU(x) — Cy = cg™k> Ky = Dkutg — @) (C, — Ho /(). (1.14)

Remarks:
I.If U(x)=ct. or f(x)=ct. then f(x)=ct.,C(x)=ct. or U(x) =ct.,C(x) = ct.
Looking for solution which has:c(x,f)=c,e, u(x,t)=0, H(x,t)=H e or
c(x,ty=c,e, u(x,t)=uye, H(x,t)=0, £ =0(107) we find

Fj sin Akx + F cos Akx + F3 sin akx + Fy cos akx = ¢y C,

(kuo—a))2 cok
S0 0C+C =Hpe,— 0% chCy —uge
T

2. Boundary conditions could be imposed if we consider the domain x €[0,L],
vel0,H(x)] ateacht: H(0,t)=H(L,t)=0, H,,(0,t)=H,,(L,t)=0.

Considering also the case f(x) # ct.,U(x) # ct.we look for the constants
F.,1=1,2,3,4 in order to obtain the general solution.

2. Bi-dimensional flow-structure problem

The fluid velocity has now two components, on x and y direction. The
fluid flow is sketched in Fig. 4.
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Fig. 4. Lateral section of the nozzle.

We consider a potential flow, with the potential ¢(x, y,#) and flow velocity

vector V =ugi +v,V = (u,v) = (4.9, ) . The equations governing the flow are:

2
(1= M§)py + 8,y — Quodys + )/ co> =0,
Htt +DHxxxx =Pi —Po :2p0(¢t +”O¢x) on 2y = H(x,t), (2-1)
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where (u(,0) is the velocity vector in the unperturbed flow and ¢, H bounded
functions for y — foo (see [3], [4], [S]).

Remarks;
1. For bi-dimensional inviscid, isentropic and compressible fluid the pressure and

mass density could be written as: p = po(1+ (¥ —1)(¢ +7? /2)/c8)7/(7_1),
p=po+(r=D@ +V212)/c)H)V7D  with the module of velocity:

v?= (g + u)2 +v?2 . Then for small perturbations y2= u02 + 2ugu and pressure
on 2y=H(x,t) becomes: p= py(l—y(¢ +%2u0u)/c(2) +...) from where

Po =P =pold +updy).
2. Boundary condition on the surface 2y = H(x,¢) must be imposed for potential
obtained from velocity in x direction: ¢, = H; +ugH .

For function H we shall consider initial and boundary conditions:
H(x,0)=Hf(x), and H(0,¢)=H(L,t)=0,H,,(0,¢t)=H,,(L,1)=0.

Looking for motion through simple waves we consider:

d(x, y,t) = F(lkyx+kyy —ot), H(x,t)=h(kyx —ax), F e CP(R),he CP(R).
From (2.1) we find:

(kf +ky* —(@/ co — Moky)?)F!'=0,

01"+ Dk h™ =2 pg (kg — ) F' . (2.2)
For F'# 0one find the dispersion equation:

2
Y Y =Sy

Co Cg
In order to solve equation (2.1); we change the variables (x,#) through
(&,m) with: E=x—(ug +co)t, n=x—(uy —cp)t obtaining a new equation:

4¢§77 +¢yy =0, ¢:¢(§a779y) (2.3)
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that will be solved considering a separation of variables (£,7) from y variables:

_ Pen _ 1F'()
¢=p(,mMF(y). We find o 1 F ()

ony.

=K, K >0 for bounded solutions

Then F(y)= Asin24y+ Bcos2Ay and ¢gy, — /12(p =0. Solution obtained
for A=0 is @(&n)=Cé+Dn  and for A=0 is @(&,n)=
= Ce’l(§+77) + De_ﬂ(ern) . We can write the solution of (2.1);:

d(x, v,1) =[Ce? ¥ 7400 | D22 =10 [ 45in 24y + Bcos 2Ay]. (2.4)

We remark that for solution (2.4) of (2.1); we have ¢, +uygp, =0.
Solving equation (2.1), we obtain for function H(x,¢) the problem:

Htt +DHXXXX :O, D:[O,L]X(O,W),
H(X,O)=H0f()€),

(2.5)
H(0,8)=H(L,t)=0, H_(0,¢) = H, (L,{) =0.
TU X(4)

Considering a separation of variables H(x,t) = X(x)T(¢) = T = _DT =a
and for « >0we can write 7" —aT =0, X4 +(a/D)X =0.

With B =%a/D /2, general solution for (2.5) is:

X(x) = cos B (Cre? + C3e ™) +sin - (Cre™ + Cpe™ ),

T(t)= Pe\/gt + Qe_\/gt , P =0, for a bounded solution on t. (2.6)

Solution for equation (2.5); is:
H(x1) = {cos AC1eP + Cye ]+ sin A[Cre™ — Che P T10e Q2.7)

From conditions (2.5), we find:
H0,0)=0=>C3 =—C|,H ,(0,0)=0= Cy =Cy,

H(L,t)=0=> Cy cos BL(ePL — e Py +sin BL(CoeP +ClePly=0,  (2.8)

H (Lt)=0=2pL =—%+2k7z,k e N = o =2D(-n/4+kr)* I 12,
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and (2.7) = C, = Cith(—n /4 + kr) for each k.
The general solution for (2.5) is:

o0
H(x,t)= ZMk {cos((—z/4+kx)x/L)ysh(—n/4+kr)x/L)+ (2.9
k=1
V2D
+th(-7 !4+ kr)sin((-z / 4+ km)x | LYych((-/ 4+ kx)x/L)}e L
with M, determined from H (x,0) = H f(x) for which:

VA
L kr)t
(4 ) .

Hyf(x)= iMk {cos((-z/4+km)x/LYysh((-x/4+km)x/L)+ (2.10)
k=1
+th(-z/4+krx)sin((-z/4+km)x/ Lych((-x/4+kn)x/L)}.

Conclusions

For one-dimensional case was investigated the influence of Mach number of
the unperturbed flow upon the speed of propagating waves (presented in Figs 2
and 3).

For the bi-dimensional case instead of a discussion of the dispersion
equation we have studied the solution for potential using condition on the
boundary: ¢y =H; +ugH, on 2y =H(x,t), and initial conditions on velocity.

The velocity field is expressed by:

u=g, =2[Ce? C71t) _ pe=2A=UD[ 4sin 24y + Beos24y],
v=g, =22[Ce* ) 4 pem2HTD | 4cos 24y — Bsin24y].
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