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AN INTERPRETABILITY APPROACH FOR MORTALITY 

RISK PREDICTION BASED ON W-BDA AND MLP 

Guanghua ZHANG1, Huimin ZHANG2, Mingxing FANG3, Qi ZHANG4, 

Renshuang DING5,* 

Given the characteristics of acute respiratory distress syndrome (ARDS) 

medical data with unbalance, small samples and large feature space, and the lack of 

interpretability of existing model, this paper proposes an interpretable method for 

mortality risk prediction based on weighted balanced distribution adaptation (W-

BDA) and multilayer perceptron (MLP). Firstly, the extracted ARDS data were 

preprocessed for the divided source and target domains. Secondly, feature selection 

based on XGBoost was performed in two domains to eliminate redundant features 

and achieve dimension reduction. Thirdly, the reconstructed domains were mapped 

to the same reproducing kernel Hilbert space (RKHS) through W-BDA, and the 

balance factor was introduced to achieve the weighted equilibrium adaptation of 

conditional and marginal distributions. Finally, the MLP network model was 

trained by the new source domain, and the mortality risk prediction of ARDS was 

achieved on the new target domain through parameter tuning and cross-validation. 

The experimental results show that the area under the receiver operating curve 

(AUC) of the method proposed in this paper is as high as 0.905 when predicting the 

risk of death, the accuracy is 87.78%. Compared with traditional methods, this 

method combined with SHAP could obtain better accuracy and reliable 

interpretability, providing more exact diagnosis advice for medical workers. 
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1. Introduction 

Machine learning aiding medical diagnosis shows the excellent prospects 

[1], which have potential applications across multiple fields. ARDS is non-

hydrostatic pulmonary edema associated with various etiologies defined by a 

common set of clinical features [2], with a high in-hospital mortality rate of 
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approximately 10%~40% [3, 4]. The clinical prediction model established by 

machine learning technology can provide decision support for doctors to assess 

the condition and determine the treatment plan [5] and save more time for patients 

with early intervention for careful examination and treatment to reduce risk. 

However, most existing models applied in the intensive care unit (ICU) provide 

limited prognostic information and poor predictive power, thus causing 

controversy [4]. Jing et al. [6] established a risk prediction model for ARDS 

patients through a traditional logistic regression algorithm to assist patients with 

different risk stratification. Still, logistic regression cannot handle the correlation 

between features well, and the model was based on a few samples. Huang et al. 

[4] adopted the random forest algorithm, better than the existing scoring system 

based on logistic regression, but they could not make predictions beyond the data 

range of the training set, which may lead to overfitting in modeling some specific 

noisy data. Aktar et al. [7] compared various supervised machine learning 

algorithms suitable for clinical use, but the prediction performance depended on 

the size of the sample size, which was not conducive to promoting the model. Few 

single disease data and ample feature space are resulting in significant prediction 

errors, overfitting, and instability of the model. Therefore, it is still challenging to 

predict mortality of ARDS more accurately, efficiently, and reliably. 

The clinical manifestations of some patients with specific diseases similar 

to ARDS are not typical, and the study sample size is small. At present, the 

primary means to solve the problem of small samples are transfer learning and 

sampling techniques [8]. Sampling technology generates balanced samples on the 

original samples based on a particular strategy and independently trains different 

prediction models of disease mortality risk, ignoring the knowledge transfer 

between other models [9]. As an essential branch of machine learning, transfer 

learning has been gradually applied to various tasks such as medical image 

segmentation [1], disease prediction [10], and complication prediction [11] in the 

medical field. Transfer learning breaks the assumption of independent and 

identical distribution in traditional machine learning [12]. By utilizing a small 

amount of labeled samples, cross-domain learning can be realized, and unmarked 

samples can be labeled [13]. For feature-based method, RKHS uses the maximum 

mean difference (MMD) as the metric [13] to minimize the data distribution 

difference between the two domains and perform dimensionality reduction 

processing, which transforms the problem into a transfer matrix learning problem 

and simplifies the optimization process [14]. Pan et al. [15] proposed TCA that 

attempted to learn a set of common transfer components between the source and 

target domains so that when the features of the two domains were mapped onto 

the common feature subspace, the difference in the data distribution of different 

domains could be significantly reduced. But the principal reduction of TCA is the 

difference in marginal distribution, and the contrast of conditional distribution is 
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not significantly reduced. Wang et al. [16] proposed BDA to adjust the difference 

between marginal and conditional distributions by introducing a balance factor. 

For the class imbalance in transfer learning, the W-BDA was also proposed, using 

class prior to accurately approximate the conditional distribution of the target 

class and training a classifier to ameliorate the performance, which solved the 

problem of slight sample imbalance to a certain extent. 

Additionally, the existing machine learning model is equivalent to a black 

box in the prediction process [17]. The transfer learning method reduces the 

difference between the two domains. Although the prediction accuracy of a model 

is improved, it lacks interpretability. In the medical field, the risk of misdiagnosis 

is too significant, and it is not enough for practitioners to understand the accuracy 

of a model; but also need to know the characteristic basis of the model prediction 

[15]. Randomly selecting a subset of samples from any domain will increase the 

spatial difference of representation [13]. Therefore, unnecessary features are 

excluded for the two domains and provide a certain degree of interpretability so 

that medical staff can trust the model and its prediction results, which is 

convenient for promoting the model. 

To sum up, it is difficult to train an efficient and exact mortality risk 

prediction model because of small samples, large feature space, imbalance of 

positive and negative samples in ARDS, and the existing models' lack of 

explicability. Therefore, an explicability method for mortality risk prediction 

based on W-BDA and MLP is proposed by adjusting the participants to improve 

the model prediction accuracy. 

2. An interpretability method based on W-BDA and MLP 

This paper proposes an interpretable mortality risk prediction method and 

its research framework is shown in Fig. 1. First, this study needs to extract ARDS 

data from the database and and other preprocessing operations. Since the W-BDA 

requires the source and target domains to be similar and isomorphic, we need to 

divide the extracted ARDS data into the two domains. Then, XGBoost is used to 

reduce the dimension between the domains, excluding the redundant features. The 

selected features form the new source (target) domain, and SHAP explains the 

features used for subsequent transfer learning. Interpreting the results independent 

of the predictive model used ensures the reliability of the results and provides 

more evidence support for solving clinical problems. And then, using MMD as the 

metric, the features of the new source (target) domains are mapped to the RKHS. 

The weighted equilibrium adaptation of the marginal and conditional distributions 

is realized in this space. Finally, the MLP model is used for training in the new 

source domain, which is tested on 30% of sample data in the new target domain 

through hyperparameter optimization, parameter adjustment, and cross-validation 
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later. The parameters with the best model performance are retained and compared 

with various model evaluation indicators and machine learning methods. 
 

 
Fig. 1. Research framework of mortality risk prediction 

2.1. Domain division and data preprocessing 

This study investigated the mortality risk in adult ARDS patients and 

required data extraction from the MIMIC-III database. Since there are very few 

patients marked as ARDS in this database, which is not enough to carry out 

experimental research, this paper proposes the selection and inclusion criteria of 

ARDS patients and the data extraction process in combination with the Berlin 

definition criteria [18] and doctor's recommendations, as shown in Fig. 2. The 

patient selection process operates primarily in the following medical data tables 

and views: ADMISSIONS, PATIENTS, NOTEEVENTS, VENTFIRSTDAY, 

ICUSTAYS, CHARTEVENTS and BLOODGASFIRSTDAYARTERIAL. This 

database recorded the age of patients in their 90s as 300 years old, so we limited 

the age of patients to be less than 100 to avoid outliers. According to the clinical 

experience of doctors, the hospitalization time of ARDS patients generally does 

not exceed half a month, so this paper sets the hospitalization time of patients to 2 

to 15 days. In addition, patients also need to meet the conditions of being admitted 

to the ICU for the first time, the minimum oxygenation index on the first day is 

less than 300, and have undergone chest imaging examination and mechanical 

ventilation, to more accurately screen as many ARDS patients as possible. The 

indicators in the reference view represent the extraction of the relevant indicators 

under study. For some indicators not in the view, this paper uses the label of the 

d_items table and the corresponding itemid to query the noun similarity, such as 

PaO2, NBPM, PIP, PLAP, MAP, C.O., SaO2 and SVR. After obtaining the itemid 
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corresponding to each indicator, we extract data from the CHARTEVENTS table, 

and the remaining indicators can be extracted from the related views. This paper 

removed patients with more than 30% missing data and pulled 4010 patients and 

36 indicators, including demographics, ICU conditions, ventilator parameters, 

clinical indicators, and laboratory measurement information. 
 

 
Fig. 2. Inclusion criteria for patient cohort 

 

This study proposes a division method to divide the above extracted 

ARDS data into the source (target) domain to make the two domains similar and 

isomorphic. Firstly, the six indicators of gender, age, hospital stay, GCS, Sofa 

score and albumin are used as the common features of the feature space, in which 

gender needs to be converted into numerical features; that is, F is converted to 0, 

and M is converted to 1. If GCS, Sofa, and albumin have multiple records for a 

patient in the view, they are grouped by subject_id and averaged so that there is 

one record for one index for one patient. Then, according to the above ITEMID, 

each index measured by each patient during their stay in the ICU is averaged by 

day, and the maximum and minimum values of the average of the indexes 

measured every day are used as two different characteristics of the patient, to 

avoid the error caused by accidental abnormalities. After that, the maximum and 

minimum values of the remaining indicators included in the view are used as two 

different features. If there are multiple records of the same patient, these records 

are grouped by subject_id and averaged. Finally, the maximum and minimum 

values of each monitoring index extracted above are scrambled and randomly 

extracted. The extracted one is conducted as the source feature, and the remaining 

one is automatically classified into the target feature. The random principle 

ensures that each feature has the same possibility of being selected, avoiding the 

influence of subjective factors. This division method makes the source and target 
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domains have intersecting features. The values are distributed at different time 

nodes, so the feature space is similar but somewhat different. The feature division 

process of the two domains is shown in Fig. 3, and eventually, the source domain 

features (Ds) and the target domain features (Dt) are all obtained. 
 

 
Fig. 3. Feature division process of source and target domains 

 

The hospital expire flag is taken as the sample label, combined with 

as the source domain data and target domain data. At this time, there 

were some missing data in the two domains. We used the features corresponding 

to complete and non-missing clinical data points to retain more valuable data as a 

sample input. The missing values' features were used as k-nearest neighbor 

interpolation labels. Let , the missing values of incomplete samples are 

obtained from the adjacent five samples, so this interpolation method will not add 

too much redundant information. 

2.2. SHAP interpretation based on XGBoost feature selection 

XGBoost uses the 2nd derivative to calculate the objective function in the 

model optimization process while adding a regularization term to the objective 

function [19], which ensures high solution efficiency and increases scalability. 

The generalization ability of the algorithm can be effectively improved by 

sampling all the features of and respectively and training the feature 

combination. Then, the objective function of XGBoost to extract the patient's 

numerical features is expanded by Taylor, as shown in equation (1). 

  (1) 

where, in the first term represents the first-order partial derivative, represents 

the second-order partial derivative; the remaining term is the regularization term, 

which is used to avoid overfitting during training. Then the data points are 

substituted into equation (1) for gradient descent to seek the feature combination 

of the optimal solution. 

Based on game theory and local interpretation, the core of SHAP is the 
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Shapely value, a method to describe the contribution of each feature when a 

model predicts a specific data point [20]. It facilitates the clinician in analyzing 

the reliability of the model prediction. In this paper, feature selection was 

performed on the features of the two domains respectively. Then, the Shapley 

value of each index was calculated to analyze the correlation between each feature 

and mortality risk. Finally, the selected important features were explained in 

combination with relevant clinical research results and clinical manifestations. 

2.3. W-BDA algorithm 

While adapting to the conditional and marginal distributions between 

domains, BDA could also exploit the importance of these two distributions to 

adapt to specific transfer learning tasks effectively [16]. Aiming at the imbalance 

of ARDS sample categories, this paper introduces W-BDA, an extended BDA 

algorithm. It could also adaptively adjust the weight of each category while 

considering the distribution adaptability between domains. Taking MMD as the 

metric, this paper maps  and  formed by the initial selection of XGBoost 

into the same RKHS to estimate the difference between the two distributions. The 

definition of MMD is shown in equation (2). 

 (2) 

where, the 1st term represents the conditional distribution distance between the 

two domains, while the 2nd term represents the marginal one;  stands for 

RKHS. , when  approaches 0, it means that the two domains are not 

similar, so the marginal distribution dominates; when  approaches 1, it means 

that the two domains are similar, so the adaptation of the conditional distribution 

needs to be focused. Therefore, the balance factor  could adaptively adjust the 

importance of each distribution to produce fine results. 

The smaller the value of MMD, the smaller the difference between the 

distribution of two reconstructed domains. This paper introduces the kernel matrix

, further exploiting matrix trace and regularization, 

and optimizes the equation (2) by the Lagrange multiplier  , 

which can be transformed into equation (3). 
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identity matrix and  represents the center matrix, . and the 

weight-optimized  are constructed by MMD matrix. 

Therefore, the optimization problem is transformed into a generalized 

eigendecomposition problem, and the optimal transformation matrix  is 

obtained by solving equation (3) to obtain the first  minimum eigenvectors. In 

this paper,  was set to represent the number of dimensions to be reduced, 

and the optimal migration result was obtained by searching for the balance factor. 

2.4. MLP network prediction model and hyperparameter optimization 

Basic MLP consists of an input, hidden, and output layer, a feedforward 

neural network that maps input data to a group of output data [22]. The neural 

network can learn the complex relationship between the features of the new 

source (target) domain after W-BDA mapping. The output description of MLP is 

shown in equation (4). 

  (4) 

where, represents the input of  features of a given sample; 
 
indicates 

the weights between two layers; indicates activation functions. 

As shown in Fig. 4, the MLP network architecture constructed in this 

paper includes two hidden layers with the ReLU activation function, where, the 

number of neurons in the input layer is the same as the number of input features; 

the number of neurons in the first hidden layer is twice that of the input layer; the 

second hidden layer has the same number of neurons as the input layer; the output 

layer has only one neuron, and its output is 0 or 1, representing the two outcomes 

of survival and death respectively.  

  

Fig. 4. The MLP neural network architecture 
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A SGD optimizer and a cross-entropy loss function are employed to 

compute gradients and weight updates after each input instance. The source 

domain sample features mapped by W-BDA are used as training data firstly input 

by the input layer. Then, through two fully connected layers, the neurons in each 

fully connected layer can fit the original data. Finally, the output layer outputs the 

data. It uses the output value and the new source domain sample label to construct 

the loss function, iteratively reducing the loss function through the gradient 

descent algorithm of back-propagation and updating the model parameters to 

minimize the value of the loss function. At this time, the MLP model can 

accurately fit the sample characteristics. For the regularization term parameters 

and learning rate of the model, this paper uses grid search cross-validation for 

combined search adjustment, and then by changing different hyperparameters, the 

model parameters with the highest performance are retained as the best model 

parameters.  

In the optimization process of each set of hyperparameters, this paper used 

five-fold cross-validation to ensure that each sample subset of the source domain 

after W-BDA mapping could be trained and capture features. At the same time, the 

AUC of each training was calculated, and the results of five curve fittings were 

averaged as the final AUC results of each training of the MLP training model. 

After all hyperparameter combinations were iterated, it selected the model 

parameter with the highest average AUC score to make predictions on 30% of the 

target domain samples after W-BDA mapping as test data. 

3. Experiment and analysis 

The operating system configuration of this experiment is Windows 10. 

The data is accessed by creating a PostgreSQL database connection, and with 

SQL programming, the ARDS data extraction process is implemented to obtain 

the experimental dataset. The division process of the source (target) domain and 

all subsequent experiments are implemented by Python 3.8 programming. 

3.1. Experimental dataset 

According to the division method of the source (target) domain proposed 

in this paper, the 36 indicators extracted related to the risk of ARDS death can 

derive 64 dimensional features. Therefore, 4010 inpatient records are composed of 

64 features to form an experimental data set with large feature space and small 

sample size. The feature information of the dataset is shown in Table 1.  
Table 1 

Feature information of the experimental dataset 

Data information Source domain features (Ds) Target domain features(Dt) 

Demographics gender, age, bmi_min, gcs gender, age, bmi_max, gcs 

ICU situation icu_stay icu_stay 
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Ventilator parameters 
tv_min, resprate_min, pip_max, 

map_min, plap_max, peep_max 

tv_max, resprate_max, 

pip_min, map_max, plap_min, 

peep_min 

Clinical indicators 

spo2_max, sofa, tem_min, 

hr_min, sysbp_max, 

diasbp_min, nbpm_max 

spo2_min, sofa, tem_max, 

hr_max, sysbp_min, 

diasbp_max, nbpm_min 

Laboratory 

measurement 

platelets_min, urea_n_max, 

albumin, urine_max, 

glucose_max, lactate_max,   

hematocrit_min, pao2_max, 

hemoglobin_min, bun_max, 

creatinine_min, pco2_max, 

pao2fio2_max, ph_max,  

co_max, sao2_min, svr_max  

platelets_max, urea_n_min, 

albumin, urine_min, 

glucose_min, lactate_min, 

hematocrit_max, pao2_min, 

hemoglobin_max, bun_min, 

creatinine_max, pco2_min, 

pao2fio2_min, ph_min, 

co_min, sao2_max, svr_min 
 

After division, the feature dimensions of the two domains are the same, 

and the amount of data is the same. The two fields share the same characteristics, 

but also have some differences. In view of the obvious differences of medical data 

at different time nodes, this division of source and target domains has practical 

significance. 

3.2. Evaluation indicators 

Since the proportion of positive and negative samples in the dataset is 

quite different, to avoid the impact of unbalanced samples on the evaluation 

indicators, this experiment takes AUC as one of the evaluation indicators. The 

experiment also uses four evaluation indexes widely adopted in medical research, 

accuracy ( ), precision ( ), recall ( ) and F1 score ( ), as shown in 

equation (5) ~ (6), to comprehensively evaluate the effectiveness of the method. 

  (5) 

  (6) 

3.3. Experimental results and analysis 

3.3.1. SHAP interpretability analysis 

Combining the influence of features, the summary results of the SHAP 

model interpretation of XGBoost feature selection are shown in Fig. 5 (a) ~ (b), 

showing the top 20 clinical features that are highly correlated with ARDS 

mortality risk in the source and target domains, as well as the features after 

dimensionality reduction. According to the source domain results, urine_max 

played a crucial role in ARDS mortality risk prediction. Urine is one of the most 

important variables affecting renal function, and ARDS patients extracted in this 

paper may impact the kidneys. The lower the eigenvalue and the higher the 
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Shapley value, the higher the probability of developing ARDS mortality risk. 

Studies have shown that urine is associated with ARDS mortality [23], supporting 

our findings. PLAP is an essential indicator for ventilator detection of ARDS, 

which can effectively reflect the risk of barotrauma. Its maximum value 

(plap_max) is the second important feature, and the higher the feature value, the 

higher the probability of ARDS mortality risk. In addition, regarding laboratory 

tests, higher hematocrit_min values are associated with a higher risk of ARDS 

mortality but are also significantly less critical. 
 

 
(a) Source domain                                   (b) Target domain 

Fig. 5. Source (target) domain SHAP summary graph 
 

According to the target domain results, the minimum systolic blood 

pressure value (sysbp_min) contributed to ARDS mortality risk prediction. The 

MAP is the average pressure experienced by the lungs during the respiratory 

cycle, whose maximum value (map_max) is the second most important feature in 

the target domain. The higher the feature value, the higher the probability of 

mortality risk. This finding is in line with clinical results. Clinical measures are 

taken to increase expiratory resistance, appropriately expand MAP, and reduce the 

pressure difference between inside and outside the airway to prevent airway 

trapping and maintain patient exhalation [24]. In addition, the importance of the 

features of urine_min and urea_n_min is also apparent. Urea nitrogen is an 

essential indicator in biochemistry, and the higher its minimum characteristic 

value is, the more likely ARDS death will occur. To sum up, the importance of 

urine output to the two domains is ranked relatively high, indicating that this 

indicator has certain research significance for ARDS mortality risk prediction as a 

whole. The above experimental results are consistent with clinical and related 
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research results, further confirming the effects of urine, hematocrit, systolic blood 

pressure, MAP, urea nitrogen and related vital signs on ARDS mortality risk. It is 

important to note that the above summary graph illustrates the association 

between characteristics and ARDS mortality risk rather than causality. Therefore, 

it is essential to combine this information with the clinical experience of doctors 

and the condition of patients to determine whether this feature is an option for 

intervention. 
 

3.3.2. Comparative analysis of performance of multiple methods 

Next, this paper performs W-BDA mapping on the new source (target) 

domain composed of above 20 features. The MLP model constructed in this paper 

is trained by the new source domain and then randomly selects 30% of the 

samples from the new target domain for label prediction. Simultaneously, this 

research horizontally compares the prediction results of TCA, BDA, W-BDA and 

no transfer combined with decision tree (DT), Bayesian, 3NN, AdaBoost and 

MLP, respectively; longitudinally compares TCA, BDA, and W-BDA under each 

kernel function combining the accuracy, precision, recall, and F1 score of the DT, 

Bayesian, 3NN, AdaBoost and MLP. The results are shown in Table 2~5. 
 

Table 2 

Accuracy (%) of TCA, BDA, W-BDA and no transfer 

Classification model No transfer Kernel TCA BDA W-BDA 

Decision tree 13.34 rbf 80.20 80.60 81.77 

Bayesian 13.12 rbf 84.51 84.51 84.51 

3NN 22.87 primal 80.78 81.67 82.04 

AdaBoost 43.22 rbf 68.98 69.66 70.20 

MLP 46.79 rbf 85.56 86.88 87.78 

 

Table 3 

Precision (%) of TCA, BDA, W-BDA and no transfer 

Classification model No transfer Kernel TCA BDA W-BDA 

Decision tree 56.16 rbf 88.17 88.48 88.39 

Bayesian 13.12 rbf 87.04 87.04 87.04 

3NN 79.34 primal 87.76 88.23 88.69 

AdaBoost 95.96 rbf 87.02 87.36 87.83 

MLP 80.08 rbf 84.89 85.67 86.88 

 

Table 4 

Recall (%) of TCA, BDA, W-BDA and no transfer 

Classification model No transfer Kernel TCA BDA W-BDA 

Decision tree 11.18 rbf 89.18 90.61 90.70 
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Bayesian 13.01 rbf 96.56 96.56 96.56 

3NN 12.74 primal 89.57 89.89 90.93 

AdaBoost 36.17 rbf 74.77 75.28 76.26 

MLP 67.36 rbf 96.98 97.67 98.05 

Table 5 

F1 score (%) of TCA, BDA, W-BDA and no migration 

Classification model No transfer Kernel TCA BDA W-BDA 

Decision tree 18.65 rbf 88.67 89.53 89.53 

Bayesian 13.06 rbf 91.55 91.55 91.55 

3NN 21.95 primal 88.66 89.05 89.80 

AdaBoost 52.54 rbf 80.43 80.87 81.64 

MLP 73.17 rbf 90.53 91.28 92.13 

 

In addition to the precision of AdaBoost, on the whole, the results of 

various evaluation indicators of the three transfer learning methods are much 

higher than those of the no-transfer method. We can see from Table 2 that the 

combination model of feature-based transfer learning and machine learning could 

improve the overall accuracy of the training by more than half. Compared with 

BDA and TCA, W-BDA has the highest accuracy when combined with any 

prediction model. We can learn from Table 4 and Table 5 that the comparison 

results of the recall and F1 score are generally consistent. The prediction effect of 

BDA is better than that of TCA, and W-BDA not only adjusts the weight of the 

distribution between domains for the new source and target domains but also 

performs class balance. Hence, the prediction effect is better than that of BDA. 

The model performance of the W-BDA and MLP has reached more than 90%, of 

which the F1 score reaches 92.13%. However, the precision results are opposite to 

those of the other three evaluation metrics. As shown in Table 3, the combination 

of W-BDA and 3NN has the highest precision. The combination of W-BDA and 

MLP is relatively poor, but the gap is insignificant. This is related to the kernel 

function adopted by transfer learning, and the combination of 3NN and Primal-

based feature mapping method achieves the highest precision. In general, the 

interpretability method based on W-BDA and MLP for mortality risk prediction 

proposed in this paper performs the best in terms of precision, recall, and F1 

score, whose overall performance is slightly higher than other methods. 
 

3.3.3. AUC comparative analysis 

To comprehensively assess the effectiveness of the proposed method due 

to the sample imbalance, this paper draws the ROC curve charts respectively. Five 

cross-validations were performed for each machine learning classification model. 

The AUC results of the five cross-validations were averaged as the final model 
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AUC and displayed on the ROC curve, as shown in Fig. 6 (a) ~ (d). Fig. 6 (a) 

reflects the AUC results of five models for two-domain features without any 

transfer, but the results presented are generally lower. The AUC obtained by 

AdaBoost training is the highest, but it is only 0.665; MLP is slightly lower than 

AdaBoost and cannot provide a reliable prediction effect. Some related studies 

like to use KNN as the baseline algorithm, but the performance achieved by 

model training is generally not high. The same is true in this paper. Among the 

five machine learning algorithms, the AUC trained by 3NN is the lowest, and the 

probability of being inferior to human judgment is high. 
 

 
(a) No trans                                    (b) TCA 

 

 
(c) BDA                                    (d) W-BDA 

Fig. 6. AUC comparison chart 
 

Fig. 6(b) ~ (d) respectively reflect that under the optimal kernel function, 

TCA, BDA, W-BDA and five models respectively combine the predicted AUC 

results. Among these methods, W-BDA maps the feature space so that the AUC 

obtained by the training of the classification model is the highest. Even the AUC 

of the mortality prediction model combined with BDA, W-BDA, and MLP 

respectively reaches more than 0.9, which is far higher than its combined effect 
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with DT and 3NN. Among them, the AUC achieved by the combined prediction 

of W-BDA and MLP is 0.003 higher than the combined prediction performance of 

BDA and MLP. Thus, the effectiveness of W-BDA for inter-domain class balance 

adjustment is illustrated. Through the vertical and horizontal comparisons, the W-

BDA combined with MLP neural network is superior to other methods in the 

accuracy, recall, F1 score and AUC for ARDS mortality risk prediction. 

4. Conclusions 

This paper proposes an interpretability method for ARDS mortality risk 

prediction based on W-BDA and MLP. The extracted ARDS data was first 

subjected to data cleaning and k-nearest neighbor interpolation, and we provided 

an idea for dividing the source and target domains to prepare for transfer learning. 

Then XGBoost feature selection was adopted for the two domains to reduce 

dimensionality, eliminate redundant features, and combine SHAP to provide 

reliable explanations for medical staff. After that, W-BDA was used to map the 

feature space of the two domains, which avoided the disadvantage of not 

obtaining sufficient information due to insufficient samples and realized the 

weighted equilibrium adaptation of the conditional distribution and the marginal 

distribution. Finally, combined with the MLP network model constructed in this 

paper, it could deal with small sample data sets and achieve reliable ARDS 

mortality risk prediction. The method proposed in this paper has achieved 

significant improvements and has a certain degree of interpretability. In future 

work, the ARDS time-series metrics are sampled at intervals to expand the 

features of the two domains and further improve the generalization of our method. 
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