U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 1, 2023 ISSN 2286-3540

AN INTERPRETABILITY APPROACH FOR MORTALITY
RISK PREDICTION BASED ON W-BDA AND MLP

Guanghua ZHANG!, Huimin ZHANG?, Mingxing FANG?, Qi ZHANG*,
Renshuang DING>”

Given the characteristics of acute respiratory distress syndrome (ARDS)
medical data with unbalance, small samples and large feature space, and the lack of
interpretability of existing model, this paper proposes an interpretable method for
mortality risk prediction based on weighted balanced distribution adaptation (W-
BDA) and multilayer perceptron (MLP). Firstly, the extracted ARDS data were
preprocessed for the divided source and target domains. Secondly, feature selection
based on XGBoost was performed in two domains to eliminate redundant features
and achieve dimension reduction. Thirdly, the reconstructed domains were mapped
to the same reproducing kernel Hilbert space (RKHS) through W-BDA, and the
balance factor was introduced to achieve the weighted equilibrium adaptation of
conditional and marginal distributions. Finally, the MLP network model was
trained by the new source domain, and the mortality risk prediction of ARDS was
achieved on the new target domain through parameter tuning and cross-validation.
The experimental results show that the area under the receiver operating curve
(AUC) of the method proposed in this paper is as high as 0.905 when predicting the
risk of death, the accuracy is 87.78%. Compared with traditional methods, this
method combined with SHAP could obtain better accuracy and reliable
interpretability, providing more exact diagnosis advice for medical workers.
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1. Introduction

Machine learning aiding medical diagnosis shows the excellent prospects
[1], which have potential applications across multiple fields. ARDS is non-
hydrostatic pulmonary edema associated with various etiologies defined by a
common set of clinical features [2], with a high in-hospital mortality rate of
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approximately 10%~40% [3, 4]. The clinical prediction model established by
machine learning technology can provide decision support for doctors to assess
the condition and determine the treatment plan [5] and save more time for patients
with early intervention for careful examination and treatment to reduce risk.
However, most existing models applied in the intensive care unit (ICU) provide
limited prognostic information and poor predictive power, thus causing
controversy [4]. Jing et al. [6] established a risk prediction model for ARDS
patients through a traditional logistic regression algorithm to assist patients with
different risk stratification. Still, logistic regression cannot handle the correlation
between features well, and the model was based on a few samples. Huang et al.
[4] adopted the random forest algorithm, better than the existing scoring system
based on logistic regression, but they could not make predictions beyond the data
range of the training set, which may lead to overfitting in modeling some specific
noisy data. Aktar et al. [7] compared various supervised machine learning
algorithms suitable for clinical use, but the prediction performance depended on
the size of the sample size, which was not conducive to promoting the model. Few
single disease data and ample feature space are resulting in significant prediction
errors, overfitting, and instability of the model. Therefore, it is still challenging to
predict mortality of ARDS more accurately, efficiently, and reliably.

The clinical manifestations of some patients with specific diseases similar
to ARDS are not typical, and the study sample size is small. At present, the
primary means to solve the problem of small samples are transfer learning and
sampling techniques [8]. Sampling technology generates balanced samples on the
original samples based on a particular strategy and independently trains different
prediction models of disease mortality risk, ignoring the knowledge transfer
between other models [9]. As an essential branch of machine learning, transfer
learning has been gradually applied to various tasks such as medical image
segmentation [1], disease prediction [10], and complication prediction [11] in the
medical field. Transfer learning breaks the assumption of independent and
identical distribution in traditional machine learning [12]. By utilizing a small
amount of labeled samples, cross-domain learning can be realized, and unmarked
samples can be labeled [13]. For feature-based method, RKHS uses the maximum
mean difference (MMD) as the metric [13] to minimize the data distribution
difference between the two domains and perform dimensionality reduction
processing, which transforms the problem into a transfer matrix learning problem
and simplifies the optimization process [14]. Pan et al. [15] proposed TCA that
attempted to learn a set of common transfer components between the source and
target domains so that when the features of the two domains were mapped onto
the common feature subspace, the difference in the data distribution of different
domains could be significantly reduced. But the principal reduction of TCA is the
difference in marginal distribution, and the contrast of conditional distribution is
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not significantly reduced. Wang et al. [16] proposed BDA to adjust the difference
between marginal and conditional distributions by introducing a balance factor.
For the class imbalance in transfer learning, the W-BDA was also proposed, using
class prior to accurately approximate the conditional distribution of the target
class and training a classifier to ameliorate the performance, which solved the
problem of slight sample imbalance to a certain extent.

Additionally, the existing machine learning model is equivalent to a black
box in the prediction process [17]. The transfer learning method reduces the
difference between the two domains. Although the prediction accuracy of a model
IS improved, it lacks interpretability. In the medical field, the risk of misdiagnosis
is too significant, and it is not enough for practitioners to understand the accuracy
of a model; but also need to know the characteristic basis of the model prediction
[15]. Randomly selecting a subset of samples from any domain will increase the
spatial difference of representation [13]. Therefore, unnecessary features are
excluded for the two domains and provide a certain degree of interpretability so
that medical staff can trust the model and its prediction results, which is
convenient for promoting the model.

To sum up, it is difficult to train an efficient and exact mortality risk
prediction model because of small samples, large feature space, imbalance of
positive and negative samples in ARDS, and the existing models' lack of
explicability. Therefore, an explicability method for mortality risk prediction
based on W-BDA and MLP is proposed by adjusting the participants to improve
the model prediction accuracy.

2. An interpretability method based on W-BDA and MLP

This paper proposes an interpretable mortality risk prediction method and
its research framework is shown in Fig. 1. First, this study needs to extract ARDS
data from the database and and other preprocessing operations. Since the W-BDA
requires the source and target domains to be similar and isomorphic, we need to
divide the extracted ARDS data into the two domains. Then, XGBoost is used to
reduce the dimension between the domains, excluding the redundant features. The
selected features form the new source (target) domain, and SHAP explains the
features used for subsequent transfer learning. Interpreting the results independent
of the predictive model used ensures the reliability of the results and provides
more evidence support for solving clinical problems. And then, using MMD as the
metric, the features of the new source (target) domains are mapped to the RKHS.
The weighted equilibrium adaptation of the marginal and conditional distributions
is realized in this space. Finally, the MLP model is used for training in the new
source domain, which is tested on 30% of sample data in the new target domain
through hyperparameter optimization, parameter adjustment, and cross-validation
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later. The parameters with the best model performance are retained and compared
with various model evaluation indicators and machine learning methods.
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Fig. 1. Research framework of mortality risk prediction
2.1. Domain division and data preprocessing

This study investigated the mortality risk in adult ARDS patients and
required data extraction from the MIMIC-I111 database. Since there are very few
patients marked as ARDS in this database, which is not enough to carry out
experimental research, this paper proposes the selection and inclusion criteria of
ARDS patients and the data extraction process in combination with the Berlin
definition criteria [18] and doctor's recommendations, as shown in Fig. 2. The
patient selection process operates primarily in the following medical data tables
and views: ADMISSIONS, PATIENTS, NOTEEVENTS, VENTFIRSTDAY,
ICUSTAYS, CHARTEVENTS and BLOODGASFIRSTDAYARTERIAL. This
database recorded the age of patients in their 90s as 300 years old, so we limited
the age of patients to be less than 100 to avoid outliers. According to the clinical
experience of doctors, the hospitalization time of ARDS patients generally does
not exceed half a month, so this paper sets the hospitalization time of patients to 2
to 15 days. In addition, patients also need to meet the conditions of being admitted
to the ICU for the first time, the minimum oxygenation index on the first day is
less than 300, and have undergone chest imaging examination and mechanical
ventilation, to more accurately screen as many ARDS patients as possible. The
indicators in the reference view represent the extraction of the relevant indicators
under study. For some indicators not in the view, this paper uses the label of the
d_items table and the corresponding itemid to query the noun similarity, such as
PaO2, NBPM, PIP, PLAP, MAP, C.O., Sa0O, and SVR. After obtaining the itemid
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corresponding to each indicator, we extract data from the CHARTEVENTS table,
and the remaining indicators can be extracted from the related views. This paper
removed patients with more than 30% missing data and pulled 4010 patients and
36 indicators, including demographics, ICU conditions, ventilator parameters,
clinical indicators, and laboratory measurement information.
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Fig. 2. Inclusion criteria for patient cohort

This study proposes a division method to divide the above extracted
ARDS data into the source (target) domain to make the two domains similar and
isomorphic. Firstly, the six indicators of gender, age, hospital stay, GCS, Sofa
score and albumin are used as the common features of the feature space, in which
gender needs to be converted into numerical features; that is, F is converted to O,
and M is converted to 1. If GCS, Sofa, and albumin have multiple records for a
patient in the view, they are grouped by subject_id and averaged so that there is
one record for one index for one patient. Then, according to the above ITEMID,
each index measured by each patient during their stay in the ICU is averaged by
day, and the maximum and minimum values of the average of the indexes
measured every day are used as two different characteristics of the patient, to
avoid the error caused by accidental abnormalities. After that, the maximum and
minimum values of the remaining indicators included in the view are used as two
different features. If there are multiple records of the same patient, these records
are grouped by subject_id and averaged. Finally, the maximum and minimum
values of each monitoring index extracted above are scrambled and randomly
extracted. The extracted one is conducted as the source feature, and the remaining
one is automatically classified into the target feature. The random principle
ensures that each feature has the same possibility of being selected, avoiding the
influence of subjective factors. This division method makes the source and target
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domains have intersecting features. The values are distributed at different time
nodes, so the feature space is similar but somewhat different. The feature division
process of the two domains is shown in Fig. 3, and eventually, the source domain
features (Ds) and the target domain features (Dy) are all obtained.
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Fig. 3. Feature division process of source and target domains

The hospital expire flag is taken as the sample label, combined with
{D,,D,}as the source domain data and target domain data. At this time, there

were some missing data in the two domains. We used the features corresponding
to complete and non-missing clinical data points to retain more valuable data as a
sample input. The missing values' features were used as k-nearest neighbor
interpolation labels. Letk =5, the missing values of incomplete samples are
obtained from the adjacent five samples, so this interpolation method will not add
too much redundant information.

2.2. SHAP interpretation based on XGBoost feature selection

XGBoost uses the 2" derivative to calculate the objective function in the
model optimization process while adding a regularization term to the objective
function [19], which ensures high solution efficiency and increases scalability.
The generalization ability of the algorithm can be effectively improved by
sampling all the features of D,and D, respectively and training the feature

combination. Then, the objective function of XGBoost to extract the patient's
numerical features is expanded by Taylor, as shown in equation (1).

obj® = z{z gi%[z w,]} yT +%||w||2 )

i=l | iel, el
where, g, in the first term represents the first-order partial derivative, h, represents

the second-order partial derivative; the remaining term is the regularization term,
which is used to avoid overfitting during training. Then the data points are
substituted into equation (1) for gradient descent to seek the feature combination
of the optimal solution.

Based on game theory and local interpretation, the core of SHAP is the
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Shapely value, a method to describe the contribution of each feature when a
model predicts a specific data point [20]. It facilitates the clinician in analyzing
the reliability of the model prediction. In this paper, feature selection was
performed on the features of the two domains respectively. Then, the Shapley
value of each index was calculated to analyze the correlation between each feature
and mortality risk. Finally, the selected important features were explained in
combination with relevant clinical research results and clinical manifestations.

2.3. W-BDA algorithm

While adapting to the conditional and marginal distributions between
domains, BDA could also exploit the importance of these two distributions to
adapt to specific transfer learning tasks effectively [16]. Aiming at the imbalance
of ARDS sample categories, this paper introduces W-BDA, an extended BDA
algorithm. It could also adaptively adjust the weight of each category while
considering the distribution adaptability between domains. Taking MMD as the
metric, this paper maps X, and X, formed by the initial selection of XGBoost

into the same RKHS to estimate the difference between the two distributions. The
definition of MMD is shown in equation (2)
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where, the 1% term represents the conditional distribution distance between the
two domains, while the 2" term represents the marginal one; H stands for
RKHS. 0< <1, when g approaches 0, it means that the two domains are not

similar, so the marginal distribution dominates; when . approaches 1, it means

that the two domains are similar, so the adaptation of the conditional distribution
needs to be focused. Therefore, the balance factor x could adaptively adjust the

importance of each distribution to produce fine results.
The smaller the value of MMD, the smaller the difference between the
distribution of two reconstructed domains. This paper introduces the kernel matrix

K =y (X) w(X)e RM™™m fyrther exploiting matrix trace and regularization,
and optimizes the equation (2) by the Lagrange multiplier ® =diag (¢, --,4,) ,
which can be transformed into equation (3).
C
(K(yzwc +(1—,u)MOJK +/1I]A: KHKA® 3)
c=1
where, s.t. A" XH" A=1, 0<u<lare constraints;4 is the regularization
parameter; Arepresents the transformation matrix; 1 € R™™ ™™ represents the
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identity matrix and H represents the center matrix, H=1-(@/n)l . M,and the
weight-optimized W, are constructed by MMD matrix.

Therefore, the optimization problem is transformed into a generalized
eigendecomposition problem, and the optimal transformation matrix A is
obtained by solving equation (3) to obtain the first d minimum eigenvectors. In
this paper, d =20 was set to represent the number of dimensions to be reduced,
and the optimal migration result was obtained by searching for the balance factor.

2.4. MLP network prediction model and hyperparameter optimization

Basic MLP consists of an input, hidden, and output layer, a feedforward
neural network that maps input data to a group of output data [22]. The neural
network can learn the complex relationship between the features of the new
source (target) domain after W-BDA mapping. The output description of MLP is

shown in equation (4).
Yo =&, {iw?p |:¢7h (iwi?xi ﬂ} (4)

where, x represents the input of i features of a given sample; {w;,w;,} indicates

the weights between two layers; {¢,,,} indicates activation functions.

As shown in Fig. 4, the MLP network architecture constructed in this
paper includes two hidden layers with the ReLU activation function, where, the
number of neurons in the input layer is the same as the number of input features;
the number of neurons in the first hidden layer is twice that of the input layer; the
second hidden layer has the same number of neurons as the input layer; the output
layer has only one neuron, and its output is 0 or 1, representing the two outcomes
of survival and death respectively.

Hidden Layer |

Hidden Layer 2

Input Layer - Output Layer

Fig. 4. The MLP neural network architecture
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A SGD optimizer and a cross-entropy loss function are employed to
compute gradients and weight updates after each input instance. The source
domain sample features mapped by W-BDA are used as training data firstly input
by the input layer. Then, through two fully connected layers, the neurons in each
fully connected layer can fit the original data. Finally, the output layer outputs the
data. It uses the output value and the new source domain sample label to construct
the loss function, iteratively reducing the loss function through the gradient
descent algorithm of back-propagation and updating the model parameters to
minimize the value of the loss function. At this time, the MLP model can
accurately fit the sample characteristics. For the regularization term parameters
and learning rate of the model, this paper uses grid search cross-validation for
combined search adjustment, and then by changing different hyperparameters, the
model parameters with the highest performance are retained as the best model
parameters.

In the optimization process of each set of hyperparameters, this paper used
five-fold cross-validation to ensure that each sample subset of the source domain
after W-BDA mapping could be trained and capture features. At the same time, the
AUC of each training was calculated, and the results of five curve fittings were
averaged as the final AUC results of each training of the MLP training model.
After all hyperparameter combinations were iterated, it selected the model
parameter with the highest average AUC score to make predictions on 30% of the
target domain samples after W-BDA mapping as test data.

3. Experiment and analysis

The operating system configuration of this experiment is Windows 10.
The data is accessed by creating a PostgreSQL database connection, and with
SQL programming, the ARDS data extraction process is implemented to obtain
the experimental dataset. The division process of the source (target) domain and
all subsequent experiments are implemented by Python 3.8 programming.

3.1. Experimental dataset

According to the division method of the source (target) domain proposed
in this paper, the 36 indicators extracted related to the risk of ARDS death can
derive 64 dimensional features. Therefore, 4010 inpatient records are composed of
64 features to form an experimental data set with large feature space and small
sample size. The feature information of the dataset is shown in Table 1.

Table 1
Feature information of the experimental dataset
Data information Source domain features (Ds) Target domain features(Dy)
Demographics gender, age, bmi_min, gcs gender, age, bmi_max, gcs
ICU situation icu_stay icu_stay
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. L tv_max, resprate_max,
. tv_min, resprate_min, pip_max, L= — .
Ventilator parameters - - - pip_min, map_max, plap_min,
map_min, plap_max, peep_max - = -
peep_min
spo2_max, sofa, tem_min, spo2_min, sofa, tem_max,
Clinical indicators hr_min, sysbp_max, hr_max, sysbp_min,
diasbp_min, nbpm_max diasbp_max, nbpm_min
platelets_min, urea_n_max, platelets_max, urea_n_min,
albumin, urine_max, albumin, urine_min,
glucose_max, lactate_max, glucose_min, lactate_min,
Laboratory hematocrit_min, pao2_max, hematocrit_max, pao2_min,
measurement hemoglobin_min, bun_max, hemoglobin_max, bun_min,
creatinine_min, pco2_max, creatinine_max, pco2_min,
pao2fio2_max, ph_max, pao2fio2_min, ph_min,
C0_Max, sa02_min, svr_max CO_min, sa02_max, svr_min

After division, the feature dimensions of the two domains are the same,
and the amount of data is the same. The two fields share the same characteristics,
but also have some differences. In view of the obvious differences of medical data
at different time nodes, this division of source and target domains has practical
significance.

3.2. Evaluation indicators

Since the proportion of positive and negative samples in the dataset is
quite different, to avoid the impact of unbalanced samples on the evaluation
indicators, this experiment takes AUC as one of the evaluation indicators. The
experiment also uses four evaluation indexes widely adopted in medical research,
accuracy ( Acc), precision (Pre), recall (Rec) and F1 score (F1), as shown in
equation (5) ~ (6), to comprehensively evaluate the effectiveness of the method.

TN +TP - 2TP

CC = ; =
TP+ FP+FN +TN 2TP + FP + FN
TP

=————Rec=———
TP+FP TP+FN

3.3. Experimental results and analysis

()
(6)

Pre

3.3.1. SHAP interpretability analysis

Combining the influence of features, the summary results of the SHAP
model interpretation of XGBoost feature selection are shown in Fig. 5 (a) ~ (b),
showing the top 20 clinical features that are highly correlated with ARDS
mortality risk in the source and target domains, as well as the features after
dimensionality reduction. According to the source domain results, urine_max
played a crucial role in ARDS mortality risk prediction. Urine is one of the most
important variables affecting renal function, and ARDS patients extracted in this
paper may impact the kidneys. The lower the eigenvalue and the higher the
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Shapley value, the higher the probability of developing ARDS mortality risk.
Studies have shown that urine is associated with ARDS mortality [23], supporting
our findings. PLAP is an essential indicator for ventilator detection of ARDS,
which can effectively reflect the risk of barotrauma. Its maximum value
(plap_max) is the second important feature, and the higher the feature value, the
higher the probability of ARDS mortality risk. In addition, regarding laboratory
tests, higher hematocrit_min values are associated with a higher risk of ARDS
mortality but are also significantly less critical.
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Fig. 5. Source (target) domain SHAP summary graph

According to the target domain results, the minimum systolic blood
pressure value (sysbp_min) contributed to ARDS mortality risk prediction. The
MAP is the average pressure experienced by the lungs during the respiratory
cycle, whose maximum value (map_max) is the second most important feature in
the target domain. The higher the feature value, the higher the probability of
mortality risk. This finding is in line with clinical results. Clinical measures are
taken to increase expiratory resistance, appropriately expand MAP, and reduce the
pressure difference between inside and outside the airway to prevent airway
trapping and maintain patient exhalation [24]. In addition, the importance of the
features of urine_min and urea_n_min is also apparent. Urea nitrogen is an
essential indicator in biochemistry, and the higher its minimum characteristic
value is, the more likely ARDS death will occur. To sum up, the importance of
urine output to the two domains is ranked relatively high, indicating that this
indicator has certain research significance for ARDS mortality risk prediction as a
whole. The above experimental results are consistent with clinical and related
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research results, further confirming the effects of urine, hematocrit, systolic blood
pressure, MAP, urea nitrogen and related vital signs on ARDS mortality risk. It is
important to note that the above summary graph illustrates the association
between characteristics and ARDS mortality risk rather than causality. Therefore,
it is essential to combine this information with the clinical experience of doctors
and the condition of patients to determine whether this feature is an option for
intervention.

3.3.2. Comparative analysis of performance of multiple methods

Next, this paper performs W-BDA mapping on the new source (target)
domain composed of above 20 features. The MLP model constructed in this paper
is trained by the new source domain and then randomly selects 30% of the
samples from the new target domain for label prediction. Simultaneously, this
research horizontally compares the prediction results of TCA, BDA, W-BDA and
no transfer combined with decision tree (DT), Bayesian, 3NN, AdaBoost and
MLP, respectively; longitudinally compares TCA, BDA, and W-BDA under each
kernel function combining the accuracy, precision, recall, and F1 score of the DT,
Bayesian, 3NN, AdaBoost and MLP. The results are shown in Table 2~5.

Table 2
Accuracy (%) of TCA, BDA, W-BDA and no transfer
Classification model | No transfer Kernel TCA BDA W-BDA
Decision tree 13.34 rbf 80.20 80.60 81.77
Bayesian 13.12 rbf 84.51 84.51 84.51
3NN 22.87 primal 80.78 81.67 82.04
AdaBoost 43.22 rbf 68.98 69.66 70.20
MLP 46.79 rbf 85.56 86.88 87.78
Table 3
Precision (%) of TCA, BDA, W-BDA and no transfer
Classification model | No transfer Kernel TCA BDA W-BDA
Decision tree 56.16 rbf 88.17 88.48 88.39
Bayesian 13.12 rbf 87.04 87.04 87.04
3NN 79.34 primal 87.76 88.23 88.69
AdaBoost 95.96 rbf 87.02 87.36 87.83
MLP 80.08 rbf 84.89 85.67 86.88
Table 4

Recall (%) of TCA, BDA, W-BDA and no transfer
Classification model | No transfer Kernel TCA BDA W-BDA

Decision tree 11.18 rbf 89.18 90.61 90.70
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Bayesian 13.01 rbf 96.56 96.56 96.56
3NN 12.74 primal 89.57 89.89 90.93
AdaBoost 36.17 rbf 74.77 75.28 76.26
MLP 67.36 rbf 96.98 97.67 98.05
Table 5
F1 score (%) of TCA, BDA, W-BDA and no migration
Classification model | No transfer Kernel TCA BDA W-BDA

Decision tree 18.65 rbf 88.67 89.53 89.53
Bayesian 13.06 rbf 91.55 91.55 91.55
3NN 21.95 primal 88.66 89.05 89.80
AdaBoost 52.54 rbf 80.43 80.87 81.64
MLP 73.17 rbf 90.53 91.28 92.13

In addition to the precision of AdaBoost, on the whole, the results of
various evaluation indicators of the three transfer learning methods are much
higher than those of the no-transfer method. We can see from Table 2 that the
combination model of feature-based transfer learning and machine learning could
improve the overall accuracy of the training by more than half. Compared with
BDA and TCA, W-BDA has the highest accuracy when combined with any
prediction model. We can learn from Table 4 and Table 5 that the comparison
results of the recall and F1 score are generally consistent. The prediction effect of
BDA is better than that of TCA, and W-BDA not only adjusts the weight of the
distribution between domains for the new source and target domains but also
performs class balance. Hence, the prediction effect is better than that of BDA.
The model performance of the W-BDA and MLP has reached more than 90%, of
which the F1 score reaches 92.13%. However, the precision results are opposite to
those of the other three evaluation metrics. As shown in Table 3, the combination
of W-BDA and 3NN has the highest precision. The combination of W-BDA and
MLP is relatively poor, but the gap is insignificant. This is related to the kernel
function adopted by transfer learning, and the combination of 3NN and Primal-
based feature mapping method achieves the highest precision. In general, the
interpretability method based on W-BDA and MLP for mortality risk prediction
proposed in this paper performs the best in terms of precision, recall, and F1
score, whose overall performance is slightly higher than other methods.

3.3.3. AUC comparative analysis

To comprehensively assess the effectiveness of the proposed method due
to the sample imbalance, this paper draws the ROC curve charts respectively. Five
cross-validations were performed for each machine learning classification model.
The AUC results of the five cross-validations were averaged as the final model
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AUC and displayed on the ROC curve, as shown in Fig. 6 (a) ~ (d). Fig. 6 (a)
reflects the AUC results of five models for two-domain features without any
transfer, but the results presented are generally lower. The AUC obtained by
AdaBoost training is the highest, but it is only 0.665; MLP is slightly lower than
AdaBoost and cannot provide a reliable prediction effect. Some related studies
like to use KNN as the baseline algorithm, but the performance achieved by
model training is generally not high. The same is true in this paper. Among the
five machine learning algorithms, the AUC trained by 3NN is the lowest, and the
probability of being inferior to human judgment is high.

Featureless Transfer ROC Curve . TCA ROC Curve

True Positive Rate
True Positive Rate

= DecisionTree (AUC=0.504) / ’ = Decision Tree (AUC=0.713)
GaussianNB (AUC=0.565) I / Gaussianl NB (AUC=0.811)
KNeighbors (AUC=0.441) J // KNeighbors (AUC=0.649)
== AdaBoost (AUC=0.665) / 4 = AdaBoost (AUC=0.856)
== MLP (AUC=0.597) 7 £ === MLP (AUC=0.873)

W 7 o 10 n .
False Positive Rate False Positive Rate

(a) No trans (b) TCA

BDA ROC Curve WBDA ROC Curve

True Positive Rate
True Positive Rate

/ — DecisionTree (AUC=0.801)
’ GaussianNB (AUC=0.886)
rs (AUC=0.740)

I ’ =~ AdaBoost (AUC=0.883)
p —— MLP (AUC=0.905)

False Positive Rate

(d) W-BDA
Fig. 6. AUC comparison chart

Fig. 6(b) ~ (d) respectively reflect that under the optimal kernel function,
TCA, BDA, W-BDA and five models respectively combine the predicted AUC
results. Among these methods, W-BDA maps the feature space so that the AUC
obtained by the training of the classification model is the highest. Even the AUC
of the mortality prediction model combined with BDA, W-BDA, and MLP
respectively reaches more than 0.9, which is far higher than its combined effect
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with DT and 3NN. Among them, the AUC achieved by the combined prediction
of W-BDA and MLP is 0.003 higher than the combined prediction performance of
BDA and MLP. Thus, the effectiveness of W-BDA for inter-domain class balance
adjustment is illustrated. Through the vertical and horizontal comparisons, the W-
BDA combined with MLP neural network is superior to other methods in the
accuracy, recall, F1 score and AUC for ARDS mortality risk prediction.

4. Conclusions

This paper proposes an interpretability method for ARDS mortality risk
prediction based on W-BDA and MLP. The extracted ARDS data was first
subjected to data cleaning and k-nearest neighbor interpolation, and we provided
an idea for dividing the source and target domains to prepare for transfer learning.
Then XGBoost feature selection was adopted for the two domains to reduce
dimensionality, eliminate redundant features, and combine SHAP to provide
reliable explanations for medical staff. After that, W-BDA was used to map the
feature space of the two domains, which avoided the disadvantage of not
obtaining sufficient information due to insufficient samples and realized the
weighted equilibrium adaptation of the conditional distribution and the marginal
distribution. Finally, combined with the MLP network model constructed in this
paper, it could deal with small sample data sets and achieve reliable ARDS
mortality risk prediction. The method proposed in this paper has achieved
significant improvements and has a certain degree of interpretability. In future
work, the ARDS time-series metrics are sampled at intervals to expand the
features of the two domains and further improve the generalization of our method.
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