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COMPLETENESS OF HAMILTONIAN VECTOR FIELDS IN
JACOBI AND CONTACT GEOMETRY

Mircea CRASMAREANU!

Lucrarea prezinta conditii suficiente de completitudine a campurilor vectoriale
Hamiltoniene utilizand o proprietate topologica a Hamiltonianului corespunzator.
In particular se studiazd cazul geometriilor Poisson, contact si cosimplectic pre-
cum gi cel al varietatilor Nambu-Poisson. Ca aplicatii, se discutd completitudinea
a doud campuri vectoriale Hamiltoniene de tip contact ce apar in geometrizarea
termodinamsicii.

The completeness of the Hamiltonian vector fields in the Jacobi manifolds is
studied here providing a sufficient condition in terms of the topological proper-
ness for a function assuring a sublinear growth along the flow. In particular, the
settings of Poisson, contact and cosymplectic geometries are presented while for
similarities with the Poisson case, the Nambu-Poisson structures are included too.
As applications, the completeness of contact-Hamiltonian vector fields arising in
the geometrization of thermodynamics is discussed with examples.
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1. Introduction

This paper is dedicated to a study of the completeness of the Hamiltonian vec-
tor fields in a special type of structures namely Jacobi manifolds which together with
Poisson manifolds are introduced exactly thirty years ago by André Lichnerowicz in
[21] and [22]. Since then, these structures become a main tool in several studies
regarding the geometrization of mechanics; for a good picture the reader is invited
to browse the papers of Lichnerowicz and his co-workers from our bibliography: [8],
[13], [23]-[28], [29], as well as some surveys like [19] and [37]. Recently, in addition
to the well-known relation of the Jacobi structures with the classical mechanics, the
quantization of these mathematical objects was discussed in [17]. A constant interest
is in the connection between the Jacobi structures and the theory of Lie algebroids
(and generalizations) as appears for example in [15], as well as the computation of
a suitable cohomology called Lichnerowicz-Jacobi cohomology, [18].
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The present paper is devoted to another subject namely the completeness of
the Hamiltonian vector fields which appear in the Jacobi geometry on a manifold M.
This question can be of main interest in some applications of the Jacobi structures
to concrete mathematical or physical theories. More precisely, from a mathemati-
cal point of view, such a complete flow induces an action of Lie group R and the
symmetries of this action can provide useful information about our structure; for ex-
ample, if the orbit space M /R is again a manifold, a natural question is about some
versions of the well-known Marsden- Weinstein-Ratiu reduction theory like in [1] and
[30]. Also, very important geometrical objects on a manifold are the Riemannian
metrics and the great importance of completeness in the Riemannian geometry is
pointed out in Chapter 7 of classical by now [7]; a class of Riemannian metric nat-
urally associated to the contact structures is added also in our study through an
appendix. From a physical point of view completeness corresponds to well-defined
dynamics persisting eternally but as is point out in [4, p. 60] ”in some circumstances
(shock waves in fluids and solids, singularities in general relativity) one has to live
with incompleteness”.

The contents of the paper is as follows. The first section begins by revie-
wing the general notions regarding the completeness and a sufficient condition is
recalled after [1, p. 71]; see [11] and [38] for related results. The completeness of the
gradient vector fields in Riemannian geometry and FEuler-Lagrange vector fields of
the classical mechanics is discussed, the last case in connection with the celebrated
Poincaré Recurrence Theorem.

In the next section the Jacobi setting is studied in details including local
expressions for the main geometrical objects. A generalization of the notion of first
integral is introduced toward study the completeness of the associated Hamiltonian
vector field and a connection with the theory of complete Poisson maps introduced
in [6] is pointed out via proper maps. The case of Nambu-Poisson brackets, although
does not belongs to Jacobi structures (but to [14]), ends this section since there exists
a strong similarity with the Poisson case, namely the properness of a Hamiltonian.

The next section is devoted to the contact and cosymplectic manifolds. Using
an adapted atlas of Darboux type we consider the class of functions previously
introduced and then the completeness of the Hamiltonian-contact and Hamiltonian-
cosymplectic vector fields for these functions, particularly the Reeb vector field,
is discussed including two examples connected with the symplectic geometry and
geometric theory for PDEs respectively. An important example of this section is the
Reeb vector field of a contact manifold admitting a Legendre foliation in which the
charts obtained by Paulette Libermann are used instead of the canonical Darboux
charts.

Since the contact structure is a main tool in the geometrization of the ther-
modynamics we end this paper with a connection of our results with this physical
theory. For our examples, inspired by [31], we add the expression of the flow, ap-
pearing also in the cited paper, in order to verify the completeness.
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Two open problems are rising: one concerning the notion of regular first inte-
gral and the second regarding the universal completition of a Jacobi manifold. An
appendix discussing the completeness in terms of a complete associated Riemannian
metric (to a contact structure) ends the paper.

2. Completeness of general and Euler-Lagrange vector fields

Let M be a smooth, real, n-dimensional manifold. Let us denote by:
- C°°(M) the ring of smooth real functions on M,
- X(M) the C°°(M )-module of vector fields on M,
- X*(M) the C*°(M)-module of k-multivector fields on M; in particular X1(M) is
exactly X (M),
- QF(M) the C*°(M)-module of differential k-forms on M; in particular Q°(M) is
exactly C*°(M),
-if A € X2(M) is a bivector field on M then we associate the map
A QN (M) = X (M), a— A(a,-); so Af(a) (f) = A(a,df) for f € C®(M).

Definition 2.1 1) X € X(M) is a complete vector field if for every xyp € M
the maximal interval of existence (¢_,¢y) for the solution of the flow equation of X
with initial condition z(0) = ¢ is given by t4+ = +o0.

i) f € C® (M) is a first integral of X € X(M) if X (f) =0.
iii) f € C> (M) is a proper function if f~!(compact) =compact.

Let us remark that Proposition 5.11. from [10, p. 25| assures that on every
manifold M there exist proper functions. Also, in [16] it is proved that for any
manifold with a vector field there exists an universal completion to a manifold with
complete vector field. A sufficient condition of completeness is provided by [1, p.
71]:

Theorem 2.2 Let X € X(M). If there exist f € C°(M) with f proper and
A, B € Ry such that for each x € M we have:

[X(f)(@)| < Alf(z)| + B, (2.1)

then X is complete.

This has the following consequence for A = 0:

Corollary 2.3 If X(f) is a bounded function with f proper then X is complete.
In particular, if X € X (M) has a proper first integral then X is complete.

Example 2.4 Let (M,g) be a Riemannian manifold and fix h € C*(M).
If follows that the existence of a proper function f such that one of the following
conditions holds:
<|g(Vf,Vh)(x)| < A|f(z)| + B for every x € M,
- g(Vf,Vh) is a bounded function, in particular V f is g-orthogonal to Vh i.e. f is
a first integral of Vh,
implies the completeness of the gradient vector field Vh.

In particular for f = h we derive, by using the Gordon completeness criterion
[12] (see also the second part of Theorem 7.3. of [35, p. 25]) or the Appendix of the
present paper:
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Corollary 2.5 If h is a proper smooth function on the Riemannian manifold
(M, g) with bounded gradient then the gradient of h and the Riemannian metric g
are complete. The last item means that the geodesic spray of g is a complete vector
field on T M.

Since we are placed in a physical oriented framework let us add to this section
a discussion of the completeness of Euler-Lagrange vector fields.

Denote with TM and T* M the tangent and cotangent bundle respectively. If
L:TM — R is a smooth function, usually called Lagrangian, let F'L : TM — T*M
be the fiber derivative of L [30, p. 26]:

FL(v) w= die le=0 L (v + ew) (2.2)

for v,w € T,M,p € M. If ) denotes the canonical symplectic structure of T*M let
Q= (FL)" Q be the pullback on TM.

Definition 2.6 ([30]) (i) The Lagrangian L is called regular if Qf, is a sym-
plectic structure on T'M.
(ii) The energy of L is E(L) : TM — R given by:

E(L)(v) =FL(v)-v— L(v). (2.3)

Sometimes the energy appears under the name of Hamiltonian but in our
setting being a function on the tangent bundle not on the cotangent bundle we prefer
this name. If L is a regular Lagrangian by using the non-degeneracy of the symplectic
form Qp of TM it result that there exists a unique vector field Sp, € X (T'M) such
that:

is, Q2 = —dE(L) (2.4)
where iz denotes the interior product with respect to the vector field Z. Sy is
called the Fuler-Lagrange vector field of L since (2.4) is the global expression of the
well-known Fuler-Lagrange equations of L.

The completeness of S, is provided by the first part of the Poincaré Recurrence
Theorem as it appears in [5, p. 87]:

Proposition 2.7 If the energy 1, is a proper function on T'M then the Euler-
Lagrange vector field Sy, is complete.

Example 2.8 If L is a natural Lagrangian i.e. the difference:

L=K(g) -V,

with K (g) the energy of the Riemannian metric g and V =V (z) a potential, i.e. a
smooth function on M, then, according to [9], the Euler-Lagrange vector field Sy, is
complete if g is complete and the potential V' is bounded below.

Returning to the general case of Corollary 2.3 remark that the Definition 7.3.7
from [1, p. 533] introduce the notion of regular first integral of X as a proper first
integral which is not constant on any open subset of M and X has property (G5)if X
has no regular first integral. An important result of the cited book is that property
(G5) is C! generic and then every vector field can be approximated as closely as we
wish by one without regular first integrals.
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Open problem 1 If we define a weak-regular first integral by give up to the
condition of no-constancy on open subsets then a similar result with respect to a
weak-(Gb) property as been generic holds?

3. Completeness in Jacobi, Poisson and Nambu-Poisson geometry

Definition 3.1 i) A Jacobi structure on M is a pair (A, E) € X2(M) x X (M)
such that the following Jacobi equations hold:

[A,A] = 2A A E
{ [E,A] = LgA =0

where [, ] is the Schouten bracket on multivectors, A is the Grassmann wedge product
and L is the Lie derivative with respect to the vector field E. The triple (M, A, E)
is a Jacobi manifold. A Jacobi manifold with E = 0 is a Poisson manifold. Let us
call A and F the structural bivector and vector field respectively.

ii) Let (M, A, E) be a Jacobi manifold and f € C*° (M). The Hamiltonian vector
field Xy associated to f is:

(3.1)

X; = A (df) + fE. (3.2)

Then f is called the Hamiltonian of Xy.
In order to handle concrete examples let us provide the above setting with local
be a local chart on M in which the geometrical ob, jects

o) 7
Oxt A 8xJ’E E 811‘

coordinates. So, let (:Ei)1<i<n

defining the Jacobi structure has the expressions: A = %A”
Then, the Jacobi equations become:

Azm%/;z: +A]m?9{p\7kr: + Akmtggx + AW gk —I—AjkEi —i—AkiEj -0 23
Ek%A: _AlkBEJ +A]k8E’ -0 ( . )
X
while the Jacobi bracket is:
i O Og 8 Of
{f,9} = + fE —gFE'—. (3.4)
8 Qi ozt
The Hamiltonian vector field X; has the expression:
of 0 . 0
= AV L E' 3.5
OxJ Ot +f ox* (3:5)

Example 3.2 F = X;. In fact, every manifold M with a fixed vector field F
is a Jacobi manifold with A = 0.

Open problem 2 Let (M, A, E) be a Jacobi manifold with E non-complete.
The universal completion of M in the sense of [16] admits a ”lifted” Jacobi structure?

The fixed Jacobi structure yields a Jacobi bracket {, } on C* (M):

{f,9} =A(df,dg)+ f-E(9)—g-E(f) (3.6)

which is a local Lie algebra structure in the Kirillov sense; in the Poisson case we
get a global Lie algebra structure on C°°(M). This permits us to introduce:
Definition 3.3 C € C* (M) is a Casimir of the Jacobi structure if {f,C'} =0
for every f € C*> (M).
We are able to derive one of the main results of the paper:
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Proposition 3.4 Fiz f € C> (M).
i) If there exist g € C°°(M) with g proper and A, B € R such that:

[A(df,dg)(x) + [ (x) - E(9) (x)| < Alg(z)| + B, VeeM (3.7)

then Xy is complete.
ii) If f is proper and there exist A, B € Ry such that:

[f (@) - E(f) (2)| < Alf(2)|+ B, VeeM (3.8)

then Xy is complete. In particular, if f is proper and E(f) is a bounded function

then Xy is complete.

iii) If f is proper and first integral of E then Xy and E are complete vector fields.
Proof i) is a reformulation of the Theorem 2.2, ii) derives from i) since

A (a,a) =0, iii) is a direct consequence of ii). O
The above result can be reformulated in terms of the Jacobi bracket:
Proposition 3.5 Fiz f € C* (M).

i) If there ezist g € C°°(M) with g proper and A, B € R, such that:

{f:93(@) +g(x)- E(f) (2)| < Alg(z)| + B, VeeM (3.9)

then Xy is complete. In particular, if E(f) is bounded and there exists g € C°°(M)
with g proper and {f,g} bounded then Xy is complete.

ii) If f is a first integral of E and there exist g € C*°(M ) with g proper and A, B € Ry
such that for each x € M we have:

{f, 9} (@) < Alg(z)| + B, (3.10)

then Xy is complete. In particular, if f is a first integral of E and there ewists a
proper g € C°(M) such that { f,g} is bounded (or zero) then Xy is complete.

iii) Suppose that the given Jacobi structure admits a Casimir which is a proper
function. If f is a first integral of E then Xy is complete.

Example 3.6 Suppose that the given Jacobi structure admits a Casimir which
is a proper function. Then, F = X; is a complete vector field since the constant
functions are first integrals of every vector field.

A slight generalization of the notion of first integral provides a new example.
Namely, inspired by the Lichnerowicz’s papers let us introduce:

Definition 3.7 Let ¢ € R and 7 € C*°(M). Then, 7 is a c-time function if
E(r)=c

Example 3.8 Suppose that the Jacobi manifold (M, A, F) admits a c-time
function which is proper. Then, using Proposition 3.4 ii) with A = c and B =0 it
results that X is a complete vector field.

Let us turn to the Poisson setting. From Propositions 3.4 and 3.5 we get:

Corollary 3.9 Let (M, A) be a Poisson manifold and fix f € C*° (M).

i) If there exist g € C°(M) with g proper and A, B € Ry such that:

[A(df, dg) ()| = [{, 9} (x)| < Alg(x)| + B, VeeM (3.11)
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then X is complete. In particular, if there exists a proper function g such that {f, g}
is bounded or zero then Xy is complete.
ii) ([33]) If the Hamiltonian f is a proper function then Xy is complete.

Let us apply the last item of the previous result to complete Poisson maps.
Recall, after [6, p. 31|, that a Poisson map ¢ : M — N between two Poisson
manifolds (i.e. ¢ preserves the Poisson brackets) is complete if, for each h € C*>°(NN),
X} being a complete vector field implies that X« is also complete. A justification
of terminology is provided by Proposition 6.2 of [6, p. 32] that a Poisson map
¢ : M — R is complete if and only if X, is a complete vector field. It results
that every Poisson function from a compact Poisson manifold is complete but we
derive a sufficient condition of completeness for Poisson functions from C°° (M) with
non-compact M:

Corollary 3.10 i) If there exists 1p : M — R such that {p, 9} is bounded or
zero then @ is complete.

ii) If the Poisson bracket admits a proper Casimir then every Poisson map
@ : M — R is complete.
iii)Let ¢ : M — R be a proper Poisson map. Then ¢ is complete.

Although the last framework presented in this section does not belongs to
Jacobi structures we add it here for the similarities with the Poisson case. For more
details about Nambu-Poisson structures we refer to [32, 34, 36] and the references
therein.

Definition 3.11 A Nambu-Poisson bracket or structure of order m, 2 < m <
n is an internal m-ary operation on C*°(M), denoted by { }, which satisfies the
following axioms:

(i) { } is R-multilinear and totally skew-symmetric
(ii) the Leibniz rule:

{f17"'7fm—17gh’} = {fh" . 7fm—17g}h+g{f17'"7fm—17h}
(iii) the fundamental identity:

{fi s fmer g gmd} =D {gr, - Af e fn s gk} g
k=1

The Lie brackets associated to the Poisson structures correspond to the case
m = 2 in the above definition.
By (ii), { } acts on each factor as a vector field, hence it must be of the form:

{fi,-., fm} = Adf1,...,dfm),

where A is a field of m-vectors on M. If such a field defines a Nambu-Poisson
bracket, it is called a Nambu-Poisson tensor field. A defines a bundle mapping:

g QL (M) — X (M)

given by:
< ﬁ, ﬁA(Ozl, L. ,Otn_l) >= A(Ozl, v, Oy, B)
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where all the arguments are 1-forms.
The next notion which extends the similar one from Poisson geometry is that
of the A-Hamiltonian vector field of (m — 1) functions defined by:

XpyFpy = tA(AFY, . dFpy).

Since F; is a first integral of Xp, g | the Corollary 2.3 yields a natural
generalization of the Corollary 3.9 ii):

Corollary 3.12 Let Xg, . f, , be a Nambu-Poisson Hamiltonian vector field.
If there existsi € {1,...,m—1} such that the Hamiltonian F; is proper then Xp, _r,_,
is a complete vector field.

4. Completeness in contact and cosymplectic geometry

The contact geometry is a very important particular case of Jacobi geometry
living only in odd dimensions. In the following suppose that n = 2m + 1.

Definition 4.1 A 1-form 0 € Q! (M) is a contact form on M if it is non-
degenerated i.e. the n-form V := 0 A (df)™ is a volume form on M. The pair (M, 6)
is a contact manifold.

On a contact manifold there exists a remarkable global vector field:

Proposition 4.2 (Reeb) On (M, 0) lives E € X (M) uniquely determined by:

igf =1
{ ipdd =0 " (4.1)

Definition 4.3 i) E is called the Reeb (or sometimes the characteristic) vector
field of the contact manifold (M, 0).
ii) For f € C° (M) the contact Hamiltonian vector field X is uniquely determined

by:
ix,0=f
{indHZfE(f)'e—df | (4.2

f is called again the Hamiltonian of X;.
Example 4.4 The unit sphere S® C R?* has a standard contact form:
0 = % (wlde — 22dx! + 23dat — 1‘4dw3) with the associated Reeb vector field the

unit tangent field to the well-known Hopf fibration S> S—1> S2. Since M = S% is a
compact manifold it results that all vector fields on M, in particular the contact
vector fields and the Reeb vector field, are complete.

Properties of the Hamiltonian vector fields, [31, p. 39]:

X.=cE, ceR, X,f:—Xf
Xpvg =Xy + Xg,  Xpg=[Xg+ [Xg— fgE . (4.3)
Xy (y=Ff-E(f), X;(ff)=kf" E(f)
Proposition 4.5([13]) The bivector A given by: A (df,dg) = df (X¢, X,),
together with E yields a Jacobi structure on (M, 9).
Therefore the results of above section apply to this framework. Particularly,
the Proposition 3.4 i) becomes:
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Proposition 4.6 Fiz f € C™ (M). If there exist g € C°°(M) with g proper
and A, B € Ry such that:

|d6 (X, Xg) (2) + f (2) - E(9) ()| < Alg(x)| + B, VeeM (4.4)

then Xy is complete.

Also the Example 3.6 becomes:

Corollary 4.7 Suppose that the Jacobi structure associated to the contact
manifold (M, 0) admits a Casimir which is a proper function. Then the Reeb vector
field E is complete.

On a contact manifold there exists an adapted atlas with local coordinates
(2,4% Pa)1<q<m such that 6 has the canonical or Darboux form:

m
0=dz— Zpadqa. (4.5)
a=1

In this canonical atlas we have, [19, p. 325]:
E=g  A=Ygmho +Lrg g,
{f9} = <f Zpaapa> Dz < Zpa > +Z(8f§pi gpﬁ(‘%“)
Xy = <f Zpaapa>3z—2§p];£ Z( %) a?a

(4.6)
with the obvious simplifications if the function f, respectively g, is 1-homogeneous

n (pa)-
It follows that a c-time function on a contact manifold has the form: 7 =

cz + F (q% pe) and then:

oF 0 oF 0
O L R

In particular, if the function F' is 1-homogeneous with respect to the variables (p,)

it results, via the Euler theorem, that:
oF 0 oF 0
Z 0 | —. 4.8
Cz Z Opa 0q° ; <6q" e ) Opa (4.8)

It results that the Example 3.8 implies:
Corollary 4.8 Let 7 € C* (M) be an c-time function on the contact manifold

(M, 0) of expression above, in particular T = 7(q%, pa). If T is a proper function too
then X, given by (4.7), particularly by (4.8) if F' is 1-homogeneous with respect to
(pa), is a complete vector field.

Examples 4.9 i) Let (P, da) be an exact symplectic 2m-dimensional manifold.
Inspired by Example 1 from [19, p. 294] we consider the manifold M = I x P with
I = (a,b) a bounded real interval and § = dt — « where t is the canonical coordinate
in I. Then (M,#0) is a contact manifold with the Reeb vector field F = %. A
c-time function on M having the expression 7 = ¢z + F with F' € C* (P) is proper
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provided the function F' is proper. It follows that the previous result applies in this
framework.

ii) Functions 7 = 7(¢%, p,) rise naturally in the geometric theory of first order PDE
(Partial Differential Equations). Let M be the first jet bundle of R™; locally such
space can be described by x € R and a germ of a function in x considered up to its
gradient. To each m € JY(R™) we associate (z, z(x), Vz) with z a germ of a smooth
function in R™. The manifold J'(R™) is a contact manifold with contact 1-form

0 = dz — y,dx® which vanishes on any germ z such that axa = yo. This jet space
is the natural place to study the geometry of first order PDEs; more precisely, any
PDE can be understood as a submanifold of J(R™). Let us suppose that we have a
smooth function 7 : J1(R™) — R with 97 = 0. Then, after [2], the set 7 = 0 defines
a manifold in J!(R™) which corresponds to the PDE: 7((z, z(x), Vz)(z)) = 0.

Let us study the case of a contact structure endowed with a Legendre foliation.
On (M, 0) the distribution H(M) = Ker(0) is called the contact distribution and
is not integrable. A codimension m + 1 foliation F on M is said to be a Legendre
foliation if T'(F) is a m-subbundle of the 2m-distribution H (M). In other words, F is
a foliation of (M, €) by m-dimensional integral manifolds of the contact distribution

Proposition 4.10 ([20]) Let F be a Legendre foliation on the contact manifold
(M,0). Then, for any x € M there exists an open neighbourhood U of x which admits
local coordinates (%, pa,t) <4< Such that: § = pedx® — Hdt with H € C*° (M)

a

satisfying the condition; the function:

A= Zpa

Opa
has no zero. By means of these coordinates the Reeb vector field is expressed by:
1 ({0 OH 0 OH 0
E=_[Z2 — — ) 4.9
A (at * (za: Opy 0% 0ao 3pa>> (4.9)
Since E (H) = %%—i] from Theorem 2.2 we get:

Corollary 4.11 Suppose that the contact manifold (M,0) admits a Legendre
foliation as above with H a proper function. If there exist U,V € Ry such that for
each x € M we have:

1 oOH
!m 2 @
i particular H is time-independent, then the Reeb vector field E is complete.

The last abstract framework included here is the cosymplectic geometry. A
cosymplectic manifold is a triple (M,$2,n) with Q € Q?(M) and n € Q'(M) such
that V :=n A Q™ is a volume form. Exactly as in the contact geometry there exists
a global Reeb vector field R uniquely determined by:

irn =1
4.11
{ in =0 (4.11)

| <UH(z)|+V, (4.10)
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and for every f € C°°(M) there is associated a Hamiltonian vector field Xy uniquely
determined by:
tx,n =0 412
P g 12
One can prove that in a neighbourhood of each point of a cosymplectic manifold one
can define canonical coordinates (q%, pq, z) such that:

Q =dqg® A dp,
{ 0= dz, R:% (4.13)
and in these coordinates:
af 9 af 9
_— = —_— 4.14
Zap dq° za:@q“ IPpa (4.14)

Since f is a first integral of X; we apply the Corollary 2.3: if f is a proper function
then the cosymplectic Hamiltonian vector field Xy is a complete vector field.

5. Examples in thermodynamics

Consider after the classical theory of thermodynamics a material in an enclo-
sure of volume V', pressure P, temperature T', entropy S and internal energy U. The
first law of thermodynamics says that infinitesimal changes of these thermodynamic
variables must satisfy:

0:=dU + PdV —TdS = 0. (5.1)

Therefore, we can attach the contact manifold M an open subset of (]R5, 9), called
thermodynamical phase space with the canonical coordinates

(z; q, q2,p1,p2) (U;V,S,—P,T) and Reeb vector field £ = aU Using the formula
(4.64) it results that a function f = f(U;V,S,—P,T) has the Hamiltonian vector
field:

Xf:<f Pap oU 0T 9S ' 0PV

af _af\
+ <as + TaU) a7 (5.2)

Applying the Proposition 3.4 ii) one has:
Proposition 5.1 Let f € C°°(M) proper with:
of
1 55
for every (U, V,S,—P,T) € M, in particular f does not depends on the internal
energy U. Then Xy is a complete vector field.
Example 5.2 ([31, p. 43]) Let us consider an ideal gas describing an isother-

of _af\ o afo of o [(of _of
op T8T>_ _<6V P@U)@P+

2L (U, v,S,—P,T)| < A|f(U,V,S,—P,T)| + B (5.3)

mal process with the constant internal energy U and the particle number N. It
follows that: f = PV — NRT with R the so-called gas constant. Then, from (5.2):

0 0 B,
= NRge + Vo0 — P (5.4)
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with the flow:
U=UyV =Vye!,S=85y+ NRt,P = Pye ', T =Ty (5.5)

with (U, Vb, So, Po, Tp) an initial Cauchy data. Locking at the expression of f we
see that it is a c-time function with ¢ = 0 (i.e. first integral of the Reeb vector field
E) which is also 1-homogeneous in (—P,T"). The vector field X is complete conform
Proposition 5.1 although f : R® — R is not a proper function; let us remark that
the solutions (5.5) confirm the completeness of Xy.

Example 5.3 ([31, p. 43]) Consider f =U — %PV a Hamiltonian depending
of the internal energy U. Then, from (5.2):

o 3,0 5_0 0

with the flow:
U =Upe',V = Voe 32§ = Sy, P = Pye®/%, T = Tpel. (5.7)

The Hamiltonian f is again a c-time function with ¢ = 1 and the same conclusion
as in the previous example it results about the completeness of X.

Appendix: Completeness in terms of a metric

In [1, p. 71] a criterion of completeness in terms of a Riemannian metric is
proved:

Proposition A1 Let (M, g) be a complete Riemannian manifold and X a C*
vector field, k > 1, such that for any integral curve o the norm || X(o(t))||s@) s
bounded on finite t-intervals. Then X is a complete vector field.

It results immediately:

Corollary A2 On a complete Riemannian manifold an unitary vector field is
complete.

As examples of such vector fields we have the Reeb vector field. More precisely,
on a contact manifold (M, 6, E) there exists a nonunique Riemannian metric g such
that g(X, E) = 0(X) for every X € X(M); these metrics are called associated and
their class provides important types of contact structures (e.g. K-contact manifolds
when F is Killing with respect to g) as appears in [3]. But the previous relation
means that the Reeb vector field F is unitary with respect to g.

Corollary A3 Let (M,0,E) be a contact manifold such that one associated
Riemannian metric g is complete. Then E is a complete vector field.

Example A4 Let (M, g) be a Riemannian manifold and K (g) the energy of g
which is a regular Lagrangian; we use the notations and notions of the first section.
The canonical symplectic structure Q2 of T*M is the differential of Liouwville 1-form
A. Let Ag(g) = (FK(g))* X be the pullback on TM. Then the restriction of g (g to
the unit tangent bundle 71 M is a contact structure with the Reeb vector field twice
the geodesic flow, [3]. Then, the completeness of the initial Riemannian metric g
yields the completeness of the Reeb vector field of the associated contact structure
on TlM
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