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SZEGO’S THEOREM STARTING FROM JENSEN’S
THEOREM

Cilin Alexe MURESAN'

Mai intdi vom introduce Teorema lui Jensen §i unele consecinte ale sale
pentru determinarea numdrului zerourilor unei functii analitice in planul
complex in interiorul discului D (0;r). Apoi vom prezenta Teorema lui Szego si

vom determina noi evaludri asupra numdrului rdddcinilor reale ale unui polinom
cu coeficienti complecsi.

Firstly, we will introduce Jensen’s theorem and some useful consequences
for giving the numbers of the zeros to the analytical complex functions inside the
open disc D (0;r). Then, we will present Szego’s Theorem and we will get new

evaluation about the number of the real roots of a complex polynomial.
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1. Introduction

There are many theorems about the numbers of the real roots to the
complex polynomials. Some of them use, specially the Cauchy’s theorem in
complex plane and the others use, specially Jensen theorem as we can see in
chapter 3.

If P(x)=a,x" +...+ ajx+ay € C[x], n>1, ay-a, #0, the length of P

n
is denoted by L(P)= z | a; | and we denoted with ,,#” the number of real roots
i=0
of P, repeated according to their multiplicity, in the first class we see for
example.

Theorem 3.3 : ¢ (¢ +1)< 4(n+1) - In[—22) 1, (1)
|a0an|
Our theorem, use Jensen’s theorem and follow an 1.Schur method, see [1] to
References and our result are: Theorem 3.2:

t<2n- 1n(L(P)j+ h{L(P)j . )

] o]
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2. Jensen’s Equality and its Applications

Theorem 2.1 Jensen’s equality:
Be it P(x) an analytic function in a region which contains the closed disk D (0;r);

r>0, in the complex plane, if n>1, x,xy,...,x, € C, '=1,_n, are the

zeros of P in the interior of D (0;r) repeated according to their multiplicity and if
P(0)#0, then:

2z
_ o L i0
In | P(0) |= leln(| J|)+2ﬂjln|P(R ¢?y1do or: 3)
1 2r
nlnR——Jln|P(R %16 - ln|P(0)|+ln(H|x ). (4)

j=1
Proof: see [2] or [3] from References.

Remark 2.1

This formula establishes a connection between the absolute values of the
zeros of the function P inside the disk | z | <R and the values of | P(z) | on the
circle | z | = R, and can be seen as a generalization of the mean value property of

harmonic functions.

Corrolary 2.1 Be it P(x) an analytic function in a region which contains the
closed disk D(0;1) in the complex plane , » >1 is the number of all zeros of P

and if, for 1<s<n, X;,X,,..

Xy, |x|<1(V)z—1s are the zeros of P in the

interior of D(0;1) repeated according to multiplicity, then:
a) min|P(2)| < P(0) 5)

b) min{| F(2) |} <i j In| F(e'?) 6 < max{| F(2)|}. (©)

lzl=1 |zI=1

Proof: a) In Theorem 2. 1 Be it R 1. Then:

=—J.1n|P(e“9)|d¢9—ln|P(O)|+ln(H|x D,
j=1

But 0<H|x |<1:>1n(H|x )<0. 50ijln|P(e’6’)|d.9<1n|P(0)|
i=l i=1
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1 2 - 1n[min|P(z)|J <In| P(0)|,
2 ‘221‘
min[P(2) < PO) | @

b) We can try by simillarity or see [4] to References.

n—1

Corrolary 2.2 If P(x) = a,x" +a, X" ' +..+ax+ay, a; €C; i=ln, n>1

and R = |L(P) , R >1, where X5 X5y X ALE the roots repeated according to
an
multiplicity of P(x) and ay #0,a, #0, then:
2
21 [ P[|L(PToe'9] d6-1In|a, |
[ T a
27i P(z) In[L(P)]-In|a, |

L(F)

la

|zl=
n‘

For proving see [4] to References.
Corollary 2.3 Be it P(x) an analytic function in a region which contains the

closed disk D (0;7), >1 in the complex plane, s >1 is the number of all zeros of
xi| <1 (V)i= 1,s, are the zeros of P in the interior of D(0;1)

repeated according to multiplicity, then:

| {|P(z>|}
n| max
2|=r |P(O)]

Inr
Proof: If n>2s21, x1,xp,..X¢,Xg 41X, €C,

P With, X15X2 5005 Xg s

. 9)

xi| <r, (V)i= I,_n , are the zeros

of P in the interior of D(0;r) repeated according to their multiplicity. Then from

Jensen Theorem we have:
1 27 ' n
ninr =2— J In | P(r-e’9)|d6?—ln | P(0) | +ln(H| X; .
T 5
0 j=1

Because for i=1,s, |x; |<1, we have

S n n
OSH|xl~ |S1:>1n(H|xl- ) < In( H |x; )<Inr"™° =(n—s)lnr.
i=1

i=1 i=s+1
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27
Now we can write: nlnr —(n—s)Inr < 2L I In| P(r-e“g) 6 —In| P(0)].
z
0
And next P(0)=ay # 0, and
2 ) 2
j In| P(r-e'?)do < j In[max | P(z) |46 = 27 - In[max | P(2) ],
0 o lzl=r |z|=r

Therefore, from the previous relations we have:

sin(r) < 1. 27 -In[max | P(z) []-1n|ag |,
2z |z|=r

Sl
n| max
4=r [P

and now:

Inr
3. Szego’s Theorem

Proposition 3.1 Be it the polynomial

P(x)=a,x" +an_1xn_1 +...+a;x +ag € C[x], with ag-a, #0 and
d m

0, (x)=n" (x d_j [P(x)] , m €N, meaning (,, is defined by the relation
X

0, (x)=n"'.x. A0y 1 (x)
dx

a) If we denote by a the number of the real roots, having absolute value bigger
or equal with 1 for the polynomial O, and by b the number of the real roots
bigger or equal with 1 then b <m + «.

b) Qm(X)=Z(ij 4’ (1
i=0\"

(10)

Proof:
a) Using Rolle’s Theorem
x=0
mzlel(x)zl»pP'(x); O/(x)=0=4 or (12)
4 P'(x)=0
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From Rolle’s Theorem result that: P'(x) has at least b - 1 real roots having

absolute value bigger or equal with 1. (12°)
From (12) and (12°) result that Q, (x) has at least (b- 1) + m =(b- 1) + 1=

roots. It is known the fact that the degree of O (x)=n is the degree of P(x) and

we repeat the process. It results b < m + a, with « the number of roots having
absolute value bigger or equal with 1 for Q(x)=0,, (x) .

b) Let see now the expressionto Q(x)=0,, (x) .
First we take m=1 then m=2. Obtain that:

_ 1 _ _
O1(x)=n"'xP'(x) == x-(na,x" ' +(n—Va, x" > +..+aq
n

13
n o, n n-—1 n—1 2 7 1 (13)
O(x)=—a"x" +——a,_x"  +..+—ayx” +—ayx.
n n n n
2 2 2
1| n - n—1 - 2
0y (x)=n"lx| —a,x" 1Jruan_lxn 2h ot axt—a |,
n n n n

2 2 2

2 2 2 n N2
n n—1 - 2 1 i ;
Qz(x)z—zanx” +Qan_1x" L+ +—ax = Z(—j a;x'.
n n n n i=0

Now by induction about m we can obtain:
da\" 2"
0x)=0,,(x) = n™ (xd—j [P(x)] = Z (—j aixl (15)
X o\n

Theorem 3.1 For P(x)=a,x" +a, x" ' +..+ax+ag € C[x], with a -a #0;

n
the length of P is denoted by L(P)= Z |a; | and let b the number of the real
i=0
roots bigger or equal with 1. Then

b<2 n-h{L(P)J. (16)

a]

Demonstration:
From previous proposition for a natural m and for the polynomial
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n \m .
0(x)=0,,(x)= z (ij a;x' we have b <m+ a where o is the number of
i=0
the real roots, having absolute value bigger or equal with 1 for the polynomial Q.
We consider revQ the reciprocal polynomials of QO(x):

revQ(x) = x"-0(x 1) = Z[uj a,_;-x' = Z[l —Lj ca,_;-x. a7
=0~ ) AN
—| <1 and now we see that: o is the

If O(x) = 0 with [x|>1= rer(l) =0;
X

number of the real roots bigger or equal with 1 for O(x) if and only if « is the
number of the real roots small or equal with 1 for revQ(x).

Beit reR; r > 1. From Jensen’s inequality results that the total number of the
roots (complex) of the polynomial revQ from |z| <1 are delimitated by the

quantity of the total number of the roots (complex) of the polynomial revQ from
|z| < r and taking in Jensen formula only the roots with moduly at most equally to

one we obtain from Corollary 2.3:

| { |rer(z)| }
n ma
3 |rer(0)|

Inr

(18)
We pick

r=em" :>max{|rer

| =r}< i\ - ]\( l) M, (19)

Jj=0

And if we note g(x)=(1-x)" -&™ then for 0 <= J - =x<1, je{0,1,...n} wewill
n

have:

(1-x)" "™ = [1—1) LM, (20)
n

g'(x) =m-(1—x)m_1 (~1)-™ +(1—x)m ™ m
g'(x)=m-(1=x)""" ™ (~x)
Then g'(x)<0 for 0<x<1 and because of that

(21)
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g(ﬂ < ¢(0) (V) € {0.Ln). 22)
We obtain
(1—i]m " 1. (23)
n

From (19) and (23) we have:

n N\ ) n
max{|rer(z); z|=r} < z an_j‘(l—iJ em(]/n) < z an_j‘zL(P) (24)
j=0 " =0
1n EP)
Because revQ(0) = a,, from (18) relation we obtain: & < JZ”| =a<Zin L|(P|) .
m m |a,
n

Y
ThenbSm+a:>b<m+£~lnL(P),Beitm: (n.lnL(P)] 1.

m |an| |an|
It results
12
be|lnmED ] i1y " i)
|| L(P) 12 ||
[n-ln J +1
|an|
i 1/27] n~lnL|0(lP|)
b< (n.lnlf(i)j +1+ ”1/
al’l
- - | L(P) +1
|a,| (25)
i 1/2] 1/2
b< (n-lnL(P)j +1+(n-lnL(P)] .
I |an| | |an|

And because b is natural from the last relation we obtain: b < 2 ’n -In [%}
a}’l

Theorem 3.2 For P(x)=a,x" +a, X" +...+ax+ay € C[x], with g -a, #0;
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the length of P is denoted by L(P)= Z| a, | and let be ¢ the number of all the
i=0
real roots of P. Then:

t<2\n- \/ln(L(P)]+\/ln[L(P)J . (26)
|| o]

a) Be it b the number of the real roots bigger or equal with 1.

Demonstration:

Then s=t-b is the number of the real roots smaller than 1.
We can observe that s is the number of real roots bigger or equal with 1 for the

reciprocal polynomial

1 -
revP =x" -P(—j =aqpx" +ayx" ! +..+a,.
X

We have demonstrated in previous theorem that

b<2- |n- ln[L|(P|)j for P=a,x" +a, ;x" +..+a,. 27)
al’l
Using a similar method we have: s <2 [nln L(|rev|P)‘
do
L(P)

But L(revP)=L(P), then s<2- |nln | |
ao

t=b+s<2n- Jln[L(P)J+\/1n(L(P)] (28)
] jao|

and the relation was proved.
Corrolary 3.1 For P(x)=a,x" +a,;x"" +..+ax +ay € C[x], with

Then:

n
ay - a, #0 with length of P, L(P)= Z| a; | and ¢ the number of all the real
i=0
roots of P.
Then:

1 SSn-ln[ L(P) J (29)
\]|a0an|
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Proof: From the last Theorem we have: ¢ < 2\/;- \/hl[L(P)J + \/ln(L(P)J .

@] o]

We use the relation, (V) i, j € N, we can write:

i’ ;jz 32(1'2 +j2).

(i+)) =2+ 2 v2 <+ 242

2 2 )
Then > <2-n \/ln(L(P)]Jr\/ln[L(P)] <2n-2 \/ln[L(P)j +\/ln£L(P)J )
[an| o [an| o

2
% §4n~ln[[L(P)] ] £ S8n'lnL|L(—m]. (30)

|a0'an| aO'an|

Corrolary 3.2 For P(x)=a,x" +a, x" ' +..+ajx+ay e C[x] with

n
ap-a, #0, L(P)= Z | a; |a polynomial which have at least one real root bigger
i=0
or equal to one and at least one root smaller than one, with length of P, and “¢’

the number of all the real roots of P. Then:

t<4n-In 31)
\/|a0an|

Proof: Be it b the number of the real roots bigger or equal with 1 and s=¢-b the

number of the real roots smaller than 1, we have obtained: 6 <2 ’n-ln(ﬁ(ﬁ)j,
al’l

§<2- nln@.
o]
From hypotesis 1 < b, 1< s then b < b?, s < s*.Then we have:
L(P
tSb+sSb2+s2S2n~{ln[L(P)j+ln[L(P)ﬂ=4noln () . (32)
] Jao| laga,|

Theorem 3.3 (G. Szego).
IfP(x)=a,x" +..+aix+ageC[x], n=1, ag-a, #0, then if we noted with

.0 the number of real roots of P we have:
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L(P)

t-(t+1)<4(n+1)-In[ |]. (33)

la a
o n

For proving see [5].

Corrolary 3.3.1f P(x) =a,x" +..+ aqx+ag € Z[x] ,n>1, ag-a, #0 , for .0,
the number of real roots of P, we have: ¢* <4-(n+1)-In[L(P)]. (34)
Demonstration: ay #0 , a, #0 and qy,a, €Z .

Then |ay > 1,|a, [>1 and L(P)>1,\/ap -a, | >1, In L(P)>0.
L(P) L(P)

\/|a0 an| \/|a0 an|

Now from Theorem 2.3. (G. Szeg6) we have:
L(P)
| a4, |
L(P)

\j|a0'an |

1= In[L(P)], the relation become: 2 <4. (n+1)-In[L(P)].

Also it is easy to prove that: >1 and In[ 1>0.

2 <t (t+1)<4(n+1)-1In[ ! (35)

Then because: forn>1, and /|a,-a, |21 so > L(P) and

L(P)
\/|a0 ay, |

Remark 3.1 Demonstrations for G. Szegé’s theorems we can see in [1], [5], [6].

In[

The author follow a method from [1] and give the new relations as we can see in
Theorem 3.1 and Theorem 3.2.
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