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SZEGO’S THEOREM STARTING FROM JENSEN’S 
THEOREM 

Cǎlin Alexe MUREŞAN1  

Mai întâi vom introduce Teorema lui Jensen  şi unele consecinţe ale sale 
pentru determinarea numǎrului zerourilor unei funcţii analitice în planul 
complex în interiorul discului  (0; ).D r  Apoi vom prezenta Teorema lui Szego şi 
vom determina noi evaluǎri asupra numǎrului rǎdǎcinilor reale ale unui polinom 
cu coeficienţi complecşi. 

 
Firstly, we will introduce Jensen’s theorem and some useful consequences 

for giving  the numbers of the zeros to the analytical complex functions inside the 
open disc (0; )D r . Then, we will present Szego’s Theorem and we will get new 
evaluation about the number of the real roots of a complex polynomial. 

 
Keywords: The number of real roots, Jensen's equality, Szego’s theorem. 

1. Introduction 

There are many theorems about the numbers of the real roots to the 
complex  polynomials. Some of them use, specially the Cauchy’s theorem in 
complex plane  and the others use, specially Jensen theorem as we can see in 
chapter 3. 

If 1 0 0( ) ... [ ], 1, 0,n
n nP x a x a x a C x n a a  = + + + ∈ ≥ ⋅ ≠ the length of  P  

is denoted by  
0

( ) | |
n

i
i

L P   a
=

= ∑  and we denoted with  „t”  the number of real roots 

of  P, repeated according to their multiplicity, in the first class we see for 
example.  

Theorem 3.3 : 
0

( )( 1) 4( 1) ln[ ].
| |n

L Pt t n
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Our theorem, use Jensen’s theorem and follow an  I.Schur method, see [1] to 
References and our result are: Theorem 3.2: 

                     
0

( ) ( )2 ln ln
n

L P L Pt n
a a

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥≤ ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

.                                       (2) 
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2. Jensen’s Equality and its Applications  

Theorem 2.1 Jensen’s equality: 
Be it P(x) an analytic function in a region which contains the closed disk  (0; )D r ; 
r>0, in the complex plane, if 1≥n , 1 2, ,..., ,nx x x C∈ , ( ) 1,ix r i n< ∀ = , are the 
zeros of P in the interior of  (0; )D r  repeated according to their multiplicity and if 

(0) 0P ≠ , then: 

                    
2
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1ln | (0) | ln( ) ln | ( ) | or:
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jj
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x
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π=
= − + ⋅∑ ∫                   (3) 
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1ln ln | ( ) | ln | (0) | ln( | |).
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j

n R P R e d P x
π

θ θ
π =

= ⋅ − + ∏∫                     (4) 

Proof: see [2] or [3]  from References. 
 

Remark 2.1 
This formula establishes a connection between the absolute values of the 

zeros of the function P inside the disk | z | <R and the values of | P(z) | on the 
circle | z | = R, and can be seen as a generalization of the mean value property of 
harmonic functions. 
 
Corrolary 2.1 Be it P(x) an analytic function in a region which contains the 
closed disk  )1;0(D  in the complex plane , 1n ≥  is the number of all zeros of P 
and if, for 1 s n≤ ≤ , 1 2, ,..., sx x x , 1, ( ) 1,ix i s< ∀ = , are the zeros of P  in the 
interior of  )1;0(D  repeated according to multiplicity, then:  

1
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<a)                                                                             (5) 
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≤ ≤∫b)                      (6) 

Proof: a) In Theorem 2.1. Be it  R=1. Then: 
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1

1 2 ln min ( ) ln | (0) |,
2 z

P z Pπ
π =

⎛ ⎞
⋅ ⋅ <⎜ ⎟⎜ ⎟

⎝ ⎠
  

                                                   
1

min ( ) | (0) |
z

P z P
=

< .                                           (7) 

b) We can try by simillarity or see [4] to References. 
Corrolary 2.2 If 1

1 1 0( ) ... , ; 1,n n
n n iP x a x a x a x a a C i n−

−= + + + + ∈ = , 1≥n  

and ( ) , 1
| |n

L PR  R
a

= > , where  
n

xxx ,...,,
21

 are the roots repeated according to 

multiplicity of  P(x)  and 0 0a ≠ , 0na ≠ , then: 
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For proving see [4] to References.  
Corollary 2.3 Be it  P(x) an analytic function in a region which contains the 
closed disk  (0; )D r , r>1 in the complex plane, 1s ≥  is the number of all zeros of 
P with, 1 2, ,..., sx x x , 1, ( ) 1,ix i s≤ ∀ = , are the zeros of P in the interior of )1;0(D  
repeated according to multiplicity, then: 

                                              

( )
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(0)
.
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z r

P z
P

s
r

=

⎡ ⎤⎧ ⎫⎪ ⎪
⎢ ⎥⎨ ⎬

⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦<                                           (9) 

Proof: If 1n s≥ ≥ , 1 2 1, ,.. , ..., ,s s nx x x x x C+ ∈ , ( ) 1,ix r i n< ∀ = , are the zeros 
of P in the interior of  (0; )D r  repeated according to their multiplicity. Then from 
Jensen Theorem we have: 
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Because  for  i=1, s , | | 1ix ≤ ,  we have 
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0 | | 1 ln( | |) ln( | |) ln ln
s n n

n s
i i i

i i i s
x x x r n s r−

= = = +
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Now we can write: 
2

0

1ln ( ) ln ln | ( ) | ln | (0) |.
2

in r n s r P r e d P
π

θ θ
π

− − < ⋅ −∫  

And next 0(0) 0P a= ≠ , and       
2 2

| | | |0 0
ln | ( ) | ln[max | ( ) |] 2 ln[max | ( ) |]i

z r z r
P r e d P z d P z

π π
θ θ θ π

= =
⋅ < = ⋅∫ ∫ , 

Therefore, from the previous relations we have: 

0
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s r P z aπ
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≤ ⋅ ⋅ − , 

and now:                
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=
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3.  Szego’s Theorem 

Proposition 3.1 Be it the polynomial  
-1

-1 1 0( ) ... [ ],n n
n nP x   a x   a x   a x  a  C x= + + + + ∈  with 0 0na  a   ⋅ ≠  and 

[ ]-( ) ( )
m

m
m

dQ x   n x P x
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⎛ ⎞= ⎜ ⎟
⎝ ⎠

,  m ∈N , meaning mQ  is defined by  the relation  

-1 -1( )
( ) . m

m
dQ x  

Q x   n x
dx

= ⋅ ⋅                                                      (10) 

a) If we denote by   α  the number of the real roots, having  absolute value bigger 
or  equal with 1 for the polynomial  Qm  and  by  b  the number of the real roots 
bigger or equal with 1  then b ≤m + α .                                                               

b) 
0

( )
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m i

i

iQ x a x
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⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑                                                                     (11) 

Proof: 

a) Using Rolle’s Theorem  

                    1 1
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11 ( ) '( ); ( ) 0 or
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x
m Q x x P x Q x

n
P x

=⎧
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                    (12) 
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From Rolle’s Theorem result that: ( )'P x  has at least  b - 1 real roots  having  
absolute value bigger or equal with 1.  (12’)   
            From (12) and (12’) result that ( )1Q x  has at least (b- 1) + m =(b- 1) + 1= b  

roots. It is known the fact that the degree of  ( )1Q x n=  is the degree of P(x) and 
we repeat the process. It results b ≤  m + α, with  α  the number of roots having 
absolute  value bigger  or equal with 1 for   ( ) ( )mQ x Q x= . 

b) Let see now the expression to  ( ) ( )mQ x Q x= . 
First we take m=1 then m=2. Obtain that: 
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Now by induction about  m  we can obtain: 

                   [ ]-
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Theorem 3.1 For  -1
-1 1 0( ) ... [ ],n n

n nP x   a x   a x   a x  a  C x= + + + + ∈   with 
0

0;
n

a  a   ⋅ ≠  

the length of P  is denoted by  
0

( ) | |
n

i
i

L P   a
=

= ∑   and let  b  the number of the real 

roots bigger or equal with 1. Then  

( )2 ln
n

L Pb n
a

⎛ ⎞
≤ ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
.                                                            (16) 

Demonstration:  
 From previous proposition for a natural  m  and for the polynomial  
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0
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⎛ ⎞= = ⎜ ⎟
⎝ ⎠

∑   we have  b ≤m + α  where α  is the number of 

the real roots, having  absolute value bigger or equal with 1 for the polynomial  Q. 

1

0 0

We consider   the reciprocal polynomials of  ( ) :
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           If Q(x) = 0 with  1 11 0; 1x revQ
x x

⎛ ⎞≥ ⇒ = ≤⎜ ⎟
⎝ ⎠

 and now we see that: α  is the 

number of  the real roots bigger or equal with  1 for Q(x) if and only if   α  is the 
number of the real roots small or equal with 1 for  ( ).revQ x  
Be it  ;    1r R r∈ > .  From Jensen’s inequality results that the total number of the 
roots (complex) of the polynomial revQ  from   1z ≤  are delimitated by the 
quantity of  the total number of the roots (complex) of the polynomial revQ  from   
z r≤  and taking in Jensen formula only the roots with moduly at most equally to 

one we obtain from Corollary 2.3: 
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And if we note ( ) (1 )m mxg x x e= − ⋅ then { }for 0 1, 0,1,...,j x j n
n

≤ = ≤ ∈  we will 

have: 

                                   ( ) ( )1 1 .
m

m mx m j njx e e
n
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Then  ( )' 0 for 0 1g x   x≤ ≤ ≤  and because of that                            
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                                  ( ) ( ) { }0 0,1,..., .jg g j n
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                                       (22) 

We obtain  

                                                  ( )1 1.
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m j nj e
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From (19) and (23) we have: 
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m a a

α
⎡ ⎤⎛ ⎞⎢ ⎥≤ + ⇒ < + ⋅ = ⋅ +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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⋅⎡ ⎤⎛ ⎞⎢ ⎥< ⋅ + +⎜ ⎟⎜ ⎟⎢ ⎥ ⎡ ⎤⎝ ⎠ ⎛ ⎞⎣ ⎦ ⎢ ⎥ +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥< ⋅ + + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                      (25) 

( )And  because   is natural from the last relation we obtain: 2 ln
n

L Pb b n
a

⎛ ⎞
≤ ⋅ ⎜ ⎟⎜ ⎟

⎝ ⎠
    

Theorem 3.2 For  -1
-1 1 0( ) ... [ ],n n

n nP x   a x   a x   a x  a  C x= + + + + ∈   with 0 0;na  a   ⋅ ≠  
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the length of P is denoted by  
0

( ) | |
n

i
i

L P   a
=

=∑   and let be t the number of all the 

real roots of P. Then: 

                           
0

( ) ( )2 ln ln
n

L P L Pt n
a a

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥≤ ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

.                                  (26) 

Demonstration: 

a) Be it b the number of the real roots bigger or equal with 1. 
Then s=t-b is the number of the real roots smaller than 1.  
We can observe that s is the number of real roots bigger or equal with 1 for the 
reciprocal polynomial   

                        1
0 1

1 .n n n-
nrevP = x P a x  + a x  + ... a

x
⎛ ⎞⋅ = +⎜ ⎟
⎝ ⎠

 

We have demonstrated in previous theorem that   

                1
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( )2 ln for .n n-
n n-

n

L Pb n  P = a x  + a x  + ... a
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⎛ ⎞
≤ ⋅ ⋅ +⎜ ⎟

⎝ ⎠
                     (27) 

Using a similar method we have: 
0

( )2 ln .L revPs  n  
a

≤  

But ( ) ( ) ,L revP L P=   then  
0

( )2 ln L Ps  n  
a

≤ ⋅  

Then:  

                                t b s= + ≤
0
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a a

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⋅ +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                     (28) 

and the relation was proved. 
Corrolary  3.1   For  -1

-1 1 0( ) ... [ ],n n
n nP x   a x   a x   a x  a  C x= + + + + ∈   with 

0 0na  a   ⋅ ≠  with length of  P, 
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i
i

L P   a
=

= ∑   and  t  the number of  all the real 

roots of  P.  
Then:                                  
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⎜ ⎟≤ ⋅
⎜ ⎟
⎝ ⎠

.                                     (29) 
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Proof:  From the last Theorem we have: 
0

( ) ( )2 ln ln
n

L P L Pt n
a a

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥≤ ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
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We use the relation, ( ) , , we can write:i j N∀ ∈  

( ) ( )
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2 2 2 2 2 2 22 2 2 .
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+ = + + ≤ + + ⋅ ≤ +
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( ) ( )4 ln , 8 ln . (30)
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⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥ ⎢ ⎥≤ ⋅ + ≤ ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟≤ ⋅ ≤ ⋅

⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠

Corrolary  3.2   For  -1
-1 1 0( ) ... [ ]n n

n nP x   a x   a x   a x  a  C x= + + + + ∈   with  

0 0na  a   ⋅ ≠ , 
0

( ) | |
n

i
i

L P   a
=

= ∑ a polynomial which have at least one real root bigger  

or equal to one and at least one root smaller than one, with length of  P,  and  “t”  

the number of  all the real roots of  P. Then: 

                                           
( )
0
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n

L P
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⎛ ⎞
⎜ ⎟≤ ⋅
⎜ ⎟
⎝ ⎠

                                               (31) 

Proof: Be it b the number of the real roots bigger or equal with 1 and   s=t-b  the 

number of the real roots smaller than 1, we have obtained: ( )2 ln ,
n

L Pb n
a

⎛ ⎞
≤ ⋅ ⎜ ⎟

⎝ ⎠
 

0

( )2 ln .L Ps  n  
a

≤ ⋅  

From hypotesis 2 21 , 1 then , .b s b b s s≤ < ≤ < Then we have: 

( )2 2

0 0

( ) ( )2 ln ln 4 n .
n n

L PL P L Pt b s b s n n l
a a a a

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞
⎜ ⎟≤ + ≤ + ≤ ⋅ + = ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠

             (32) 

Theorem 3.3 (G. Szegö). 

If 1 0 0( ) ... [ ], 1, 0,n
n nP x a x a x a C x n a a  = + + + ∈ ≥ ⋅ ≠  then if we noted with  

„t” the number of real roots of  P we have:  
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0

( )( 1) 4( 1) ln[ ].
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L Pt t n
a a

⋅ + < + ⋅                                              (33) 

For proving see [5].  
Corrolary  3.3. If 1 0 0( ) ... [ ] , 1, 0n

n nP x a x a x a Z x n  a a= + + + ∈ ≥ ⋅ ≠ , for „t”, 
the number of real roots of  P,  we have: 2t  4 ( 1) ln[ ( )]n L P< ⋅ + ⋅ .                     (34) 
Demonstration: 0 00 , 0 and ,n na a a a Z≠ ≠ ∈ .  

Then 0 0| | 1,| | 1 and ( ) 1, | | 1n na a L P a a≥ ≥ > ⋅ ≥ , ln  ( ) 0L P > . 

Also it is easy to prove that:
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a a

> . 

Now from  Theorem 2.3. (G. Szegö)  we have:  

                    2

0

( ) ( 1) 4( 1) ln[ ].
| |n

L Pt t t n
a a

< ⋅ + < + ⋅                                          (35) 

Then because: for n≥ 1, and  0| | 1na a⋅ ≥  so 
0

( ) ( )
| |n

L P L P
a a

≥
⋅

 and 

0

( )ln[ ] ln[ ( )]
| |n

L P L P
a a

≥
⋅

, the relation become: 2t  4 ( 1) ln[ ( )].n L P< ⋅ + ⋅  

Remark 3.1 Demonstrations for G. Szegö’s  theorems we can see in [1], [5] , [6]. 

The author  follow a method from [1]  and give the new relations as we can see in  

Theorem 3.1 and Theorem 3.2.  
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