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CONSIDERATIONS ABOUT KALMAN FILTRATION
APPLIED TO SURFACE RECONSTRUCTION METHODS

D.E. MIHAI', E. STRAJESCU?

Lucrarea descrie posibilitatea evitarii unor situatii nepldcute care apar in
procesarea datelor experimentale, in particular vizand aplicatia de reconstructie de
suprafata si anume situatiile particulare in care functiile sau derivate ale lor trec
prin valori extreme. Oricare ar fi cauza erorilor, fie ca sunt generate de sistemul
mdsurat in cazuri particulare, fie ca sunt generate de cazuri neacoperite de teorie
sau chiar de teorie in sine rezultatul este blocarea algoritmului, obtinerea de date
eronate sau propagare incontrolabila de erori.

This paper describes the possibility to avoid some critical situations which
can arise in experimental data processing, more precisely in applications of surface
reconstruction, spotting the particular situations where functions or there
derivatives pass by extreme values. No matter which is the error source, either they
are generated by the measured system in some particular cases, either they are
generated by special cases uncovered by the theory or even generated by the theory
itself, the consequences are the failure of the algorithm, the obtaining of strange
data values or the propagation of incontrollable errors .
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1. Introduction

In the 60’s R.E. Kalman has published an article, a very famous one,
where he described a recursive solution for solving the problems of discrete data
filtration. Since this article, mainly because of the great evolution that had place in
the domain of numerical data processing, the Kalman filtration has been the
subject of an intense research and development of various applications.

Main applications in industry has been developed for systems with
continuous data acquisition based on a sequence of observations of a system state
to provide accurate continuously updated information about evolution of different
parameters.
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2. Theoretical considerations

Presuming that there exists a system that can be described by a m
dimensional vector that is measured at time intervals £ = 0, 1, 2, ...., each
observation being affected by noise, for each measurement we have:

Z, =H-x +v, D
where:
Z; are the measurable unit;
vi are the random values of the measurement;
Xy is the state of the system at the step &;
H is the observation matrix (a link between the observed and the true process).

Formulated this way the problem cannot be solved. What is missing is a
link between the current state x; and the x;.; state.

To solve this problem, we can presume that the link between two
successive states is a linear function and that there exists an additional vector,
“noise”, that is equivalent to the dynamical system uncertainities.

The Kalman filtration is trying to solve the general problem to estimate a
state ,,x” of a time dependent discrete process that is ruled by a differential linear
equation like:

x,=A-x,_,+B-u_,+w,_, )

The variables wy and vy are presumed to be independent of each other and
to have a normal probability distribution.

The A matrix (n x n dimension) in the differential equation (2) makes the
link between the state of the system k - 1 and the state of the system £, besides of
any link function or process noise. In a normal way, in a real process, the A
matrix can be modified at each step of iteration. Anyway, it can be considered that
the A matrix is constant without diminishing the generalization of the problem.

The B matrix (n x / dimension) is correlated to the optional control value
of the process u € R’ at the state x of the system.

The H matrix (m x n dimension) in the measure equation (equation 1) is
correlated to the Z, measure. Practically, the H matrix can also be modified at

each step.

The Kalman filter is estimating a process using a feedback form: the filter
is estimating the process state at a given time and than is obtaining a feedback like
a noisy measurement. More, the equations of the Kalman filtering are divided in
two groups: time dependent equations and measurement dependent equations.
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The time dependent equations can be used to make predictions (time
predictions) starting with the current state and errors estimations to obtain
estimations for the next step of the process.

The equations that depends of the measuring process result can be
considered resposible of the system feedback, for example, by incorporating a
new measure in a measure estimation to obtain a better estimation for the next
step.

The time dependent equations can be considered prediction equations.

The measure dependent equations can be considered correction equations.

3. Solving the differential equation of the surface height

From the illumination equation:
E(x,y)-1,=0 3)
where:

E is the measured reflectance map
1, is the the iluminaton

can be obtained the approximate equation:

£ o)+ (2 y)- 27 (1) -2 )(Z”'l (x.)=0 (4)

dZ(x, y

The above equation can be rewritten as:

2'(x,3)= 2" (o) + K" F2 (5, 0) (5)
where K" has to satisfy three conditions:
- K" is approximate equal with the inverse of L(Z i (x, y)); D
dz(x,y)
- K" approaches zero when L(Z ! (x, y)) approaches zero; (1D
dz(x,y)
- K" approaches zero when Z" (x, y) approaches zero. (IID)

The operators involved in K" definition has been identified like:
- aconstant, having unique value and non zero, which is used to avoid divi -
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ding by zero, W, ;
- the anticipation operator

5", = E(z"(x,y)- 2(x.y)) | ©6)

- from equation (5) and condition (I):

_ df n—1
Mx,y - dZ(x, y) (Z (x’ y)) (7)

With these three elements can be found many K" functions which can
comply to all the three conditions from above.
The best known function is:

S M
X,y X,y (8)

n —
K W +S" M
X,y X,y X,y

The above function gives very good results and has been implemented in
many algorithms but is quite inefficient from the point of view of system
resources. Even it represents a general possibility to solve the problems described
above (chapter 2), the whole solution is difficult to implement in an industrial
system.

Because at moment of screening or of various manipulations the surface
suffers in few times normalizations, we preferred to rewrite the equation (5) and
to work on a “surface” already normalized. We used the quotes referring to the
surface because at the moment of calculations in fact the surface is not yet
calculated, however the first and the successive approximations are also
normalized. From the view point of screening and graphical manipulations this
trick has not any importance, but it reduces quantity of operations and avoid
manipulations of big numbers and powers of big numbers. During the tests we
observed an important diminution of execution times.

Equation (5) rewritten looks like (we kept the same notations like above):

ST y)

Z”(x,y):Z"_l(x,y) W +K*n

©)

Obviously, K* does not comply anymore with the condition (I), but by
rewriting the equation in essence the things are the same and the generality of the
solution is not affected in any way.

In this conditions it is possible to write:
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K*”—S?"y M 10
- o Mxy (10)

where a is an integer above 1. Good results has been obtained for o = 2.
With this algorithm (and the C++ ) code can be easily viewed bellow in
the table 1:
Table 1.
for(i=0;i<width;i++){ - see note 1
for(j=0;j<height;j++){
Zn[i][j]= 0.0;
Znl[i][j]= 0.0;
Si[i][j] = 0.0;
Sil[i][j]= 0.01;

}
}
for(t=1;t<=Ival;t++){
for(i=0;i<width;i++){
for(j=0;j<height;j++){
if(j-1 <0 i-1 <0)
p=q=0.0; - see note 2
else {
p =Znl[i][j] - Znl[i][G-1)]; - see note 3
q = Znl[i][j] - Znl1[i-1][];
}
pq=1.0+p*p +q*q;
PQs =1.0 + Ps*Ps + Qs*Qs;
Eij = LI[i][j][0];
fZ =-1.0*%(Ejj - MAX(0.0,(1+p*Ps+q*Qs) / - see note 4
(sqrt(pq)*sqrt(PQs))));
dfZ = -1.0*((Ps+Qs)/(sqrt(pq)*sqrt(PQs))-(p+q)*
(1.0+p*Ps+q*Qs)/(sqrt(pq *pq *pq) *sqrt(PQs)));
Y =1Z + dfZ*Znl[i][j];
K = Sil[i][j]*dfZ/2;
Si[i][j] = (1.0 - K*dfZ)*Sil[i][j]; - see note 5
Zn[i][j] = Zn1[i][j] — fZ/(Wn + K);
}
}
for(i=0; i<width; i++) {
for(j=0; j<height; j++) {
Znl[i][j] = Zn[i][j]; - see note 6
Sil[i][j]=Sifi][j]; }}
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Notes:

1. This sequence of code initialize all variables, surface heights to zero, the
estimated values to zero, the intermediate values to non zero.

2. This sequence of code show that the image of the borders p and ¢ are
considered to be zero, for all the other points are approximated from neighbors.

3. This sequence of code initialize the measure anticipation from the values table.
4. This sequence of code calculates fz and dfz ;

5. This sequence of code estimates heights ;

6. This sequence of code transfers heights back to the value table for processing.

Fig. 1. Synthetic image

A numerical application of the above algorithm for surface reconstruction
of the synthetic image from the fig. 1 (320 x 240 pixels) is shown bellow.

Stage 1: RGB filtering for input data preparation in Kalman filtration. The mean
RGB value before the filtration is 76. The mean value after the filtration is 68.
The mean values has been converted to the integers because of the RGB format.

Stage 2: The process variables have been initialized to the shown values: the
initial surface heights to zero, the estimated values to zero, the anticipation
operator to 0.01.

Stage 3: The algorithm has been run to the prepared image (after the RGB
filtration) and bellow will be presented only the statistical parameters of the first 5
steps (for space and relevance reasons), all the other steps are following the same
trends and only getting the surface approximation better and better. The values
shown bellow were collected after a full cycle completion.
Step 1:
The mean value of the anticipation operator: 0.009999;
The mean value of the surface heights: - 0.8124;
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The maximum height: 0.0809;
The minimum height: - 0.8256;
Skewness: - 0.0233.
Step 2:
The mean value of the anticipation operator: 0.009999;
The mean value of the surface heights: - 1.6218;
The maximum height: 0.1775;
The minimum height: - 1.6483;
Skewness: - 0.02315.
Step 3:
The mean value of the anticipation operator: 0.009998;
The mean value of the surface heights: - 2.4301;
The maximum height: - 2.4699;
The minimum height: 0.2754;
Skewness: - 0.02301.
Step 4:
The mean value of the anticipation operator: 0.009998;
The mean value of the surface heights: - 3.24;
The maximum height: 0.3712;
The minimum height: - 3.2937;
Skewness: - 0.02311.
Step 5:
The mean value of the anticipation operator: 0.009998;
The mean value of the surface heights: - 4.0461;
The maximum height: 0.4723;
The minimum height: - 4.1123.
Skewness: - 0.02296.

Stage 4: The surface heights are transfered back to the heights array. The surface
is now ready for further calculations.

Fig. 2. Surface reconstruction
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The final result of the reconstruction can be observed in fig. 2.
4. Conclusions

The Kalman filtration implementation for the data that result in the surface
measurement and illumination processing of a surface, can help to avoid the
particular situations where functions or their derivatives are experimenting
extreme. Either generated by particular positions of light source and CCD sensor,
or generated by surface particularities, the extremes of functions and their
derivatives lead to errors generated by the computer, to the algorithm freezing, or,
even worse, to a unreal surface, very rough and very far from what had to be
reconstituted.

The proposed function has been tested with an algorithm used for
reconstruction of surfaces from images acquired from a single camera. The
algorithm has been tested against well known algorithms and proved itself to be
competitive from point of view of the quality of reconstructed surface and more
important from point of view of execution times. The functions and the Kalman
filtration implementation is mainly useful because by a calculation trick can solve
difficult problems, in other ways impossible to be solved.
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