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ON α-LOCALLY DOUBLY DIAGONALLY DOMINANT

MATRICES
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In the paper, the authors introduce a new type of α-locally doubly diago-

nally dominant matrices, which is indeed a new subclass of H-matrices, present

several new criteria for judging non-singular H-matrices according to the theory

of the new type of α-locally doubly diagonally dominant matrices, and illustrate

effectiveness and advantages of the proposed criteria by some numerical examples.
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1. Introduction

It is well known that H-matrices play an important role in the matrix theory,
computational mathematics, and mathematical physics. See [1, 2, 11]. In recent
years, a lot of work devoted to giving direct and iterative criteria for judging whether
a certain matrix A is a non-singular H-matrix or not. See [3, 5, 6, 7, 8, 9, 10, 12,
13, 15, 16, 17, 18, 19, 20, 21]. In practice, if the coefficient matrix A of the linear
system Ax = b is anH-matrix, then many classical iterative methods are convergent.
See [2, Chapters 7] and [4]. Therefore, it is significant to look for numerical methods
of judging non-singular H-matrices and to provide effective and practical criteria.

In this paper, we will introduce a new type of α-locally doubly diagonally
dominant matrices, present several new criteria for non-singular H-matrices, and
illustrate effectiveness and advantages of the proposed criteria by numerical exam-
ples.
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2. Definitions and lemmas

We recall some notation, definitions, and lemmas.
Let Cn×n be the set of all n × n complex matrices, N the set of all positive

integers, and A = (aij) ∈ Cn×n. For i ∈ N, let

Pi(A) =
∑
j ̸=i

|aij |, Ri(A) =
∑
j ̸=i

|aji|, qi =
Pi(A)

|aii|
.

Definition 2.1 ([17, p. 294]). Let A = (aij) ∈ Cn×n. The comparison matrix of A,
denoted by µ(A) = (mij)n×n, is defined by

mij =

{
|aij |, i = j,

−|aij |, i ̸= j.

A matrix A is said to be an M -matrix if A = µ(A) and the real parts of eigenvalues
of A are positive. A matrix A is said to be an H-matrix if µ(A) is an M -matrix.

Remark 1. By Definition 2.1, it is easy to see that every H-matrix is non-singular.
If A is an H-matrix such that µ(A) is non-singular, then all diagonal entries of A
are non-zero. See [3, p. 2361]. Thus, in what follows, we always assume that aii ̸= 0
for all i ∈ N.

Definition 2.2 ([5, Definition 1.1], [14, p. 233], and [16, p. 120]). A matrix A =
(aij) ∈ Cn×n is called to be (row) diagonally dominant, denoted by A ∈ D0, if

|aii| ≥ Pi(A), i ∈ N. (2.1)

A matrix A is said to be strictly diagonally dominant, denoted by A ∈ D, if all
the inequalities in (2.1) are strict. A matrix A is said to be generalized strictly
diagonally dominant, if there exists a positive diagonal matrix X such that AX is
strictly diagonally dominant.

Remark 2. It was said in [6, p. 318] and [16, p. 120] that A is a non-singularH-matrix
if and only if A is a generalized strictly diagonally dominant matrix.

Definition 2.3 ([5, Definition 1.1]). If N1 and N2 are non-empty, proper, and dis-
joint subsets of N such that N1 ∪ N2 = N, then we say that (N1,N2) is a separation
of N.

Definition 2.4 ([19, p. 3]). A matrix A = (aij) ∈ Cn×n is said to be irreducibly
diagonally dominant if it is irreducible and at least one of the inequalities in (2.1)
strictly holds.

Definition 2.5 ([6, Definition 2]). A matrix A = (aij) ∈ Cn×n is called diagonally
dominant with non-zero element chain, if the inequality (2.1) is valid for all i ∈ N,
where at least one strictly inequality holds and, for every i with |aii| = Pi(A), there
exists a non-zero elements chain aij1aj1j2 . . . ajk−1jk ̸= 0 such that |ajkjk | > Pjk(A).
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Definition 2.6 ([9, Definition 1]). Let α ∈ [0, 1], A = (aij) ∈ Cn×n, and (N1,N2)
be a separation of N. If, for all i ∈ N1 and j ∈ N2,

|ajj | −
∑
t∈N2
t ̸=j

|ajt| > 0

andPi(A)−
∑
t∈N1
t̸=i

|ait|qt


α|ajj | −

∑
t∈N2
t ̸=j

|ajt|


1−α

>

∑
t∈N1

|ajt|qt

1−α∑
t∈N2

|ait|

α

,

then A is said to be an α-SGD matrix.

We also need the following lemmas.

Lemma 2.1 ([19, Theorem 1]). If A = (aij) ∈ Cn×n is irreducibly diagonally dom-
inant, then A is a non-singular H-matrix.

Lemma 2.2 ([6, p. 322]). If A = (aij) ∈ Cn×n is a diagonally dominant matrix with
non-zero element chain, then A is a non-singular H-matrix.

Lemma 2.3 ([9, Theorem 1]). If A = (aij) ∈ Cn×n is an α-SGD matrix, then A is
a non-singular H-matrix.

Lemma 2.4 ([8, p. 241] and [18, Theorem 1]). If A = (aij) ∈ Cn×n is a non-singular
H-matrix, then there exists at least one i ∈ N such that |aii| > Pi(A).

Lemma 2.5 ([6, Lemma 1]). Let A = (aij) ∈ Cn×n be a matrix whose diagonal
entries are non-zero, δ = {i|i ∈ N, Pi(A) > 0}, and A(δ), whose rows and columns
are indexed by δ, a sub-matrix of A. Then A is a non-singular H-matrix if and only
if A(δ) is a non-singular H-matrix.

3. Main results

We first introduce a new type of α-locally doubly diagonally dominant matrices
as follows.

Definition 3.1. Let α ∈ [0, 1] and (N1,N2) be a separation of N. A matrix A =
(aij) ∈ Cn×n is said to be strictly α-locally doubly diagonally dominant, denoted by
A ∈ SLDD(α), if

Pi(A) >
∑
t∈N1
t ̸=i

|ait|qt, Pj(A) >
∑
t∈N2
t ̸=j

|ajt|qt,

and
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∑
t∈N1
t̸=i

|ait|qt


αPj(A)−

∑
t∈N2
t ̸=j

|ajt|qt


1−α

>

∑
t∈N2

|ait|qt

α∑
t∈N1

|ajt|qt

1−α

(3.1)

hold for all i ∈ N1 and j ∈ N2.

Definition 3.2. An irreducible matrix A = (aij) ∈ Cn×n is said to be irreducibly
α-locally doubly diagonally dominant if

(1) the inequalities in (3.1) hold with ≥ instead of >,
(2) at least one of the inequalities in (3.1) strictly holds, and
(3) A satisfies other conditions of Definition 3.1.

Definition 3.3. Amatrix A = (aij) ∈ Cn×n is said to be α-locally doubly diagonally
dominant with a non-zero element chain if

(1) the inequalities in (3.1) hold with ≥ instead of >,
(2) for all i ∈ {i1, . . . , ik} ∪ {j1, . . . , jl}, there exist a non-zero element chain

air1ar1r2 . . . arti∗ ̸= 0 such that i∗ ∈ (N1 \ {i1, . . . , ik}) ∪ (N2 \ {j1, . . . , jl}) ̸= ∅
andPi(A)−

∑
t∈N1
t̸=i

|ait|qt


αPj(A)−

∑
t∈N2
t ̸=j

|ajt|qt


1−α

=

∑
t∈N1

|ajt|qt

α∑
t∈N2

|ait|qt

1−α

(3.2)

hold for all i ∈ {i1, . . . , ik} ⊂ N1 and j ∈ {j1, . . . , jl} ⊂ N2, and
(3) A satisfies other conditions of Definition 3.1.

Now we start off to provide some new criteria for non-singular H-matrices.

Theorem 3.1. Let A = (aij) ∈ Cn×n. If A ∈ SLDD(α), then A is a non-singular
H-matrix.

Proof. If
∑

t∈N2
|ait|qt ̸= 0 for i ∈ N1, since A ∈ SLDD(α), then there exists a

positive number d such that

min
i∈N1

Ki > d > max
j∈N2

kj , (3.3)

where

Ki =

Pi(A)−
∑

t∈N1
t ̸=i

|ait|qt∑
t∈N2

|ait|qt
and kj =

∑
t∈N1

|ajt|qt
Pj(A)−

∑
t∈N2
t ̸=j

|ajt|qt

for i ∈ N1 and j ∈ N2.
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Let

xt =

{
qt, t ∈ N1,

dqt, t ∈ N2,
X = diag(x1, x2, . . . , xn), B = AX = (bij)n×n. (3.4)

For i ∈ N1, the double inequality (3.3) implies that

|bii| − Pi(B) = Pi(A)−
∑
t∈N1
t ̸=i

|ait|qt − d
∑
t∈N2

|ait|qt

> Pi(A)−
∑
t∈N1
t ̸=i

|ait|qt −Ki

∑
t∈N2

|ait|qt = 0.

For j ∈ N2, the double inequality (3.3) means that

|bjj | − Pj(B) = d

Pj(A)−
∑
t∈N2
t ̸=j

|ajt|qt

−
∑
t∈N1

|ajt|qt

> kj

Pj(A)−
∑
t∈N2
t̸=j

|ajt|qt

−
∑
t∈N1

|ajt|qt = 0.

Then |bii| > Pi(B) for i ∈ N. Hence, A is a non-singular H-matrix in this case.
If
∑

t∈N2
|ait|qt = 0 for i ∈ N1, by Definition 3.1, we have Pj(A) >

∑
t∈N2
t ̸=j

|ajt|qt
for all j ∈ N2. Consequently, there exists d > 0 satisfying

d

Pj(A)−
∑
t∈N2
t ̸=j

|ajt|qt

 >
∑
t∈N1

|ajt|qt. (3.5)

Making use of (3.4) to (3.5) yields |bii| > Pi(B) for i ∈ N. Therefore, A is a
non-singular H-matrix. The proof of Theorem 3.1 is completed. �

Theorem 3.2. If A = (aij) ∈ Cn×n is an irreducibly α-locally doubly diagonally
dominant matrix, then A is a non-singular H-matrix.

Proof. In view of the irreducibility of A, there exists ajt ̸= 0 for t ∈ N1 and j ∈ N2.
If

∑
t∈N2

|ait|qt = 0 for i ∈ N1, by Definition 3.2, it is easy to see that A is a
non-singular H-matrix.

If
∑

t∈N2
|ait|qt ̸= 0 for i ∈ N1, by the same arguments as above, we have

d , min
i∈N1

Ki = max
j∈N2

kj , (3.6)

which means that d > 0.
From (3.4) and (3.6), it follows that

|bii| − Pi(B) = Pi(A)−
∑
t∈N1
t ̸=i

|ait|qt − d
∑
t∈N2

|ait|qt
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≥ Pi(A)−
∑
t∈N1
t ̸=i

|ait|qt −Ki

∑
t∈N2

|ait|qt = 0

for i ∈ N1 and that

|bjj | − Pj(B) = d|ajj |qj −
∑
t∈N1

|ajt|qt − d
∑
t∈N2
t ̸=j

|ajt|qt

= d

Pj(A)−
∑
t∈N2
t ̸=j

|ajt|qt

−
∑
t∈N1

|ajt|qt ≥ 0

for j ∈ N2. Consequently, by Definition 3.2, it follows that |bii| ≥ Pi(B) for all
i ∈ N, in which at least one strict inequality is valid. Since A is irreducible, then
B is an irreducibly diagonally dominant matrix. Thus, in light of Lemma 2.1, we
obtain that B is a non-singular H-matrix, and so is A. The proof of Theorem 3.2 is
completed. �

Theorem 3.3. If A = (aij) ∈ Cn×n is an α-locally doubly diagonally dominant
matrix with a non-zero elements chain, then A is a non-singular H-matrix.

Proof. If
∑

t∈N2
|ait|qt = 0 for all i ∈ N1, then it is easy to see that A is a non-singular

H-matrix. If
∑

t∈N2
|ait|qt ̸= 0 for i ∈ N1, by similar arguments as above, we obtain

d , mini∈N1 Ki = maxj∈N2 kj > 0. Utilizing (3.2) and (3.4), by Definition 3.3, we
obtain |bii| − Pi(B) ≥ 0 for i ∈ {j1, . . . , jl} ∪ {i1, . . . , ik}, that is, |bii| ≥ Pi(B)
for i ∈ (N1 \ {i1, . . . , ik}) ∪ (N2 \ {j1, . . . , jl}). This means that B is a diagonally
dominant matrix with non-zero elements chain. Furthermore, by Lemma 2.2, we
obtain that B is a non-singular H-matrix, and so is A. The proof of Theorem 3.3 is
completed. �

Remark 3. From Theorem 3.1, we find that the type of α-locally doubly diagonally
dominant matrices is a subclass of H-matrices. Hence, the introduction of α-locally
doubly diagonally dominant matrices well extends the theory of H-matrices.

4. Numerical Examples

We now illustrate effectiveness and advantages of the above proposed criteria
by several numerical examples.

Example 4.1. Let

A =


3 2 6 0
1 6.8 3 4
1 2 9 4
0 2 2 8


and (N1,N2) be a separation of N = {1, 2, 3, 4}. If N1 and N2 satisfy one of the
following cases:

N1 = {1}, N2 = {2, 3, 4}; N1 = {2}, N2 = {1, 3, 4}; N1 = {3},
N2 = {1, 2, 4}; N1 = {4}, N2 = {1, 2, 3}; N1 = {1, 2}, N2 = {3, 4};
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N1 = {1, 3}, N2 = {2, 4}; N1 = {1, 4}, N2 = {2, 3}; N1 = {2, 3},
N2 = {1, 4}; N1 = {2, 4}, N2 = {1, 3};

then A is not an α-SGD matrix and does not satisfy the corresponding conditions
in [9, Theorem 1]. But, when N1 and N2 satisfy one of the above cases, by Theo-
rem 3.1, it is easy to see that A is a non-singular H-matrix.

Example 4.2. Consider

A =


3 2 6 0
1 6.8 3 4
1 2 9 4
0 2 2 10

 .

By [15, Theorems 2.1 and 2.2], we have

r1 = min

{
α3 − γ3
|a33| − γ3

,
α4 − γ4
|a44| − γ4

}
= min

{
12

37
,
1

19

}
=

1

19
,

r2 = max

{
β3

α3 + β3 − γ3
,

β4
α4 + β4 − γ4

}
= max

{
5

9
,
9

11

}
=

9

11
.

Since |a11| = 3 < |a13|(δ3 − r1) + |a14|(δ4 − r1) + β1 = 6.350 . . . , the matrix A does
not satisfy the corresponding conditions in [15, Theorem 2.1]. Since |a11| = 3 <
r2(|a13|δ3+ |a14|δ4)+β1 = 5.818 . . . , the matrix A does not satisfy the corresponding
conditions in [15, Theorem 2.2] yet.

In virtue of [13, Theorem 2], we obtain

M1 = {(2, 3)}, M2 = {(1, 2), (1, 3), (1, 4)},
M3 = {(2, 4), (3, 4)}, M4 = M5 = M6 = ∅,

and

R2(A)R3(A)− |a22a33|
R2(A)R3(A)− P2(A)P3(A)

= 0.48,

|a11a22| −R1(A)R2(A)

P1(A)P2(A)−R1(A)R2(A)
= 0.161 . . . ,

|a11a33| −R1(A)R3(A)

P1(A)P3(A)−R1(A)R3(A)
= 0.147 . . . ,

|a11a44| −R1(A)R4(A)

P1(A)P4(A)−R1(A)R4(A)
= 0.875.

Obviously,

max
(s,t)∈M1

Rs(A)Rt(A)− |ass||att|
Rs(A)Rt(A)− Ps(A)Pt(A)

= 0.48

> min
(i,j)∈M2

|aii||ajj | −Ri(A)Rj(A)

Pi(A)Pj(A)−Ri(A)Rj(A)
= 0.147 . . .

Therefore, the matrix A does not satisfy the conditions of [13, Theorem 2].
Nevertheless, if we choose N1 = {1, 2}, N2 = {3, 4}, and α = 1

2 , then

[P1(A)− |a12|q2]α[P3(A)− |a34|q4]1−α = 5.522 . . . ,
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[|a13|q3 + |a14|q4]α[|a31|q1 + |a32|q2]1−α = 4.839 . . . ,

[P1(A)− |a12|q2]α[P4(A)− |a43|q3]1−α = 3.715 . . . ,

[|a13|q3 + |a14|q4]α[|a41|q1 + |a42|q2]1−α = 3.313 . . . ,

[P2(A)− |a21|q1]α[P3(A)− |a34|q4]1−α = 5.366 . . . ,

[|a23|q3 + |a24|q4]α[|a31|q1 + |a32|q2]1−α = 4.443 . . . ,

[P2(A)− |a21|q1]α[P4(A)− |a43|q3]1−α = 3.610 . . . ,

[|a23|q3 + |a24|q4]α[|a41|q1 + |a42|q2]1−α = 3.042 . . .

By Theorem 3.1, we derive that A is a non-singular H-matrix.

Example 4.3. Let

A =

4 0.5 6
2 12 8
2 10 14

 .

(1) In view of [10], we easily obtain the following conclusions:

(a) When k = 1, we acquire S1 + S2 + S3 = 1 + 5
12 > 1.

(b) When k = 2, for a separation (N1,N2) of N = {1, 2, 3},
(i) if N1 = {1} and N2 = {2, 3}, then S1 =

3
2 > 1;

(ii) if N1 = {2} and N2 = {1, 3}, then S1 + S3 =
7
5 > 1;

(iii) if N1 = {3} and N2 = {1, 2}, then S1 + S2 =
191
140 > 1.

(c) When k = 3, it is easy to see that S1 =
13
8 > 1.

Therefore, the matrix A does not satisfy the corresponding conditions in [10,
Theorem 1].

(2) It is not difficult to realize that the matrix A does not satisfy the corresponding
conditions in [7, Theorem 1] and [21, Theorems 1 and 2].

Nevertheless, if we choose N1 = {1, 2}, N2 = {3}, and α = 1
2 , then

[P1(A)− |a12|q2]α[P3(A)]
1−α = 8.544 . . . ,

[|a13|q3]α[|a31|q1 + |a32|q2]1−α = 7.718 . . . ,

[P2(A)− |a21|q1]α[P3(A)]
1−α = 9,

[|a23|q3]α[|a31|q1 + |a32|q2]1−α = 8.912 . . .

Using Theorem 3.1 gives that A is a non-singular H-matrix.

5. Conclusions

In conclusion, a new type of α-locally doubly diagonally dominant matrices are
introduced, which is now known as a subclass of non-singular H-matrices. Moreover,
the authors establish several new and practical criteria for judging non-singular H-
matrices by involved matrices. Consequently, the criteria for identifying nonsingular
H-matrices is well extended.
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