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ON o-LOCALLY DOUBLY DIAGONALLY DOMINANT
MATRICES

Lei-Lei Wang |', Bo-Yan Xi?, Feng Qi®

In the paper, the authors introduce a new type of a-locally doubly diago-
nally dominant matrices, which is indeed a new subclass of H-matrices, present
several new criteria for judging non-singular H-matrices according to the theory
of the new type of a-locally doubly diagonally dominant matrices, and illustrate
effectiveness and advantages of the proposed criteria by some numerical examples.
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1. Introduction

It is well known that H-matrices play an important role in the matrix theory,
computational mathematics, and mathematical physics. See [0, B, [I]. In recent
years, a lot of work devoted to giving direct and iterative criteria for judging whether
a certain matrix A is a non-singular H-matrix or not. See [B, B, B, @, B, 8, [, T2,
3, I3, 0@, @, 03, [, 20, E1]. In practice, if the coefficient matrix A of the linear
system Az = bis an H-matrix, then many classical iterative methods are convergent.
See [B, Chapters 7] and [@]. Therefore, it is significant to look for numerical methods
of judging non-singular H-matrices and to provide effective and practical criteria.

In this paper, we will introduce a new type of a-locally doubly diagonally
dominant matrices, present several new criteria for non-singular H-matrices, and
illustrate effectiveness and advantages of the proposed criteria by numerical exam-
ples.
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2. Definitions and lemmas

We recall some notation, definitions, and lemmas.
Let C™*™ be the set of all n x n complex matrices, N the set of all positive
integers, and A = (a;;) € C"*". For i € N, let

Pi(A)

lag]

Pi(A) = Z laij|, Ri(A) = Z lajil, @ =
i i
Definition 2.1 ([I3, p. 294]). Let A = (ai;) € C**". The comparison matrix of A,
denoted by p(A) = (Mjj)nxn, is defined by

mij:{‘aij" 0=

—lagl|, 1#j.

A matrix A is said to be an M-matrix if A = pu(A) and the real parts of eigenvalues
of A are positive. A matrix A is said to be an H-matrix if u(A) is an M-matrix.

Remark 1. By Definition B, it is easy to see that every H-matrix is non-singular.
If A is an H-matrix such that p(A) is non-singular, then all diagonal entries of A
are non-zero. See [B, p. 2361]. Thus, in what follows, we always assume that a; # 0
for all © € N.

Definition 2.2 ([, Definition 1.1], [[4, p. 233], and [@@, p. 120]). A matrix A =
(a;;) € C"*™ is called to be (row) diagonally dominant, denoted by A € Dy, if

|aiz~| > B(A), 1 € N. (2.1)

A matrix A is said to be strictly diagonally dominant, denoted by A € D, if all
the inequalities in (EC0) are strict. A matrix A is said to be generalized strictly
diagonally dominant, if there exists a positive diagonal matrix X such that AX is
strictly diagonally dominant.

Remark 2. It was said in [B, p. 318] and [[@, p. 120] that A is a non-singular H-matrix
if and only if A is a generalized strictly diagonally dominant matrix.

Definition 2.3 ([B, Definition 1.1]). If N; and Ny are non-empty, proper, and dis-
joint subsets of N such that N; UNy = N, then we say that (Ny,Ns) is a separation
of N.

Definition 2.4 ([[¥, p. 3]). A matrix A = (a;;) € C"*" is said to be irreducibly
diagonally dominant if it is irreducible and at least one of the inequalities in (EZ)
strictly holds.

Definition 2.5 ([B, Definition 2]). A matrix A = (a;;) € C™*" is called diagonally
dominant with non-zero element chain, if the inequality (E0) is valid for all i € N,
where at least one strictly inequality holds and, for every i with |a;| = P;(A), there
exists a non-zero elements chain a;j, a;, j, - .. aj,_,;, 7 0 such that |a;, ;.| > Pj,(A).
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Definition 2.6 ([0, Definition 1}). Let a € [0,1], A = (a;;) € C**", and (N, Ny)
be a separation of N. If, for all ¢ € N; and j € No,

lagil = > laje| >0

teNy
1]
and
« 11—«
Pi(A) =Y laila lagil = > lajl
teN; teNy
t#i t#j
11—« e
> > lajiles > laal |
teNy teNy

then A is said to be an a-SGD matrix.
We also need the following lemmas.

Lemma 2.1 ([, Theorem 1}). If A = (a;;) € C™*" is irreducibly diagonally dom-
inant, then A is a non-singular H-matriz.

Lemma 2.2 ([B, p. 322]). If A = (a;j) € C™*" is a diagonally dominant matriz with
non-zero element chain, then A is a non-singular H-matrix.

Lemma 2.3 ([8, Theorem 1}). If A = (a;;) € C™*" is an a-SGD matriz, then A is
a non-singular H-matriz.

Lemma 2.4 ([B, p. 241] and [[8, Theorem 1]). If A = (a;;) € C"*" is a non-singular
H-matriz, then there exists at least one i € N such that |a;;| > P;(A).

Lemma 2.5 ([B, Lemma 1]). Let A = (a;;) € C™*™ be a matriz whose diagonal
entries are non-zero, 6 = {ili € N, P;(A) > 0}, and A(J), whose rows and columns
are indexed by §, a sub-matrixz of A. Then A is a non-singular H-matriz if and only
if A(6) is a non-singular H-matriz.

3. Main results

We first introduce a new type of a-locally doubly diagonally dominant matrices
as follows.

Definition 3.1. Let a € [0,1] and (N;,N3) be a separation of N. A matrix A =
(ai;) € C™*™ is said to be strictly a-locally doubly diagonally dominant, denoted by
A€ SLDD(«), if

P > Y Janlas PA) > S lagelar,
teNy tENy
t#1 t#£j

and
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a l1-a
Pi(A) = lairlar Pi(A) = > lajila
teNy teNg
i 4]
ot 11—
> D aila | | D lagela: (3.1)
teNy teNy

hold for all ¢ € Ny and j € Na.

Definition 3.2. An irreducible matrix A = (a;;) € C"*" is said to be irreducibly
a-locally doubly diagonally dominant if

(1) the inequalities in (Bd) hold with > instead of >,

(2) at least one of the inequalities in (B) strictly holds, and

(3) A satisfies other conditions of Definition B

Definition 3.3. A matrix A = (a;;) € C"*" is said to be a-locally doubly diagonally
dominant with a non-zero element chain if

(1) the inequalities in (Bd) hold with > instead of >,

(2) for all i € {i1,...,ix} U {Jj1,...,51}, there exist a non-zero element chain
Qir, Qryrg - - - Qrpix 7 0 such that * € (Nl \ {il, e, lk}) U (Ny \ {jl, e ,jl}) # )
and

a l-a
Pi(A) = lairlar Pi(A) = > lajila
teNy teNs
tAi t£]
o 11—«
= > lajila > lailg (3.2)
teNy teNs

hold for all i € {i1,...,ix} C Ny and j € {j1,...,J1} C Ny, and
(3) A satisfies other conditions of Definition B

Now we start off to provide some new criteria for non-singular H-matrices.

Theorem 3.1. Let A = (a;;) € C**". If A € SLDD(«), then A is a non-singular
H-matriz.

Proof. If } 7, laitlge # 0 for i € Ny, since A € SLDD(«a), then there exists a
positive number d such that
min K; > d > max k;, (3.3)
1€N JEN2

where
Pi(A) - Zteﬁ; |ait|qt
K; = i and k; =
' ZtENQ |ait|qt !

ZteNl |ajt |qt
Pj(A) — > ten, laji|q:
1]

for ¢ € N and j € Na.



On a-locally doubly diagonally dominant matrices 167

Let

, té&eNy, .
z=14 " Y X = diag(z1, 29,y 7), B = AX = (bij)nxn.  (3.4)
th, te N27

For i € Ny, the double inequality (B33) implies that

|bisl = Pi(B) = Pi(A) = Y laitlas —d Y |ails
teNy teNs
t#£i

> Fi(A) - Z |aitlgr — K Z |ait|q: = 0.
teNy teNg
10

For j € Ny, the double inequality (B23) means that

il = Pi(B) = d [ Pi(A) = > lajila | =D lajela
tENgy teNy
by

> ki | Pi(A) = > lajila | = Y lajelgs = 0.
teNg teNy
4]
Then |b;;| > P;(B) for i € N. Hence, A is a non-singular H-matrix in this case.
If > ien, lait|ge = 0 for i € Ny, by Definition B, we have P;(A) > » ien, |aji|q:
]

for all j € Ny. Consequently, there exists d > 0 satisfying

d| P =Y gl | > 3 lala (3.5)

teNg teN;

t#j
Making use of (B3) to (BH) yields |bj;| > P;(B) for i € N. Therefore, A is a
non-singular H-matrix. The proof of Theorem Bl is completed. g

Theorem 3.2. If A = (a;5) € C™*" is an irreducibly o-locally doubly diagonally
dominant matriz, then A is a non-singular H-matriz.

Proof. In view of the irreducibility of A, there exists a;; # 0 for t € N; and j € N».

If ZteNQ lait|qgr = 0 for i € Ny, by Definition B, it is easy to see that A is a
non-singular H-matrix.

If > e, laitlge # 0 for i € Ny, by the same arguments as above, we have

d £ min K; = max k;, (3.6)
1€Ny JjENy

which means that d > 0.

From (B3&) and (BM), it follows that

|bisl — Pi(B) = Pi(A) = > laila: —d ) laitls
teN; teNy
i
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> Pi(A) = > aulg — Ki Y |aulg =0

teNy teNy
t#£i

for i € Ny and that

|bj;| — P;(B) = dlajjlq; — Z |ajtlge —d Z |ajt|qt
teN; teNy
t#]

=d | Pj(A) - Z lajelae | — Z laj¢lgs >0
teNg teNy
1]

for j € Ny. Consequently, by Definition B3, it follows that |b;| > P;(B) for all
1 € N, in which at least one strict inequality is valid. Since A is irreducible, then
B is an irreducibly diagonally dominant matrix. Thus, in light of Lemma B, we
obtain that B is a non-singular H-matrix, and so is A. The proof of Theorem B3 is
completed. O

Theorem 3.3. If A = (a;;) € C"" is an a-locally doubly diagonally dominant
matriz with a non-zero elements chain, then A is a non-singular H-matriz.

Proof. 1t 3 7, lait|ge = 0 for all i € Ny, then it is easy to see that A is a non-singular
H-matrix. If ), ait|g: # 0 for i € Ny, by similar arguments as above, we obtain
d £ minen, K; = maxjen, k; > 0. Utilizing (B2) and (84), by Definition B3, we
obtain |b;;| — P;(B) > 0 for i € {ji,...,5} U {i1,...,ix}, that is, |by;| > P;(B)
for i € (Ny \ {é1,...,9x}) U (N2 \ {j1,...,}). This means that B is a diagonally
dominant matrix with non-zero elements chain. Furthermore, by Lemma P32, we
obtain that B is a non-singular H-matrix, and so is A. The proof of Theorem B3 is
completed. ]

Remark 3. From Theorem BT, we find that the type of a-locally doubly diagonally
dominant matrices is a subclass of H-matrices. Hence, the introduction of a-locally
doubly diagonally dominant matrices well extends the theory of H-matrices.

4. Numerical Examples

We now illustrate effectiveness and advantages of the above proposed criteria
by several numerical examples.

Ezample 4.1. Let

3 2 60
1 68 3 4
A= 1 2 9 4
0 2 2 8

and (Np,N3) be a separation of N = {1,2,3,4}. If N; and Ny satisfy one of the
following cases:

Ny = {1}, Np={2,3,4}; Ny ={2}, Np={1,3,4}; N;={3},
No ={1,2,4}; Ny ={4}, No={1,2,3}; N;={1,2}, Np={3,4}
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Nl - {173}5 N2 - {2)4}7 I\Il == {1)4}7 N2 — {273}7 I\Il = {253}7
NZ = {174}7 Nl = {274}7 N2 = {173}7

then A is not an a-SGD matrix and does not satisfy the corresponding conditions
in [@, Theorem 1]. But, when N; and Ny satisfy one of the above cases, by Theo-
rem B, it is easy to see that A is a non-singular H-matrix.

Ezample 4.2. Consider

3 2 6 0
1 68 3 4
A= 1 2 9 4
0 2 2 10

By [, Theorems 2.1 and 2.2], we have
) {03—73 064—’74} . {12 1} 1
1 = min s =ming —,— = —,
lass| — 3" aaa| — 74 37" 19 19

_ { Bs B4 } {5 9 } 9
ro = max ) max =—.
a3+ Py —73 ou+Bs—m 9711 11
Since |a11]| = 3 < |a13](d3 — r1) + |a14|(d4 — r1) + B1 = 6.350. .., the matrix A does
not satisfy the corresponding conditions in [[H, Theorem 2.1]. Since |a11] = 3 <
ro(|ais|0s+]aia|ds)+ 51 = 5.818. .., the matrix A does not satisfy the corresponding
conditions in [[3, Theorem 2.2] yet.
In virtue of [I3, Theorem 2|, we obtain

M ={(2,3)}, M;={(1,2),(1,3), ( 4)},
Ms = {(274), (374)}7 My =My = Q)a
and
Ro(A)R3(A) — |agzass| 048
Ro(A)R3(A) — Po(A)Ps(A)
|a1ag| — ( )R2(A)
BL(A) Py () — () Ry ) —0.161...,
lai1ass] — (A)R3(A) _
PUAPy(A) — Ra(A)Ry(A) ~ 0T
|a11a44] — (A)R4( )
PUAPAA) — Ra(ARe(A) ~ 0
Obviously,

- Rs(A)R(A) — |ass||ax|

) J—
(s,;t)eM RS(A)Rt(A) — P,(A)P,(A) =0.48

. |aiil|lajj| — Ri(A)R;(A)
> min =0.147...
(ij)eMz P;(A)Pj(A) — Ri(A)R;(A)

Therefore, the matrix A does not satisfy the conditions of [I3, Theorem 2].
Nevertheless, if we choose N; = {1,2}, Ny = {3,4}, and a = %, then

[Pi(A) — |a12|g2]®[Ps(A) — |ass|qa])t ™ = 5.522. . .,
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[la1slgs + laralqa]*[lasilgr + [az2|ga)' ™ = 4.839...,
[P1(A) — |ai2|g2]“[Ps(A) — \a43\q3]1_a =3.715...,
llaxslgs + a14]qa]*[lasslqr + |asalge] ~* = 3.313.. .,
[Py(A) — |agi|qi]®[Ps(A) — |azs|qs])' ™ = 5.366.. .,
[lazslgs + azalqa]*[lasilqr + |asalqe] ~* = 4.443.. .,
[Py(A) — |agi|qi]®[Pa(A) — |ags|gs])t ™ = 3.610.. .,
[lazslgs + a2alqa]*[lasilqr + |asa]ge] ~* = 3.042....

By Theorem BT, we derive that A is a non-singular H-matrix.

Example 4.3. Let

4 05 6
A=12 12 8
2 10 14

(1) In view of [MM], we easily obtain the following conclusions:

(a) When k =1, we acquire S; + So + S3 =1+ % > 1.
(b) When k = 2, for a separation (Ny,Ny) of N={1,2,3},

(i) if Ny = {1} and Np = {2,3}, then Sy = 3 > 1;
(i) if Ny = {2} and Ny = {1,3}, then S1 4+ S3 = { > 1;
(iii) if Ny = {3} and Ny = {1,2}, then S + Sy = }gg > 1.
(c) When k = 3, it is easy to see that 51 = % > 1.

Therefore, the matrix A does not satisfy the corresponding conditions in [I,
Theorem 1].

(2) It is not difficult to realize that the matrix A does not satisfy the corresponding
conditions in [@, Theorem 1] and [, Theorems 1 and 2].

Nevertheless, if we choose N; = {1,2}, Ny = {3}, and a = %, then

[P1(A) — |a1a]ge]*[P3(A)]'~* = 8.544.
[la13|gs]*[|as1]q1 + |a32|Q2]1 @ =17.718.
[Py(A) — |az1]|q1]*[Ps(A))

[lazs|gs]*]|as1|q + |as2|qe]' ™ = 8.912.

Using Theorem B gives that A is a non-singular H-matrix.

5. Conclusions

In conclusion, a new type of a-locally doubly diagonally dominant matrices are
introduced, which is now known as a subclass of non-singular H-matrices. Moreover,
the authors establish several new and practical criteria for judging non-singular H-
matrices by involved matrices. Consequently, the criteria for identifying nonsingular
H-matrices is well extended.
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