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A METHOD FOR REAL-TIME EMULATION OF GENETIC
ALGORITHM-OPTIMIZED CONTROLLERS

Nicolae NECULA

Articolul prezinta o abordare bazata pe Programarea Geneticd pentru
descoperirea structurii unor controleri optimizati cu Algoritmi Genetici, permitand
astfel proiectantilor sa emuleze si sa implementeze in timp real comportarea acestor
controleri . Metoda este ilustrata prin rezultatele experimentale obtinute in urma
simularii in Matlab a unui controler pentru alocarea adaptiva a resurselor, util
pentru planificarea optima a pachetelor intr-un sistem TDMA.

This paper describes a Genetic Programming (GP)-based approach for the
reverse engineering of Genetic Algorithm (GA)-optimized controllers, allowing the
designer to emulate and implement in real-time the behavior of such controllers.
The method is illustrated by the experimental results generated in the Matlab
simulation of an adaptive resource allocation controller, useful for optimal packet
scheduling in a TDMA system.

Keywords: genetic algorithms, genetic programming, symbolic regression,
TDMA optimal resource allocation, Matlab simulation

1. Introduction

Genetic algorithms (GAs) are heuristic global optimization techniques
derived from the principles of natural selection and evolution [1]. They are
powerful tools for solving complex non-linear optimization problems, subject to
different type of constraints. Quality of the obtained solution depends on how the
solution “fitness” is defined, and what values are chosen for algorithm parameters,
such as: population size and the required number of generations.

GAs have been theoretically and empirically proven to be robust search
techniques, capable of finding solutions that are better than those obtained by
many other heuristic methods, being closer to the theoretical optimum for various
realistic complex optimization problems [2].

Most network design and traffic engineering problems are formulated and
solved as constrained optimization problems, many of them being best solved by
GAs [3], particularly the combinatorial optimization problems that do not have to
be run in real-time.
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Optimal packet scheduling problems, like the TDMA (Time Division
Multiplex Access) problem, can be solved by GAs [4], but the real-time
implementation of a controller running such an algorithm is impossible due to the
huge amount of computation that needs to be performed in a very short time, i.e.
once per TDM frame.

However, the behaviour of such a controller is worth investigating in order
to attempt to emulate it in real-time. In two previous papers [5,6], a “reverse
engineering” approach has been used by the two authors for identifying and
implementing the adaptive control mechanism that has been “discovered” offline
by the GA. The necessary stages of this approach are:

o] Control function definition. A simple and efficient elementary
control function should be capable of allocating all timeslots, once per frame, to
two competing sets of traffic sources, according to the current state of the system.
A good characterization of the system state is given by the total current length of
the queues that store the packets generated by the two sets of sources. These two
sets should comprise sources in high and low QoS classes, respectively. Repeated,
hierarchical utilization of such an elementary control function can easily partition
the given set of timeslots into any number of blocks (subsets) for servicing
optimally as many QoS classes as desired.

(o] Control function(s) dataset specification. By running offline a GA
with an appropriately defined fitness function, for optimal per TDM frame packet
scheduling, sample points are generated for all the control functions defined
above. In order to smooth the unavoidable statistical fluctuations, these points are
averaged over multiple runs of the GA.

o Control function(s) identification. Empirical approximation by a
two-variable, one-parameter algebraic expression for all the desired control
functions is finally performed, where the parameter value is specific to each
individual function.

This paper illustrates the reverse engineering process applied to a
particular GA-generated non-real-time optimal controller. It also describes a more
systematic approach for control function identification using Genetic
Programming (GP). Since GP is capable of performing symbolic regression for
identifying any unknown functions from a given subset of its data points [7], it is
the natural choice for performing the identification task.

Control function specification is briefly described in Section 1 for a
particular application: the GA-based optimal timeslot allocation controller.
However, similar steps can be performed for other types of GA-based optimal
controllers, as well.

Section 2 describes a simplified implementation in Matlab of the GP for
symbolic regression.
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Experimental results obtained by running this simplified GP for the
specified control function are illustrated and analyzed in Section 3.

Finally, some possible directions for further work and concluding remarks
are included.

2. Control function definition and specification

Optimization of the tradeoff between priority-based service and service
fairness during periods of high load with large bursts of data, in a TDMA system,
is one of the challenging problems that can be solved off-line using a GA.

Conventional solutions allocate statically a fixed number of timeslots per
frame to the different QoS (quality of service) classes, and use the remaining
timeslots for strict priority-based dynamic allocation, when needed [8,9].

The main drawback of this type of solutions is the poor fairness obtained
when the sources in the higher priority classes generate large bursts of data at the
same time.

By accepting a slight degradation of the quality of service for higher
priority classes as the price paid for a better fairness offered to the lower priority
classes during the congested periods, a better timeslot allocation can be obtained.

An off-line controller of this type can be obtained by using a GA, where
each chromosome represents a possible per frame timeslot allocation, and the
fitness assigned to a chromosome is calculated, according to [4], by:

Cr :iq)i (D

where:

s = chromosome length = the number of timeslots per frame,

@, = fitness assigned to the it time slot , with regard to the traffic source
serviced by this time slot:

Y

T
where:

P; = priority of the traffic source serviced by the it time slot,

QO; = dynamic length of the queue used by this traffic source

fi = number of time slots assigned to this traffic source in the current
frame.

By maximizing the above fitness, the GA attempts to find, in every frame,
an optimized chromosome capable to assign all the available timeslots in such a
manner that achieves an optimal balance between the opposite requirements
regarding both priority-based service and fairness.

) 2
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An elementary control function for timeslot allocation is defined as
follows: let r = F(qi,q2) partition dynamically, once per frame, the set of s
timeslots into two subsets of r*s and (1-r)s timeslots, that are allocated to real-
time (rt) and non-real-time (nrt) traffic sources, respectively. Value of r is a
function of the current length of the queues assigned to these sources. Queue
length is measured in traffic units, where one unit equals the timeslot bandwidth.

By using the fitness function defined above, together with a mix of rt, nrt
and BE traffic sources, the GA-based scheduler is run once per frame, and all
relevant data points are collected for identifying the control function that describes
how the GA-based scheduler partitions adaptively and (almost) optimally the set
of available timeslots into two subsets.

The following choices have been used for the simulation scenario:

- T
DMA physical layer:

o Link bandwidth = 20 Mbps

(o] Frame duration = 1 ms

o] Timeslots per frame s=20

o 1000 bits per timeslot = conventionally defined packet size

o] 100% link load

- T
raffic sources (3+1 QoS classes):

(o] Highest priority (Constant bit rate): 9 sources

o Second priority (Real-time variable bit rate): 14 MPEG2
sources

o Next priority (Non-real-time variable bit rate): 10 FTP sources

(o] Lowest priority (Best effort): 2 sources

o Bandwidth demand: 30% for CBR sources, 34% for VBRrt
sources, 30% for VBRnrt sources, and 6% for BE sources.

- G
enetic Algorithm characteristics:

o] Population size = 50

(o] Maximum number of generations = 50

(o] Gene crossover probability = 0.7

(o] Gene mutation probability = 0.01

o] Elitist selection, using 3 classes of fitness: highest (30% of
population size), intermediate (40%) and lowest (30%).

- S
imulation characteristics:

(o] Simulation duration = 10 seconds = 10000 frames.

(o] 10 successive runs, with no reinitialization of the Matlab

random number generator.
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The simulation steps, together with some additional steps (shown in bold
characters), that are necessary for specifying the elementary control function
defined above, are:

Repeat for 10 times
Repeat for 10000 frames
Insert data packets into the service queues
Run GA to generate opt_chrom (optimal timeslot allocation)
Extract data packets from the queues specified by opt chrom
Calculate and store triplet {g;,q2i,ri} for i=1 to 10*10000
At the end, convert the final array of triplets into two pxp matrices

The resulting array of triplets describes the dynamic behaviour of the GA
when handling 7 vs. all other types of packets.

This very large array is then converted into two easier to handle pxp
matrices F(X,Y) and C(X,Y), by scaling down the original range of values of q;
and q2 ([q1,91.max] and [q2,92.max], TESpectively) to just p=20 uniform quantization
levels (i.e. X,Y=1,2,...,20). C(i,j) is the number of points that fit into the
respective compressed range {[i,i+1),[j,j+1)}, and F(i,j) is the average value of r
for all these C(i,j) points.

Other possible options for obtaining matrices F and C may use non-
uniform quantization of the q; and q, values, and/or different values for p.

After identifying the unknown expression of the function specified by its
points in F(X,Y), either empirically or by symbolic regression, a simple real-time
adaptive scheduler can be developed to emulate the above GA — optimized
scheduler.

The basic idea of this adaptive scheduling algorithm is to allocate
dynamically, once per frame, the available resources to just two QoS classes or
groups of classes (e.g.: real-time classes vs. all other classes), according to the
following formulas that emulate the behavior of the GA-based scheduler:

IF qi+q»>s THEN

r=F(q1,q2) (3)
n;=min(round(r*s),q;) (4)
np,=min(s-nj,qz) (%)
ELSE n;=q, n,=qy; ENDIF
nz=max(1,s-(n;+ny)) (6)
where:
(o] s = the number of per frame un-reserved timeslots,
o qi = total current length of all real-time queues,
(o] gz = total current length of all other queues,

(q: and q2 are conventionally measured in traffic units (tu’s), where one tu
equals the timeslot size in bits),
(o] r= % of frame timeslots allocated to real-time sources,
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(o] n;, n; = the number of timeslots allocated to the two QoS classes,

0 n3 = the number of timeslots allocated to the BE class.

If the total queue lengths q;+qp, corresponding to the number of packets
waiting to be dispatched from the queues is less than s, then all sources obtain
their required number of timeslots and no resource partitioning algorithm is
needed.

Otherwise, formula (3) provides the desired tradeoff between priority-
based service and fair service: when q,;>>qp, r is close to 1, and almost all
timeslots are allocated to the first class, but when q; and q, are comparable, then
the second class gets more timeslots allocated to it. Formulas (2) and (3) provide
the work conserving characteristic of the algorithm by never allowing the number
of timeslots allocated to any non-BE class to exceed the current length of the
queue used by the respective class.

A simple empirical formula obtained in [5] for function F(q;,q») is:

r=1/(1+c*q/ qi) (7)
where the value of parameter ¢ determines the timeslot allocation policy,
as follows:

o ¢=0 ensures strict priority-based allocation

(o] As c increases in value between 0 and 1, the allocation fairness
between the two QoS classes gets better, but the price paid is the increased
degradation of the service offered to the first class.

(o] When r=0.5, complete fairness is provided to the two QoS classes,
i.e. round robin scheduling.

Resource allocation to more than two QoS classes requires obviously a
repeated application of the above algorithm in a multi-level hierarchical manner,
with more control functions of type (7), each with its specific value of parameter
c.

3. A simplified implementation of genetic programming

Genetic Programming (GP) [7] represents another set of heuristic global
optimization techniques, similar to GAs, but better suited for solving symbolic
problems. Generally, GP is capable to “discover” optimized data processing
programs for, practically, any imaginable type of data processing. Symbolic
regression is just a particular type of application where the program describes an
algebraic expression, and the objective is to find an optimal algebraic expression
that describes an unknown function, specified by a number of its data points. A
possible criterion of optimality is the mean square error in all the data points.

Since the chromosomes and genes used for representing the evolving
solutions in GP are based on rooted trees with ordered branches, they are much
more difficult to handle than the ones used in GAs. This is the reason why a
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simpler form of GP, well suited to the particular application considered in this
paper, has been defined and implemented by the present author.

The following simplified definition has been defined by the present author
for describing the relatively simple algebraic expressions needed:

- The chromosome is a linear sequence of g genes, with each gene
corresponding to an element of the expression (variable, constant or operator), and
specifying by its position the location of this element within the expression.

- There are three types of genes:

o arithmetic operator genes that specify one of the 4 possible
basic arithmetic operations: add, subtract, multiply, and divide with saturation (for
overflow avoidance), encoded by values 1 thru 4,

o identifiers of variables that specify by an index (1,2,...) which
variable occurs in the respective location of the algebraic expression,
o constant specifiers that specify both the location and the value

of each constant, if any, in the algebraic expression. Only positive constants are
defined and encoded, by using the negative values of the respective constants in
order to distinguish them from the variable identifiers. A negative constant can
also be specified in an expression by just using the subtract operator gene in front
of the gene specifying a positive constant.

- The total number of genes in a chromosome is g=L+(L-1), where L
is the number of all entries specified for variables and constants, and L-1 is the
number of arithmetic operators connecting all successive pairs of variables and/or
constants. Genes are conventionally ordered in the chromosome, starting with the
L location specification genes and ending with the L-1 operator specification
genes.

When evaluating the numerical value of an expression specified by a
chromosome, the multiply and divide operators are used first, from the right of the
expression to the left, and then, the add and subtract operators are used from the
left of the resulting expression to the right. As a result of this simplified
representation and evaluation procedure, expression a/b*c is equivalent with
a/(b*c), and a*b+a*c is equivalent with a(b+c), but a/(b+c) is not possible because
it cannot be handled by the simplified GP.

Since the empirical approximation of F(X,Y) suggests an expression of the
type shown in formula (7), which cannot be handled by the simplified
implementation of GP used in this paper, the identification has been performed for
the reciprocal of F: G(X,Y)=1/F(X,Y).

As an example, consider the following 13-gene chromosome describing an
algebraic expression for a 2-variable function G(X,Y):

crom(1:11)=[-81 1-50211-80144432]

The corresponding algebraic expression is:

G(X,Y) = 81+X/50/Y/X*X-80 =1 + 0.02*Y/X
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After simplifications, the above size-13 expression converts to the
denominator of formula (7) for ¢=0.02, X=q; and Y=q». Since a size of 13 is too
large for this particular function, some redundant sub-expressions have been
generated by GP: (81-80) for constant=1, and X/(50/(Y/(X*X))) for 0.02*Y/X.

Generally, before applying GP to solve the identification problem, the
following five data sets have to be determined:

- The set of independent variables of the unknown function = {X,Y}.

- The set of primitive functions = {+,-,* and /}.

- The chromosome fitness measure = reciprocal of the mean square
error, defined by:

b =13 (E(X,.Y)~1/F)2) ®)

i=l1

where: N = number of selected data points
F;= ith value in the set selected from F(X,Y) matrix
E(X,Yi) = value of the algebraic expression evaluated in the ith data point in the
set selected from F(X,Y).

The parameters for controlling the run: population size, maximum number
of generations to be run, etc.

The number of runs and the method for designing a result

4. Control function identification by symbolic regression

Fig. 1 illustrates the data points generated by the GA for the implicit
elementary control function specified in Section 1.

Fig. 1. Data points for the elementary control function F(X,Y): X,Y = values of 7 and nrt
queue lengths after uniform quantization; F(X,Y): values are averaged over 10 GA runs for
link load=1
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The large number of saturation points, with F(X,Y)~1, that are present in
this graph, contribute to making F rather difficult to approximate.

Since GA does not generate points for all possible (X,Y) pairs, F(X,Y) is
plotted as 0 for all the undefined pairs. In [5], F(X,Y) looks somewhat different
than in Fig.1 because it is extrapolated as F(X,Y)=1 for all the undefined pairs
with Y > Y max/2.

The frequency of occurrence of the F(X,Y) data points in 10 successive
GA runs is illustrated in Fig.2. It can be noticed that many of the saturation points
have a high frequency of occurrence.

Fig. 2. Number of occurences of the F(X,Y) points in 10 GA runs (some of these
numbers are greater than 2000)

This makes the appropriate selection of the N data points for symbolic
regression rather difficult. Out of the many possible options for data point
selection, after experimentally choosing a value of N, the following have been
tested:

- Select the most frequently generated points (with the largest values of
C(i,))). This option did not work well, as expected, because too many of the
selected data points are saturation points, that are practically useless for the
identification of F.

- Select all points that are most frequently generated in a given range of
values. This option eliminates all saturation points (with F(i,j)=1) and all
statistically irrelevant (very infrequent) points, allowing a much easier
identification of F.

Symbolic regression is then performed for the set of N=40 appropriately
selected data points, and the only assumed a priori knowledge about the unknown
function G(X,Y)=1/F(X,Y) consists of:
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- Number of variables is 2, according to function specificication.
- The maximum expected size of the algebraic expression of G(X,Y) has
been chosen as S=13. The denominator in formula (7) has a size of only 7, with 2
identifiers of variables (used just once per variable), 2 constant values and 3
arithmetic operators. By choosing a maximum expected size of 13, GP is allowed
to discover more complex formulas for G. If such formulas do not exist, GP
generates redundant terms in the optimized solution, as shown below.
The following experimentally chosen values have been used for the
simulation scenario:
GP characteristics:
Population size = 500
Maximum number of generations = 500
Chromosome size = 13
Probability of generating a constant = 0.5
Maximum value of a constant = 100
Gene crossover probability = 0.7
Gene mutation probability = 0.03
o Elitist selection, using 3 classes of fitness: highest (30% of
population size), intermediate (50%) and lowest (20%).
- Simulation characteristics:

Oo0Oo0oo0oo0ooo!

(o] 10 successive runs, with no reinitialization of the Matlab
random number generator.
o N=40 data points for the unknown function specification

The following sequence of steps is then performed for running the GP:
- Generate randomly an initial population of chromosomes
- Repeat for the chosen number of generations:

(o] Evaluate the fitness of all chromosomes in the current
generation
o Create the next generation of chromosomes by using the elitist

approach and by applying the two basic genetic operations: crossover and
mutation.

- Designate the chromosome with the highest fitness as the (approximate)
solution to the problem

The results obtained in 10 GP runs for N=40 points of 1/F(X,Y), selected
in the range 0.5<F(X,Y)<I, are illustrated in Table 1.

It can be noticed that GP has used “ingenious” ways to create constants,
redundant terms and subexpressions, as illustrated by various examples in this
table:

Y/Y=1, 81-80=1, X-X=0

53/X/Y/4*40 = 53/(X/(Y/(4*40))) = 0.3*Y/X
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Table 1
Symbolic regression results for 1/F(X,Y) identification
Run Algebraic expression described by the Simplified expression of
# optimal chromosome 1/F(X,Y)
1 Y/X*2/65/98 +X/X 1+0.33*Y/X
2 Y/Y+63 *Y/ X*95 * 2 1+0.3*Y/X
3 Y/X+24 /83 -49 /59 * X Error
4 Y/ Y+ X+Y/X*3-X 1+0.33*Y/X
5 X/3/7Y/X*X+81-80 1+0.33*Y/X
6 45 /31 + Y/15 - X* 7 /79 Error
7 99 /56 - X/50 -65/Y*52 Error
8 Y/Y+ X/ X*¥3*X/Y 1+0.33*Y/X
9 X/ X+53/X/ Y/ 4 *40 1+03*Y/X
10 84 /54 - X/ Y*Y/X/5 Error

The four runs that are labelled as errors, are not really errors, but less
useful expressions. Their occurrence is very likely due to the use of uniform
quantization when generating matrix F(X,Y). It is possible that non-uniform
quantization with small steps for smaller data values and large steps for large data
values may have worked better.

The other six of the GP runs converged to results that are very similar to
the one obtained empirically in [5]. For problems where the unknown function is
completely unknown, i.e. it has no empirically determined algebraic expression, a
convenient experimentally chosen criterion like mean square error or minimal
maximum absolute error needs to be used to select the best solutions generated by
the GP in 10 (or more) runs.

5. Conclusions

Despite the fact that GA and GP offer very few or no convergence
guarantees, they are still capable of generating good, nearly optimal solutions for
complex problems, and are easily adapted to new problem domains.

The steps used for the reverse engineering of the particular GA-generated
controller described above can be successfully used for solving many other types
of optimal real-time resource allocation and/or scheduling problems. Further work
is however required in identifying specific such controllers and emulating their
behavior in real-time.

The numerous experiments required to select the best possible
combinations of GA and GP parameters and characteristics, initial data (number
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of data points, number of quantization levels, type of quantization) and a priori
assumptions is a very demanding task, but the results are worth obtaining, as the
adaptive scheduling algorithm described in [5,6] proves it.

This algorithm has been a useful addition to the numerous existing
scheduling algorithms, because it can provide a better fairness in servicing the
lower priority classes during (severe) link overload conditions, by enforcing just
minor (acceptable) quality degradations of the service offered to the higher
priority classes.
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