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A METHOD FOR REAL-TIME EMULATION OF GENETIC 
ALGORITHM-OPTIMIZED CONTROLLERS 

Nicolae NECULA1 

Articolul prezintă o abordare bazată pe Programarea Genetică pentru 
descoperirea structurii unor controleri optimizaţi cu Algoritmi Genetici, permiţând 
astfel proiectanţilor să emuleze si să implementeze în timp real comportarea acestor 
controleri . Metoda este ilustrată prin rezultatele experimentale obţinute în urma 
simulării în Matlab a unui controler pentru alocarea adaptivă a resurselor, util 
pentru planificarea optimă a pachetelor într-un sistem TDMA. 

This paper describes a Genetic Programming (GP)-based approach for the 
reverse engineering of Genetic Algorithm (GA)-optimized controllers, allowing the 
designer to emulate and implement in real-time the behavior of such controllers. 
The method is illustrated by the experimental results generated in the Matlab 
simulation of an adaptive resource allocation controller, useful for optimal packet 
scheduling in a TDMA system.  

Keywords: genetic algorithms, genetic programming, symbolic regression, 
TDMA optimal resource allocation, Matlab simulation 

1. Introduction 

Genetic algorithms (GAs) are heuristic global optimization techniques 
derived from the principles of natural selection and evolution [1]. They are 
powerful tools for solving complex non-linear optimization problems, subject to 
different type of constraints. Quality of the obtained solution depends on how the 
solution “fitness” is defined, and what values are chosen for algorithm parameters, 
such as: population size and the required number of generations.  

GAs have been theoretically and empirically proven to be robust search 
techniques, capable of finding solutions that are better than those obtained by 
many other heuristic methods, being closer to the theoretical optimum for various 
realistic complex optimization problems [2]. 

Most network design and traffic engineering problems are formulated and 
solved as constrained optimization problems, many of them being best solved by 
GAs [3], particularly the combinatorial optimization problems that do not have to 
be run in real-time. 
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Optimal packet scheduling problems, like the TDMA (Time Division 
Multiplex Access) problem, can be solved by GAs [4], but the real-time 
implementation of a controller running such an algorithm is impossible due to the 
huge amount of computation that needs to be performed in a very short time, i.e. 
once per TDM frame. 

However, the behaviour of such a controller is worth investigating in order 
to attempt to emulate it in real-time. In two previous papers [5,6], a “reverse 
engineering” approach has been used by the two authors for identifying and 
implementing the adaptive control mechanism that has been “discovered” offline 
by the GA. The necessary stages of this approach are: 

o Control function definition. A simple and efficient elementary 
control function should be capable of allocating all timeslots, once per frame, to 
two competing sets of traffic sources, according to the current state of the system. 
A good characterization of the system state is given by the total current length of 
the queues that store the packets generated by the two sets of sources. These two 
sets should comprise sources in high and low QoS classes, respectively. Repeated, 
hierarchical utilization of such an elementary control function can easily partition 
the given set of timeslots into any number of blocks (subsets) for servicing 
optimally as many QoS classes as desired. 

o Control function(s) dataset specification. By running offline a GA 
with an appropriately defined fitness function, for optimal per TDM frame packet 
scheduling, sample points are generated for all the control functions defined 
above. In order to smooth the unavoidable statistical fluctuations, these points are 
averaged over multiple runs of the GA. 

o Control function(s) identification. Empirical approximation by a 
two-variable, one-parameter algebraic expression for all the desired control 
functions is finally performed, where the parameter value is specific to each 
individual function. 

This paper illustrates the reverse engineering process applied to a 
particular GA-generated non-real-time optimal controller. It also describes a more 
systematic approach for control function identification using Genetic 
Programming (GP). Since GP is capable of performing symbolic regression for 
identifying any unknown functions from a given subset of its data points [7], it is 
the natural choice for performing the identification task. 

Control function specification is briefly described in Section 1 for a 
particular application: the GA-based optimal timeslot allocation controller. 
However, similar steps can be performed for other types of GA-based optimal 
controllers, as well. 

Section 2 describes a simplified implementation in Matlab of the GP for 
symbolic regression. 
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Experimental results obtained by running this simplified GP for the 
specified control function are illustrated and analyzed in Section 3. 

Finally, some possible directions for further work and concluding remarks 
are included. 

2. Control function definition and specification 

Optimization of the tradeoff between priority-based service and service 
fairness during periods of high load with large bursts of data, in a TDMA system, 
is one of the challenging problems that can be solved off-line using a GA.  

Conventional solutions allocate statically a fixed number of timeslots per 
frame to the different QoS (quality of service) classes, and use the remaining 
timeslots for strict priority-based dynamic allocation, when needed [8,9]. 

The main drawback of this type of solutions is the poor fairness obtained 
when the sources in the higher priority classes generate large bursts of data at the 
same time. 

By accepting a slight degradation of the quality of service for higher 
priority classes as the price paid for a better fairness offered to the lower priority 
classes during the congested periods, a better timeslot allocation can be obtained. 

An off-line controller of this type can be obtained by using a GA, where 
each chromosome represents a possible per frame timeslot allocation, and the 
fitness assigned to a chromosome is calculated, according to [4], by: 
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where: 
s = chromosome length = the number of timeslots per frame,  
Φi = fitness assigned to the ith time slot , with regard to the traffic source 

serviced by this time slot: 

i
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where: 
Pi = priority of the traffic source serviced by the ith time slot,  
Qi = dynamic length of the queue used by this traffic source 
 fi = number of time slots assigned to this traffic source in the current 

frame. 
By maximizing the above fitness, the GA attempts to find, in every frame, 

an optimized chromosome capable to assign all the available timeslots in such a 
manner that achieves an optimal balance between the opposite requirements 
regarding both priority-based service and fairness. 
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An elementary control function for timeslot allocation is defined as 
follows: let r = F(q1,q2) partition dynamically, once per frame, the set of s 
timeslots into two subsets of r*s and (1-r)s timeslots, that are allocated to real-
time (rt) and non-real-time (nrt) traffic sources, respectively. Value of r is a 
function of the current length of the queues assigned to these sources. Queue 
length is measured in traffic units, where one unit equals the timeslot bandwidth. 

By using the fitness function defined above, together with a mix of rt, nrt 
and BE traffic sources, the GA-based scheduler is run once per frame, and all 
relevant data points are collected for identifying the control function that describes 
how the GA-based scheduler partitions adaptively and (almost) optimally the set 
of available timeslots into two subsets. 

The following choices have been used for the simulation scenario: 
- T

DMA physical layer: 
o Link bandwidth = 20 Mbps 
o Frame duration = 1 ms 
o Timeslots per frame s=20 
o 1000 bits per timeslot = conventionally defined packet size 
o 100% link load 
- T

raffic sources (3+1 QoS classes): 
o Highest priority (Constant bit rate): 9 sources 
o Second priority (Real-time variable bit rate): 14 MPEG2 

sources 
o Next priority (Non-real-time variable bit rate): 10 FTP sources  
o Lowest priority (Best effort): 2 sources 
o Bandwidth demand: 30% for CBR sources, 34% for VBRrt 

sources, 30% for VBRnrt sources, and 6% for BE sources. 
- G

enetic Algorithm characteristics: 
o Population size = 50 
o Maximum number of generations = 50 
o Gene crossover probability = 0.7 
o Gene mutation probability = 0.01 
o Elitist selection, using 3 classes of fitness: highest (30% of 

population size), intermediate (40%) and lowest (30%).  
- S

imulation characteristics: 
o Simulation duration = 10 seconds = 10000 frames. 
o 10 successive runs, with no reinitialization of the Matlab 

random number generator. 
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The simulation steps, together with some additional steps (shown in bold 
characters), that are necessary for specifying the elementary control function 
defined above, are: 

      Repeat for 10 times 
Repeat for 10000 frames 
     Insert data packets into the service queues 
       Run GA to generate opt_chrom (optimal timeslot allocation) 
     Extract data packets from the queues specified by opt_chrom 
     Calculate and store triplet {q1i,q2i,ri} for i=1 to 10*10000  
      At the end, convert the final array of triplets into two p×p matrices 
The resulting array of triplets describes the dynamic behaviour of the GA 

when handling rt vs. all other types of packets.  
This very large array is then converted into two easier to handle p×p 

matrices F(X,Y) and C(X,Y), by scaling down the original range of values of q1 
and q2 ([q1,q1.max] and [q2,q2.max], respectively) to just p=20 uniform quantization 
levels (i.e. X,Y=1,2,…,20). C(i,j) is the number of points that fit into the 
respective compressed range {[i,i+1),[j,j+1)}, and F(i,j) is the average value of r 
for all these C(i,j) points.  

Other possible options for obtaining matrices F and C may use non-
uniform quantization of the q1 and q2 values, and/or different values for p. 

After identifying the unknown expression of the function specified by its 
points in F(X,Y), either empirically or by symbolic regression, a simple real-time 
adaptive scheduler can be developed to emulate the above GA – optimized 
scheduler. 

The basic idea of this adaptive scheduling algorithm is to allocate 
dynamically, once per frame, the available resources to just two QoS classes or 
groups of classes (e.g.: real-time classes vs. all other classes), according to the 
following formulas that emulate the behavior of the GA-based scheduler: 

IF q1+q2>s  THEN  
r = F(q1,q2)                                                         (3) 
n1=min(round(r*s),q1)                                        (4) 

n2=min(s-n1,q2)                                                (5) 
ELSE n1=q1, n2=q2; ENDIF 

n3=max(1,s-(n1+n2))                                                   (6) 
where:  
o s = the number of per frame un-reserved timeslots, 
o q1 = total current length of all real-time queues,  
o q2 = total current length of all other queues, 
(q1 and q2  are conventionally measured in traffic units (tu’s), where one tu 

equals the timeslot size in bits), 
o r =  % of frame timeslots allocated to real-time sources,  
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o n1, n2 = the number of timeslots allocated to the two QoS classes, 
o n3 = the number of timeslots allocated to the BE class. 
If the total queue lengths q1+q2, corresponding to the number of packets 

waiting to be dispatched from the queues is less than s, then all sources obtain 
their required number of timeslots and no resource partitioning algorithm is 
needed. 

Otherwise, formula (3) provides the desired tradeoff between priority-
based service  and fair service: when q1>>q2, r is close to 1, and almost all 
timeslots are allocated to the first class, but when q1 and q2 are comparable, then 
the second class gets more timeslots allocated to it. Formulas (2) and (3) provide 
the work conserving characteristic of the algorithm by never allowing the number 
of timeslots allocated to any non-BE class to exceed the current length of the 
queue used by the respective class. 

A simple empirical formula obtained in [5] for function F(q1,q2) is: 
r = 1/(1 + c*q2/ q1)                                                  (7) 

where the value of parameter c determines the timeslot allocation policy, 
as follows: 

o c=0 ensures strict priority-based allocation 
o As c increases in value between 0 and 1, the allocation fairness 

between the two QoS classes gets better, but the price paid is the increased 
degradation of the service offered to the first class. 

o When r=0.5, complete fairness is provided to the two QoS classes, 
i.e. round robin scheduling. 

Resource allocation to more than two QoS classes requires obviously a 
repeated application of the above algorithm in a multi-level hierarchical manner, 
with more control functions of type (7), each with its specific value of parameter 
c. 

3. A simplified implementation of genetic programming 

Genetic Programming (GP) [7] represents another set of heuristic global 
optimization techniques, similar to GAs, but better suited for solving symbolic 
problems. Generally, GP is capable to “discover” optimized data processing 
programs for, practically, any imaginable type of data processing. Symbolic 
regression is just a particular type of application where the program describes an 
algebraic expression, and the objective is to find an optimal algebraic expression 
that describes an unknown function, specified by a number of its data points. A 
possible criterion of optimality is the mean square error in all the data points. 

Since the chromosomes and genes used for representing the evolving 
solutions in GP are based on rooted trees with ordered branches, they are much 
more difficult to handle than the ones used in GAs. This is the reason why a 
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simpler form of GP, well suited to the particular application considered in this 
paper, has been defined and implemented by the present author. 

The following simplified definition has been defined by the present author 
for describing the relatively simple algebraic expressions needed: 

- The chromosome is a linear sequence of g genes, with each gene 
corresponding to an element of the expression (variable, constant or operator), and 
specifying by its position the location of this element within the expression. 

- There are three types of genes:  
o arithmetic operator genes that specify one of the 4 possible 

basic arithmetic operations: add, subtract, multiply, and divide with saturation (for 
overflow avoidance), encoded by values 1 thru 4, 

o identifiers of variables that specify by an index (1,2,…) which 
variable occurs in the respective location of  the algebraic expression, 

o constant specifiers that specify both the location and the value 
of each constant, if any, in the algebraic expression. Only positive constants are 
defined and encoded, by using the negative values of the respective constants in 
order to distinguish them from the variable identifiers. A negative constant can 
also be specified in an expression by just using the subtract operator gene in front 
of the gene specifying a positive constant. 

- The total number of genes in a chromosome is g=L+(L-1), where L 
is the number of all entries specified for variables and constants, and L-1 is the 
number of arithmetic operators connecting all successive pairs of variables and/or 
constants. Genes are conventionally ordered in the chromosome, starting with the 
L location specification genes and ending with the L-1 operator specification 
genes. 

When evaluating the numerical value of an expression specified by a 
chromosome, the multiply and divide operators are used first, from the right of the 
expression to the left, and then, the add and subtract operators are used from the 
left of the resulting expression to the right. As a result of this simplified 
representation and evaluation procedure, expression a/b*c is equivalent with 
a/(b*c), and a*b+a*c is equivalent with a(b+c), but a/(b+c) is not possible because 
it cannot be handled by the simplified GP. 

Since the empirical approximation of F(X,Y) suggests an expression of the 
type shown in formula (7), which cannot be handled by the simplified 
implementation of GP used in this paper, the identification has been performed for 
the reciprocal of F: G(X,Y)=1/F(X,Y). 

As an example, consider the following 13-gene chromosome describing an 
algebraic expression for a 2-variable function G(X,Y):  

crom(1:11) =  [-81 1 -50 2 1 1 -80 1 4 4 4 3 2] 
The corresponding algebraic expression is: 
G(X,Y) = 81+X/50/Y/X*X-80 = 1 + 0.02*Y/X 
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After simplifications, the above size-13 expression converts to the 
denominator of formula (7) for c=0.02, X=q1 and Y=q2. Since a size of 13 is too 
large for this particular function, some redundant sub-expressions have been 
generated by GP: (81-80) for constant=1, and X/(50/(Y/(X*X))) for 0.02*Y/X. 

Generally, before applying GP to solve the identification problem, the 
following five data sets have to be determined: 

- The set of independent variables of the unknown function = {X,Y}. 
- The set of primitive functions = {+,-,* and /}. 
- The chromosome fitness measure = reciprocal of the mean square 

error, defined by: 
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1
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=
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where: N = number of selected data points  
Fi = ith value in the set selected from F(X,Y) matrix 
E(Xi,Yi) = value of the algebraic expression evaluated in the ith data point in the 
set selected from F(X,Y). 

The parameters for controlling the run: population size, maximum number 
of generations to be run, etc. 

The number of runs and the method for designing a result 

4. Control function identification by symbolic regression 

Fig. 1 illustrates the data points generated by the GA for the implicit 
elementary control function specified in Section 1. 

 
Fig. 1. Data points for the elementary control function F(X,Y): X,Y = values of rt and nrt 

queue lengths after uniform quantization; F(X,Y): values are averaged over 10 GA runs for 
link load=1 
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The large number of saturation points, with F(X,Y)≈1, that are present in 
this graph, contribute to making F rather difficult to approximate.  

Since GA does not generate points for all possible (X,Y) pairs, F(X,Y) is 
plotted as 0 for all the undefined pairs. In [5], F(X,Y) looks somewhat different 
than in Fig.1 because it is extrapolated as F(X,Y)=1 for all the undefined pairs 
with Y ≥ Ymax/2. 

The frequency of occurrence of the F(X,Y) data points in 10 successive 
GA runs is illustrated in Fig.2. It can be noticed that many of the saturation points 
have a high frequency of occurrence. 

 
Fig. 2. Number of occurences of the F(X,Y) points in 10 GA runs (some of these 

numbers are greater than 2000) 
 

This makes the appropriate selection of the N data points for symbolic 
regression rather difficult. Out of the many possible options for data point 
selection, after experimentally choosing a value of N, the following have been 
tested:  

- Select the most frequently generated points (with the largest values of 
C(i,j)). This option did not work well, as expected, because too many of the 
selected data points are saturation points, that are practically useless for the 
identification of F. 

- Select all points that are most frequently generated in a given range of 
values. This option eliminates all saturation points (with F(i,j)≈1) and all 
statistically irrelevant (very infrequent) points, allowing a much easier 
identification of F. 

Symbolic regression is then performed for the set of N=40 appropriately 
selected data points, and the only assumed a priori knowledge about the unknown 
function G(X,Y)=1/F(X,Y) consists of: 



24                                                                  Nicolae Necula 

- Number of variables is 2, according to function specificication. 
- The maximum expected size of the algebraic expression of G(X,Y) has 

been chosen as S=13. The denominator in formula (7) has a size of only 7, with 2 
identifiers of variables (used just once per variable), 2 constant values and 3 
arithmetic operators. By choosing a maximum expected size of 13, GP is allowed 
to discover more complex formulas for G. If such formulas do not exist, GP 
generates redundant terms in the optimized solution, as shown below. 

The following experimentally chosen values have been used for the 
simulation scenario: 

- GP characteristics: 
o Population size = 500 
o Maximum number of generations = 500 
o Chromosome size = 13 
o Probability of generating a constant = 0.5 
o Maximum value of a constant = 100 
o Gene crossover probability = 0.7 
o Gene mutation probability = 0.03 
o Elitist selection, using 3 classes of fitness: highest (30% of 

population size), intermediate (50%) and lowest (20%).  
- Simulation characteristics: 
o 10 successive runs, with no reinitialization of the Matlab 

random number generator. 
o N=40 data points for the unknown function specification 
The following sequence of steps is then performed for running the GP: 
-   Generate randomly an initial population of chromosomes 
-   Repeat for the chosen number of generations: 
o Evaluate the fitness of all chromosomes in the current 

generation 
o Create the next generation of chromosomes by using the elitist 

approach and by applying the two basic genetic operations: crossover and 
mutation. 

- Designate the chromosome with the highest fitness as the (approximate) 
solution to the problem 

The results obtained in 10 GP runs for N=40 points of 1/F(X,Y), selected 
in the range 0.5<F(X,Y)<1, are illustrated in Table 1. 

It can be noticed that GP has used “ingenious” ways to create constants, 
redundant terms and subexpressions, as illustrated by various examples in this 
table: 

Y/Y=1, 81-80=1, X-X=0 
53/X/Y/4*40 = 53/(X/(Y/(4*40))) = 0.3*Y/X 
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Table 1 
Symbolic regression results for 1/F(X,Y) identification 

Run 
# 

Algebraic expression described by the 
optimal chromosome 

Simplified expression of 
1/F(X,Y) 

1 Y / X *  2  / 65  / 98  +  X / X 1 + 0.33*Y/X 

2 Y / Y + 63  *  Y /  X * 95  *  2 1 + 0.3*Y/X 

3 Y / X + 24  / 83  - 49  / 59  *  X Error 

4 Y /  Y +  X +  Y /  X *  3  -  X 1 + 0.33*Y/X 

5 X /  3  /  Y /  X *  X + 81 - 80 1 + 0.33*Y/X 

6 45  / 31  +  Y / 15  -  X *  7  / 79 Error 

7 99  / 56  -  X / 50  - 65  /  Y * 52 Error 

8 Y / Y +  X /  X * 3 * X / Y 1 + 0.33*Y/X 

9 X /  X + 53  / X /  Y /  4  * 40 1 + 0.3* Y/X 

10 84  / 54  -  X /  Y * Y / X / 5 Error 

 
The four runs that are labelled as errors, are not really errors, but less 

useful expressions. Their occurrence is very likely due to the use of uniform 
quantization when generating matrix F(X,Y). It is possible that non-uniform 
quantization with small steps for smaller data values and large steps for large data 
values may have worked better. 

The other six of the GP runs converged to results that are very similar to 
the one obtained empirically in [5]. For problems where the unknown function is 
completely unknown, i.e. it has no empirically determined algebraic expression, a 
convenient experimentally chosen criterion like mean square error or  minimal 
maximum absolute error needs to be used to select the best solutions generated by 
the GP in 10 (or more) runs. 

5. Conclusions 

Despite the fact that GA and GP offer very few or no convergence 
guarantees, they are still capable of generating good, nearly optimal solutions for 
complex problems, and are easily adapted to new problem domains. 

The steps used for the reverse engineering of the particular GA-generated 
controller described above can be successfully used for solving many other types 
of optimal real-time resource allocation and/or scheduling problems. Further work 
is however required in identifying specific such controllers and emulating their 
behavior in real-time. 

The numerous experiments required to select the best possible 
combinations of GA and GP parameters and characteristics, initial data (number 
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of data points, number of quantization levels, type of quantization) and a priori 
assumptions is a very demanding task, but the results are worth obtaining, as the 
adaptive scheduling algorithm described in [5,6] proves it. 

This algorithm has been a useful addition to the numerous existing 
scheduling algorithms, because it can provide a better fairness in servicing the 
lower priority classes during (severe) link overload conditions, by enforcing just 
minor (acceptable) quality degradations of the service offered to the higher 
priority classes. 
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