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ON THE FIXED POINTS OF MULTIVALUED MAPPINGS IN

b−METRIC SPACES AND THEIR APPLICATION TO LINEAR

SYSTEMS

Fatemeh Lael1, Naeem Saleem2, Mujahid Abbas3

In this paper, we replied to an open problem related to a b−metric ver-
sion of Banach’s fixed point theorem. It was addressed with a partial answer by several

authors, choosing a suitable contractive constant but we proved it in general, without

adding any assumption in comparison with its classical one. Also, some new fixed point
theorems for multivalued mappings in b−metric spaces are obtained. Furthermore, as

applications, we showed the existence of a solution of an integral inclusion and a lin-

ear equation system. We provided two applications and examples to support our main
results.
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1. Introduction

Banach [4] proved a well known fixed point theorem called Banach fixed point theorem
and it has various applications in different branches of sciences. Researchers around the
globe extended and generalized it in several directions. These generalizations usually fall
into two categories: first is to generalize the contractive condition and second to generalize
the underlying space.

Several authors generalized metric spaces in various directions, in this regard, Bhaktin
[3] extended the concept of a metric space by introducing b−metric spaces and proved Banach
fixed point theorem in such spaces. Since then, several interesting fixed point results have
been obtained in the setup of b−metric space [2, 3, 6, 8, 9, 10, 11, 24]

A b−metric space is a pair (X, d) where X is a nonempty set and d : X × X → R
satisfies the following conditions:

(1): 0 ≤ d(x, y) and d(x, y) = 0 if and only if x = y,
(2): d(x, y) = d(y, x),
(3): d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X and s ≥ 1.

Obviously, for s = 1 every b−metric space is a metric space but the converse does not
hold in general [25]. Note that a b−metric function d : X ×X → [0,∞) is not necessarily
continuous in each of its arguments [1]. However, if b−metric d is continuous in one variable,
then it is continuous in other variables [27]. A sequence {xn} is Cauchy (convergent) in X
if and only if {xn} is Cauchy (convergent) with respect to a b−metric. A b−metric space X
is complete if every Cauchy sequence in X is convergent in X. Recall that, for any subset
C of (X, d), a multivalued mapping f on a set C is denoted as f : C � X which assigns

1Department of Mathematics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran, e-mail:
f lael@dena.kntu.ac.ir

2Department of Mathematics, University of Management and Technology, 54770, Lahore, Pakistan,

e-mail: naeem.saleem2@gmail.com
3 Department of Mathematics, Government College University, 54770, Lahore, Pakistan, e-mail:

abbas.mujahid@gmail.com

121



122 Fatemeh Lael, Naeem Saleem, Mujahid Abbas

each element a in C a nonempty subset fa in X. An element x ∈ C is said to be a fixed
point of f if x ∈ fx.

In his article, we provided some examples (other than discussed in [1]) which show
that a b−metric is not necessarily a metric (see also [25]).

Example 1.1. Suppose that (X, d) is a b−metric space with s ≥ 1. Then (X, dr) is a
b−metric space for all r ∈ R+. Indeed, from the general form of Holder’s inequality [23], for
every x, y, z ∈ X and r ∈ R+ with 1 + 1

r ≥ 1, we obtain the following

d(x, y) ≤ s(d(x, z) + d(z, y)) ≤ (2s)(dr(x, z) + dr(z, y))
1
r ,

that is

dr(x, y) ≤ (2s)r(dr(x, z) + dr(z, y)).

Hence dr is a b−metric. As every metric d is a b−metric, dr is a b−metric. However, dr is not
necessarily a metric. For instance, if d(x, y) = |x−y| (a Euclidean metric), d2(x, y) = |x−y|2
is not a metric on R.

We recall the general form of Holder’s inequality: Let aij ≥ 0, pj > 0, (i =
1, 2, . . . , n, j = 1, 2, . . . ,m) and let

1

p1
+ . . .+

1

pm
≥ 1.

Then
n∑
i=1

m∏
j=1

aij ≤
m∏
j=1

(

n∑
i=1

a
pj
ij )

1
pj .

Khan et.al. [12] introduced the notion of altering distance function as follows:

Definition 1.1. [12] A mapping ϕ : R+ → R+ is called an altering distance if the following
conditions hold:

(1): ϕ is continuous and nondecreasing,
(2): ϕ(t) = 0 if and only if t = 0.

Recently, Radenovı́c et.al. [20] proved following Theorem which generalizes the results
discussed in [7].

Theorem 1.1. [20] Let (X, d) be a complete b−metric space with s > 1 and T : X → X.
Suppose that there exists an altering distance ϕ and constants L ≥ 0, ε > 1 such that for
any x, y ∈ X,

ϕ(sεd(Tx, Ty)) ≤ ϕ(S(x, y)) + Lϕ(I(x, y)), (1)

holds, where

S(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)
1 + d(x, Tx)

1 + d(x, y)
,
d(x, Ty) + d(y, Tx)

2s
},

and

I(x, y) = min{d(x, Tx) + d(y, Ty), d(x, Ty), d(y, Tx)},

then T has a fixed point.

In this article, we generalize and improve the fixed point results discussed in [20].
As an application of obtained results, we get a solution of integral inclusion and system of
linear equations in b−metric spaces.
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2. Main results

Throughout this section, B denotes a closed subset of a complete b−metric space
X = (X, d) and f : B � B is a closed multivalued mapping, T is a single valued mapping
on (X, d) and ϕ is an altering distance function.

The following lemma and definitions are needed in the sequel.

Lemma 2.1. [17] Consider a non-empty set X = (X, d) be a b−metric space and {xn} is a
sequence in X. Suppose that there exists some k ∈ [0, 1) such that for every n ∈ N,

d(xn, xn+1) ≤ kd(xn−1, xn)

holds. Then {xn} is a Cauchy sequence.

Definition 2.1. A mapping f is called weakly Picard, if there exists a sequence {xn} with
x0 ∈ B, x1 ∈ fx0 and xn+1 ∈ fxn which converges to the fixed point of f .

Definition 2.2. A mapping f is continuous if for xn → x, and yn → y such that yn ∈ fxn
implies that y ∈ fx.

Definition 2.3. Define

d(a, fb) = inf{d(a, y) : y ∈ fb}
and

d(a,C) = inf{d(a, c) : c ∈ C}.
Moreover, Pompeiu-Hausdorff distance is defined as follows:

Hd(A,C) = max{max
a∈A

d(a,C),max
c∈C

d(A, c))},

where A and C are subsets of B.

For fixed point results related with multivalued mappings employing the notion of a
Pompeiu-Hausdorff distance, we refer to [5, 14, 16, 22, 26].

Now, we prove the main theorem of this article, which is a generalization of Theorem
1.1.

Theorem 2.1. If there exists z ∈ fx and w ∈ fy such that

ϕ(λd(z, w)) ≤ ϕ(S(x, y)) + Lϕ(I(x, y)), (2)

holds, where constants L ≥ 0, λ > 1, also

S(x, y) = max{d(x, y), d(x, fx), d(y, fy)
1 + d(x, fx)

1 + d(x, y)
,
d(x, fy) + d(y, fx)

2s
}, (3)

and

I(x, y) = min{d(x, fx) + d(y, fy), d(x, fy), d(y, fx)}, (4)

for all x, y ∈ B. Then f has a fixed point if and only if one of the following assumptions
hold:

(i): f is weakly Picard.
(ii): f is continuous.
(iii): d is continuous.
(iv): λ > s.

Proof. Let x0 ∈ B, there exists x1 ∈ fx0 such that we may find x2 ∈ fx1 and

ϕ(λd(x1, x2)) ≤ ϕ(S(x0, x1)) + Lϕ(I(x0, x1)). (5)
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From (4), I(x0, x1) = 0. Now, from (3), we have

S(x0, x1) = max{d(x0, x1), d(x0, fx0), d(x1, fx1)
1 + d(x0, fx0)

1 + d(x0, x1)
,

d(x0, fx1) + d(x1, fx0)

2s
},

≤ max{d(x0, x1), d(x0, x1), d(x1, x2)
1 + d(x0, x1)

1 + d(x0, x1)
,

d(x0, x2) + d(x1, x1)

2s
},

≤ max{d(x0, x1), d(x1, x2),
d(x0, x1) + d(x1, x2)

2
},

= max{d(x1, x2), d(x0, x1)}. (6)

If max{d(x1, x2), d(x0, x1)} = d(x1, x2), then inequality (5) become

ϕ(λd(x1, x2)) ≤ ϕ(d(x1, x2)) + Lϕ(0).

As ϕ(0) = 0 and ϕ is nondecreasing, the above inequality can be written as

λd(x1, x2) ≤ d(x1, x2),

which is a contradiction because λ > 1. Hence max{d(x1, x2), d(x0, x1)} = d(x0, x1), then
inequality (5) becomes

ϕ(λd(x1, x2)) ≤ ϕ(d(x0, x1)).

Thus we have

λd(x1, x2) ≤ d(x0, x1).

Continuing this way, we can construct a sequence {xn} such that xn+1 ∈ fxn and

ϕ(λd(xn, xn+1)) ≤ ϕ(S(xn−1, xn)) + Lϕ(I(xn−1, xn)), (7)

for every n ≥ 1. After simple calculation, we have I(xn−1, xn) = 0 and

S(xn−1, xn) = max{d(xn−1, xn), d(xn−1, fxn−1), d(xn, fxn)
1 + d(xn−1, fxn−1)

1 + d(xn−1, xn)
,

d(xn−1, fxn) + d(xn, fxn−1)

2s
},

≤ max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)
1 + d(xn−1, xn)

1 + d(xn−1, xn)
,

d(xn−1, xn+1) + d(xn, xn)

2s
},

≤ max{d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn) + d(xn, xn+1)

2
},

= max{d(xn, xn+1), d(xn−1, xn)}. (8)

If max{d(xn, xn+1), d(xn−1, xn)} = d(xn, xn+1), then inequality (7) can be written as:

ϕ(λd(xn, xn+1)) ≤ ϕ(d(xn, xn+1)) + Lϕ(0).

As ϕ(0) = 0 and ϕ is nondecreasing, the above inequality can be written as

λd(xn, xn+1) ≤ d(xn, xn+1),

which is a contradiction.
Hence max{d(xn, xn+1), d(xn−1, xn)} = d(xn−1, xn). Now inequality (7) becomes

ϕ(λd(xn, xn+1)) ≤ ϕ(d(xn−1, xn)).
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Thus we have

λd(xn, xn+1) ≤ d(xn−1, xn),

for all n ∈ N. It follows from Lemma (2.1) and completeness of B that there exists x ∈ B
such that xn → x as n→∞.
The proof is obviously complete under assumption (i) and (ii).
Now assume (iii) holds. We know that for xn, there exists yn ∈ fx such that

ϕ(λd(yn, xn)) ≤ ϕ(S(xn−1, x)) + Lϕ(I(xn−1, x)). (9)

We can calculate

I(xn−1, x) = min{d(xn−1, fxn−1) + d(x, fx), d(xn−1, fx), d(x, fxn−1)},
≤ min{d(xn−1, xn) + d(x, fx), d(xn−1, fx), d(x, xn)}, (10)

and

S(xn−1, x) = max{d(xn−1, x), d(xn−1, fxn−1), d(x, fx)
1 + d(xn−1, fxn−1)

1 + d(xn−1, x)
,

d(xn−1, fx) + d(x, fxn−1)

2s
},

≤ max{d(xn−1, x), d(xn−1, xn), d(x, fx)
1 + d(xn−1, xn)

1 + d(xn−1, x)
,

d(xn−1, fx) + d(x, xn)

2s
}. (11)

Since xn → x as n→∞, lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(xn, xn−1) = 0. From inequality (10)

and inequality (11) we have

lim
n→∞

I(xn−1, x) = 0,

and

lim supS(xn−1, x) ≤ d(x, fx),

So the inequality (9) yields

ϕ(λ lim sup d(yn, xn)) ≤ ϕ(d(x, fx)). (12)

Since yn ∈ fx, we have

d(x, fx) ≤ d(x, yn),

for each n ≥ 1. As ϕ is nondecreasing, inequality (12) can be written as

λ lim sup d(yn, xn) ≤ d(x, fx) ≤ d(x, yn). (13)

Now (iii) leads to lim
n→∞

d(xn, yn) = d(x, yn) and inequality (13) can be written as

λ lim d(yn, x) ≤ lim d(yn, x),

Thus lim yn = x. Since fx is closed and yn ∈ fx, we have x ∈ fx. Finally, if assumption
(iv) is satisfied, by repeating the proof presented for an assumption (iii), inequality (13) is
obtained. Therefore, it follows that

λ lim sup d(yn, xn) ≤ d(x, yn) ≤ s(d(x, xn) + d(xn, yn)).

Further,

(λ− s) lim sup d(yn, xn) ≤ s lim d(x, xn).

Thus, lim d(xn, yn) = 0, since λ > s. Also,

d(x, yn) ≤ s(d(x, xn) + d(xn, yn)),

we have lim yn = x and hence x ∈ fx. �
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Theorem 1.1 is a particular case of Theorem 2.1 part (iv). As a single valued mapping
T can be viewed as a multivalued mapping that takes x ∈ X to a set {Tx}. If we consider
λ = sε then equation (1) will be a particular case of equation (2). Therefore Theorem (2.1)
part (iv) implies that T has a fixed point.

To support our main result, we provide the following example.

Example 2.1. Suppose that f : R � R is a multivalued mapping, defined as

fx = {x
2
,
x

3
, 1},

and (R2, d) is a b−metric space, where d(x, y) = |x − y|2. Consider ϕ(x) = x, L = 1
3 and

λ = 2. For any x, y ∈ R and z ∈ fx. We have three cases:
Case 1: If z = x

2 ∈ fx then choose w = y
2 .

Case 2: If z = x
3 ∈ fx then choose w = y

3 .
Case 3: If z = 1 ∈ fx then choose w = z.
Now, we have to show that the inequality (2) is satisfied.
Case 1 leads to

2|x
2
− y

2
|2 =

1

2
|x− y|2 ≤ |x− y|2,

therefore

2|z − w|2 ≤ |x− y|2.
This implies that

ϕ(2|z − w|2) ≤ ϕ(|x− y|2).

Case 2 and case 3, following on the same lines as in case 1. We have

|x− y|2 ≤ S(x, y).

So

ϕ(|x− y|2) ≤ ϕ(S(x, y)).

Since

ϕ(I(x, y)) ≥ 0,

therefore

ϕ(|x− y|2) ≤ ϕ(S(x, y)) +
1

3
ϕ(I(x, y)).

Thus

ϕ(2|z − w|2) ≤ ϕ(S(x, y)) + Lϕ(I(x, y)).

Note that, 0 and 1 are the fixed points of f.

The following corollary is a b−metric version of Nadler’s fixed point theorem.

Corollary 2.1. Let B be a closed subset of a complete b−metric space X and f : B � B
be a closed valued multivalued mapping. Also, there exists z ∈ fx and w ∈ fy such that

d(z, w) ≤ kd(x, y), (14)

for each x, y ∈ B, then f has a fixed point.

Proof. Suppose λ = 1
k > 1, where k 6= 0 (for k = 0, it is trivial). Since inequality (14)

implies that the mapping f is continuous. Following the assumption (ii) of Theorem (2.1)
implies that f has a fixed point. �

We know Nadler’s fixed point theorem is a generalization of Banach fixed point theo-
rem for multivalued mappings. So we have the following corollary which is an answer to an
open problem and establishes a b−metric version of Banach contraction theorem.
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Corollary 2.2. Let B be a closed subset of a complete b−metric space X and consider a
single valued mapping T : X → X satisfying

d(Tx, Ty) ≤ kd(x, y),

where k ∈ [0, 1) and x, y ∈ X, then T has a fixed point.

The b−metric version of Banach fixed point theorem is already proved for k ∈ (0, 1s )

but it was an open problem that whether T has a fixed point when 1
s ≤ k < 1. Indeed, we

replied to this question in corollary 2.2 (for details, see 2.2).
Suppose that X is a b−metric space equipped with a partially order relation “�” (

see, [13, 21]). A multivalued mapping f : X � X is called monotone if for all x � y, we
have u � v, for each u ∈ fx and v ∈ fy (see, [15, 19]).

Theorem 2.2. Let (X, d) be a complete ordered b−metric space and f is a monotone mul-
tivalued mapping on X such that x0 � fx0 for some x0 ∈ X. Suppose, there exist constants
L ≥ 0 and λ > s such that for x, y ∈ X with x � y and z ∈ fx, there exists w ∈ fy and
z � w such that

ϕ(λd(z, w)) ≤ ϕ(S(x, y)) + Lϕ(I(x, y)),

where S(x, y) and I(x, y) are given in (3) and (4). Then f has a fixed point.

Proof. The proof is closely modeled on the proof of Theorem 2.1 part (iv). �

Indeed, Theorem 2.2 is a generalization of Theorem 2.1 part (iv) in ordered b−metric
space.

3. Applications

A b−metric fixed point theorem can be used to provide sufficient conditions for finding
a real continuous function u defined on [a, b] such that

u(t) ∈ v(t) + γ

∫ b

a

G(t, s)g(s, u(s))ds, t ∈ [a, b], (15)

where γ is a constant, g : [a, b]×R � [a, b] is lower semicontinuous, G : [a, b]× [a, b]→ [0,∞)
and v : [a, b] → R are given continuous functions. Let X = C[a, b] be the set of all real
continuous functions defined on [a, b], gu : [a, b] � [a, b] where gu(s) = g(s, u(s)) and a
b−metric on X defined as:

d(u, v) = max
a≤t≤b

| u(t)− v(t) |2 .

Note that (X, d) is a complete b−metric space. Also, an integral inclusion problem (15) can
be reformulated as: u is a solution of the problem (15) if and only if it is a fixed point of
f : X � X, where

fu = {x ∈ X : x(t) ∈ v(t) + γ

∫ b

a

G(t, s)g(s, u(s))ds, t ∈ [a, b]}.

Assume that:
1: | γ |≤ 1,

2: max
a≤t≤b

∫ b
a
G2(t, z)dz ≤ 1

b−a ,

3: for all x, y ∈ X and wx(t) ∈ gx(t), there exists hy(t) ∈ gy(t) such that |wx(t)−hy(t)|2 ≤
1
2s | x(t)− y(t) |2, t ∈ [a, b],

then multivalued mapping f has a unique fixed point. Suppose that x, y ∈ X and w ∈ fx,
by definition, we have

w(t) ∈ v(t) + γ

∫ b

a

G(t, s)g(s, x(s))ds = v(t) + γ

∫ b

a

G(t, s)gx(s)ds.
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By Michael’s selection theorem, (in [18] Theorem 1) it follows that there exists a continuous

single valued mapping wx(s) ∈ gx(s) such that w(t) = v(t) + γ
∫ b
a
G(t, s)wx(s)ds. According

to assumption 3, for wx(s) ∈ gx(s), there exists an hy(s) ∈ gy(s) such that

|wx(s)− hy(s)|2 ≤ 1

2s
| x(s)− y(s) |2,

for all s ∈ [a, b]. We define

h(t) = v(t) + γ

∫ b

a

G(t, s)hy(s)ds

that is

h(t) ∈ v(t) + γ

∫ b

a

G(t, s)gy(s)ds.

Therefore h ∈ fy. Using the Cauchy-Schwarz inequality and conditions 1 − 3, for L = 0,
ϕ(x) = x

2s , we have

ϕ(2sd(w, h)) = max
a≤t≤b

|w(t)− h(t)|2 ,

= max
a≤t≤b

| v(t) + γ

∫ b

a

G(t, s)wx(s)ds− (v(t) + γ

∫ b

a

G(t, s)hy(s)ds) |2,

= | γ |2 max
a≤t≤b

|
∫ b

a

G(t, s)(wx(s)− hy(s))ds |2,

≤ | γ |2 max
a≤t≤b

{∫ b

a

G2(t, s)ds

∫ b

a

| wx(s)− hy(s) |2 ds
}
,

= | γ |2
{

max
a≤t≤b

∫ b

a

G2(t, s)ds
}
.
{∫ b

a

| wx(s)− hx(s) |2 ds
}
,

≤ | γ |2

b− a
{ 1

2s

∫ b

a

| x(s)− y(s) |2 ds
}
,

≤ | γ |2

2s(b− a)

∫ b

a

max
a≤s≤b

| x(s)− y(s) |2 ds,

=
| γ |2

2s
max
a≤s≤b

| x(s)− y(s) |2,

=
| γ |2

2s
d(x, y) ≤ 1

2s
d(x, y) ≤ 1

2s
S(x, y),

≤ ϕ(S(x, y)) + Lϕ(I(x, y)).

Hence all the conditions of Theorem 2.1 part (iv) are satisfied, which implies that f has a
unique fixed point u ∈ X such that the integral inclusion (15) has a solution that belongs
to C[a, b].

Now, we are going to provide an application of the Banach’s fixed point theorem
in b−metric spaces to establish the existence of the unique solution of linear system of
equations:

Consider we have the following system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...

an1x1 + an2x2 + · · ·+ annxn = bn,



On the Fixed Points of Multivalued Mappings in b−metric Spaces and their Application to Linear Systems 129

which has a unique solution under certain conditions. Then, we have to define

γij =

{
aij + 1 i = j,
aij i 6= j.

and a b−metric as:

d(x, y) = max
j

(xj − yj)2,

for all x, y ∈ Rn. Also, the self-mapping T : Rn → Rn is defined as:

Tx = (A+ I)x− b,

where A is an n × n matrix with aij arrays and I is an identical matrix, b = [b1, . . . , bn]>.
Now, we have to show that the self-mapping T satisfies the Banach’s contraction principle
in b−metric spaces. Using Cauchy-Schwarz inequality, we have

d(Tx, Ty) = max
1≤i≤n

(

n∑
j=1

γij(xj − yj))2,

≤ max
1≤i≤n

(

n∑
j=1

γ2ij

n∑
j=1

(xj − yj)2),

≤ n2 max
i,j

γ2ij max
j

(xj − yj)2,

≤ n2 max
i,j

γ2ij d(x, y).

Corollary 2.2 implies that if n2 max
i,j

γ2ij < 1 then T has a fixed point. So, the linear system

has a unique solution.

4. Conclusion

In this article, we defined ϕ−multivalued contractive mapping and obtained fixed
point results in “b-metric space”. As a consequence of our main result, we obtained Nadler’s
theorem in “b-metric space”and Banach fixed point theorem by relaxing the assumptions
on contractive constant k ∈ [ 1s , 1) in contraction theorems proved for b−metric spaces. In
this way, we addressed an open problem by showing that the results hold even contractive
constant k lies in [ 1s , 1), where s ≥ 1. We also presented an application to a particular form
of integral inclusions and to the system of a linear equation to support the results thus
obtained.
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results for cyclic contractions in b−metric spaces and an application to integral equations, Appl. Maths.
Comput., 273(2016), 155-164.

[21] A. N. Sadigh and S. Ghods, Coupled coincidence point in ordered cone metric spaces with examples in

game theory, Int. J. Nonlinear Anal. Appl., 7 (2016), No. 1, 183-194.
[22] N. Saleem, I. Habib and M. D. Sen, Some New Results on Coincidence Points for Multivalued Suzuki-

Type Mappings in Fairly Complete Spaces, Computation, 8 (2020), No. 17, 1-23.

[23] W. Shan He, Generalization of a sharp Holder’s inequality and its application, J. Math. Anal. Appl.,
332 (2007), No. 1, 741-750.

[24] W. Shatanawi, A. Pitea and R. Lazovic, Contraction conditions using comparison functions on b−metric

spaces, Fixed Point Theory Appl., 2014 (2014), No. 135, 1-11.
[25] S. L. Singh and B. Prasad, Some coincidence theorems and stability of iterative procedures, Comput.

Math. Appl., 55 (2008), 2512-2520.
[26] W. Sintunavarat and P. Kumam, Common fixed point theorem for cyclic generalized multi-valued

contraction mappings, Appl. Math. Lett., 25 (2012), No. 11, 1849-1855.

[27] T. Van An, L. Quoc Tuyen and N. Van Dung, Stone-type theorem on b−metric spaces and applications,
Topol. Appl., 185 (2015), 50-64.


