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ON THE FIXED POINTS OF MULTIVALUED MAPPINGS IN
b—METRIC SPACES AND THEIR APPLICATION TO LINEAR
SYSTEMS

Fatemeh Lael', Nacem Saleem?, Mujahid Abbas®

In this paper, we replied to an open problem related to a b—metric ver-
sion of Banach’s fixed point theorem. It was addressed with a partial answer by several
authors, choosing a suitable contractive constant but we proved it in general, without
adding any assumption in comparison with its classical one. Also, some new fized point
theorems for multivalued mappings in b—metric spaces are obtained. Furthermore, as
applications, we showed the existence of a solution of an integral inclusion and a lin-
ear equation system. We provided two applications and examples to support our main
results.

Keywords: fixed point, multivalued mapping, b—metric space, partial order

1. Introduction

Banach [4] proved a well known fixed point theorem called Banach fixed point theorem
and it has various applications in different branches of sciences. Researchers around the
globe extended and generalized it in several directions. These generalizations usually fall
into two categories: first is to generalize the contractive condition and second to generalize
the underlying space.

Several authors generalized metric spaces in various directions, in this regard, Bhaktin
[3] extended the concept of a metric space by introducing b—metric spaces and proved Banach
fixed point theorem in such spaces. Since then, several interesting fixed point results have
been obtained in the setup of b—metric space [2, 3, 6, 8, 9, 10, 11, 24]

A b—metric space is a pair (X,d) where X is a nonempty set and d : X x X — R
satisfies the following conditions:

(1): 0<d(z,y) and d(z,y) =0 if and only if x = y,
(2): d(z,y) = d(y, ),
(3): d(z, z) < sld(z,y) + d(y, 2)], for all z,y,z € X and s > 1.

Obviously, for s = 1 every b—metric space is a metric space but the converse does not
hold in general [25]. Note that a b—metric function d : X x X — [0, 00) is not necessarily
continuous in each of its arguments [1]. However, if b—metric d is continuous in one variable,
then it is continuous in other variables [27]. A sequence {x,} is Cauchy (convergent) in X
if and only if {z,,} is Cauchy (convergent) with respect to a b—metric. A b—metric space X
is complete if every Cauchy sequence in X is convergent in X. Recall that, for any subset
C of (X,d), a multivalued mapping f on a set C is denoted as f : C' — X which assigns
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each element ¢ in C' a nonempty subset fa in X. An element z € C' is said to be a fixed
point of f if z € fux.

In his article, we provided some examples (other than discussed in [1]) which show
that a b—metric is not necessarily a metric (see also [25]).

Example 1.1. Suppose that (X,d) is a b—metric space with s > 1. Then (X,d") is a
b—metric space for all r € RT. Indeed, from the general form of Holder’s inequality [23], for
every z,y,2 € X and r € RT with 1 + % > 1, we obtain the following

d(z,y) < s(d(w,2) + d(z,y)) < (25)(d" (z,2) + d" (2,9)) ",
that is
d"(z,y) < (28)"(d"(z,2) + d"(z,y)).

Hence d" is a b—metric. As every metric d is a b—metric, d” is a b—metric. However, d” is not
necessarily a metric. For instance, if d(z,y) = |z —y| (a Euclidean metric), d?(z,y) = |z —y/|?
is not a metric on R.

We recall the general form of Holder’s inequality: Let a;; > 0, p; > 0, (i =
1,2,...,n, j=1,2,...,m) and let

Then

n n

m m
> I < IS e
i=1j=1 j=1

i=1
Khan et.al. [12] introduced the notion of altering distance function as follows:

Definition 1.1. [12] A mapping ¢ : RT — RY is called an altering distance if the following
conditions hold:

(1): ¢ is continuous and nondecreasing,

(2): ¢(t) =0 if and only if t = 0.

Recently, Radenovic et.al. [20] proved following Theorem which generalizes the results
discussed in [7].

Theorem 1.1. [20] Let (X, d) be a complete b—metric space with s > 1 and T : X — X.
Suppose that there exists an altering distance ¢ and constants L > 0, € > 1 such that for
any x,y € X,

e(s“d(Tz, Ty)) < ¢(S(x,y)) + Le(I(2,y)), (1)
holds, where

1+d(z,Tx) d(z,Ty)+d(y,Tx)

S(x,y) = max{d(z,y),d(z, Tx),d(y, Ty) T+ dy) 55

2

and
I(z,y) = min{d(z, Tz) + d(y, Ty), d(z, Ty), d(y, Tx)},
then T has a fized point.
In this article, we generalize and improve the fixed point results discussed in [20].

As an application of obtained results, we get a solution of integral inclusion and system of
linear equations in b—metric spaces.
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2. Main results

Throughout this section, B denotes a closed subset of a complete b—metric space
X = (X,d) and f : B — B is a closed multivalued mapping, T is a single valued mapping
on (X,d) and ¢ is an altering distance function.

The following lemma and definitions are needed in the sequel.

Lemma 2.1. [17] Consider a non-empty set X = (X,d) be a b—metric space and {z,} is a
sequence in X . Suppose that there exists some k € [0,1) such that for every n € N,

d(il?n, zn—&-l) < kd(xn—la xn)
holds. Then {x,} is a Cauchy sequence.

Definition 2.1. A mapping [ is called weakly Picard, if there exists a sequence {x,} with
x9 € B, 1 € foyg and 41 € fx,, which converges to the fized point of f.

Definition 2.2. A mapping f is continuous if for x, — x, and y, — y such that y,, € fz,
implies that y € fx.

Definition 2.3. Define

d(a, fb) = inf{d(a,y) : y € fb}
and

d(a,C) = inf{d(a,c) : c € C}.
Moreover, Pompeiu-Hausdorff distance is defined as follows:

Hy(4,C) = max{max d(a, C), max d(4, ))},
where A and C' are subsets of B.

For fixed point results related with multivalued mappings employing the notion of a
Pompeiu-Hausdorff distance, we refer to [5, 14, 16, 22, 26].

Now, we prove the main theorem of this article, which is a generalization of Theorem
1.1.

Theorem 2.1. If there exists z € fx and w € fy such that
p(Ad(z, w)) < o(S(z,y)) + Le(I(x,y)), (2)
holds, where constants L > 0, A > 1, also

1+d(z, fz) d(z, fy) +d(y, fz)
1+d(z,y)’ 2s

S(I,y) = max{d(xvy)vd(xrfz)7d(y7fy) }v (3)

and
I(x,y) = min{d(z, fx) + d(y, fy), d(z, fy),d(y, fz)}, (4)

for all x,y € B. Then f has a fized point if and only if one of the following assumptions
hold:

(1): f is weakly Picard.

(ii): f is continuous.

(iii): d is continuous.

(iv): A > s.

Proof. Let xy € B, there exists x1 € fxo such that we may find x5 € fz; and
p(Ad(z1,22)) < 0(S(z0,21)) + Lp(I (w0, 21)). (5)
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From (4), I(xo,z1) = 0. Now, from (3), we have

S(zo,z1) = max{d(fymﬁﬂl),d(xmfxo),d(xl,fxl)m

1+ d(xg, 1)’
d(x(), fl’l) + d(-Th f-'L'O)}
2s ’
< max{d(xo,xl)ad(xovxl)’d(xl’x2)m’

d(Io, 1‘2) + d(.’L‘l, .Tl)

2s b

d(zo, 1) + d(x17x2)}
2 b

= max{d(x1,z2),d(xg,x1)}. (6)
If max{d(z1, z2),d(zo,21)} = d(x1, z2), then inequality (5) become
p(Ad(x1, 2)) < @(d(x1,22)) + Lp(0).
As ¢(0) = 0 and ¢ is nondecreasing, the above inequality can be written as

)\d(ZC]_, $2) S d($17.'1,‘2),

S max{d(xo,&“ﬁ,d(xlvf@)»

which is a contradiction because A > 1. Hence max{d(x1,z2),d(x0,z1)} = d(zo,x1), then
inequality (5) becomes

e(Ad(z1,22)) < @(d(0, 71)).
Thus we have
Ad(x1,x2) < d(xo,x1).
Continuing this way, we can construct a sequence {x,,} such that z,; € fz, and
PAd(@n, Tnt1)) < P(S(@n-1,2n)) + Lo(I(Tn-1,72)), (7)
for every n > 1. After simple calculation, we have I(x,_1,z,) =0 and

1+ d(xnfla fxnfl)
1 + d(xn—hxn)

S(xnfla xn) = max{d(mn,l, xn)7 d(:Cn,h fxnfl)v d(l'n, fxn)

d(xnfla fwn) + d(xn; fxnfl)
2s

2

1+d(xp—1,zn)
1+ d(xn—la -Tn) ’

IN

max{d(:cn,l, mn)v d((En,h xn)a d({En, anrl)

d(mn—la xn—i—l) + d(l‘n, xn)

2s b

d(xnflu xn) + d(xn7 anrl)

2 b
= max{d(xnazn+1)vd(xn—1azn)}' (8)
If max{d(zn, Tnt1), d(@n—1,2n)} = d(@n, Tnt1), then inequality (7) can be written as:

P(Ad(Tn, Tng1)) < @(d(2Zn, Tni1)) + Lp(0).

As ¢(0) = 0 and ¢ is nondecreasing, the above inequality can be written as

< max{d(mnflamn)vd(xnaxn+1)a

)\d(acn, l‘n+1) < d(Zn, Tny1),

which is a contradiction.
Hence max{d(xy,, zp+1), d(Xn—1,%n)} = d(Tn_1,x,). Now inequality (7) becomes

@(Ad(xn, xn+1)) < <p(d(:cn_1, xn))
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Thus we have
Ad(xna xn+1) S d(xn—lv mn)v

for all n € N. It follows from Lemma (2.1) and completeness of B that there exists z € B
such that z,, — = as n — oo.

The proof is obviously complete under assumption (i) and (ii).

Now assume (iii) holds. We know that for z,, there exists y, € fx such that

o(Ad(Yn,zn)) < p(S(wp-1,7)) + Lo(I(Tn-1,7)). 9)

We can calculate

I(‘T”*hm) = min{d(xnflufxnfl) +d($7fm),d(xn,hfx)7d(gg7fmn71>}7
< min{d(xn—1,xn) +d(SU,fx),d(xn_l,fx)’d(x,xn)}’ (10)
and
S(xn_l’ ‘T) = max{d(xn—h 1‘)7 d(xn—la fxn—l)a d(l'a ff) LS d(xn_l’ fx”—l)

1+ d(mn,l,x)
d(xnfla fSU) + d(!L‘, fxnfl) }
2s ’

max{d(xn_l, 1')7 d(l'n—ly xn)a d(lE, fiC)

1+d(xp_1,zn)
1+ d(zp_1,2)’

IN

d(xp—1, fz)+ d(z,z,)
SAA ) 1)

Since z, — x as n — oo, lim d(z,,z) =0 and lim d(x,,x,—1) = 0. From inequality (10)
n—oo n—oo

and inequality (11) we have

nl;ngo I(xp—1,z) =0,

and
limsup S(z,—1,2) < d(z, fz),
So the inequality (9) yields
oA limsup d(yn, zn)) < @(d(zx, fx)). (12)
Since y,, € fx, we have
d(z, fz) < d(z,yn),
for each n > 1. As ¢ is nondecreasing, inequality (12) can be written as

Aim sup d(yn, zn) < d(z, fz) < d(z,yn)- (13)

Now (iii) leads to lim d(zy,yn) = d(z,y,) and inequality (13) can be written as
n—oo

Thus limy, = x. Since fz is closed and y,, € fz, we have x € fz. Finally, if assumption
(iv) is satisfied, by repeating the proof presented for an assumption (iii), inequality (13) is
obtained. Therefore, it follows that

AMimsup d(Yn, ©n) < d(z,yn) < s(d(z, 2,) + A0, Yn))-
Further,
(A = s)limsup d(yn, Tn) < slimd(z, z,).
Thus, lim d(z,, y») = 0, since A > s. Also,
d(@,yn) < s(d(z,2n) + d(Tn, yn)),

we have limy, = x and hence x € fz. O



126 Fatemeh Lael, Naeem Saleem, Mujahid Abbas

Theorem 1.1 is a particular case of Theorem 2.1 part (iv). As a single valued mapping
T can be viewed as a multivalued mapping that takes z € X to a set {Tz}. If we consider
A = s then equation (1) will be a particular case of equation (2). Therefore Theorem (2.1)
part (iv) implies that T has a fixed point.

To support our main result, we provide the following example.

Example 2.1. Suppose that f : R — R is a multivalued mapping, defined as
T T
={-. 21
fx { 2 K 3 K }7
1

and (R?,d) is a b—metric space, where d(z,y) = |z — y|?. Consider ¢(z) =z, L = 3 and
A= 2. For any z,y € R and z € fx. We have three cases:

Case 1: If z = Z € fx then choose w = ¥.
Case 2: If z = £ € fx then choose w =
Case 3: If z =1 € fx then choose w = z.

Now, we have to show that the inequality (2) is satisfied.
Case 1 leads to

w|sN8
ol

912 - Y
2

U=yl <l -y,
therefore
2|2 —wf® <o -yl
This implies that
p(2z —wl’) < ¢(lz —yf?).

Case 2 and case 3, following on the same lines as in case 1. We have

‘x - y|2 S S(’I’,y)

So
o(lz —y*) < o(S(z,y)).
Since
e(I(z,y)) >0,
therefore .
llz = yl”) < (S(2,y) + 30 (2,y))-
Thus

p(2]z = wl?) < @(S(2,)) + Lo(I(z,y)).
Note that, 0 and 1 are the fixed points of f.

The following corollary is a b—metric version of Nadler’s fixed point theorem.

Corollary 2.1. Let B be a closed subset of a complete b—metric space X and f : B - B

be a closed valued multivalued mapping. Also, there exists z € fx and w € fy such that
d(z,w) < kd(z,y), (14)

for each x,y € B, then f has a fized point.

Proof. Suppose A = ¢ > 1, where k # 0 (for k = 0, it is trivial). Since inequality (14)

implies that the mapping f is continuous. Following the assumption (ii) of Theorem (2.1)

implies that f has a fixed point. O

We know Nadler’s fixed point theorem is a generalization of Banach fixed point theo-
rem for multivalued mappings. So we have the following corollary which is an answer to an
open problem and establishes a b—metric version of Banach contraction theorem.
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Corollary 2.2. Let B be a closed subset of a complete b—metric space X and consider a
single valued mapping T : X — X satisfying

d(Tz, Ty) < kd(,y),
where k € [0,1) and x,y € X, then T has a fized point.

The b—metric version of Banach fixed point theorem is already proved for k € (0, %)
but it was an open problem that whether T" has a fixed point when % < k < 1. Indeed, we
replied to this question in corollary 2.2 (for details, see 2.2).

Suppose that X is a b—metric space equipped with a partially order relation “<” (
see, [13, 21]). A multivalued mapping f : X — X is called monotone if for all z < y, we

have u < v, for each u € fa and v € fy (see, [15, 19]).

Theorem 2.2. Let (X,d) be a complete ordered b—metric space and f is a monotone mul-
tivalued mapping on X such that xg = fxg for some x¢g € X. Suppose, there exist constants
L >0 and A > s such that for x,y € X with x < y and z € fx, there exists w € fy and
z 2w such that

p(Ad(z,w)) < p(S(z,y)) + LI (2, y)),
where S(x,y) and I(x,y) are given in (3) and (4). Then f has a fized point.

Proof. The proof is closely modeled on the proof of Theorem 2.1 part (iv). |

Indeed, Theorem 2.2 is a generalization of Theorem 2.1 part (iv) in ordered b—metric
space.

3. Applications

A b—metric fixed point theorem can be used to provide sufficient conditions for finding
a real continuous function u defined on [a, b] such that

b
u(t)Ev(t)—i—'y/ G(t, $)g(s, u(s))ds, ¢ € [a,b], (15)

where « is a constant, g : [a,b] xR — [a, b] is lower semicontinuous, G : [a, b] x [a, b] — [0, 00)
and v : [a,b] — R are given continuous functions. Let X = Cfa,b] be the set of all real
continuous functions defined on [a,b], g, : [a,b] — [a,b] where g,(s) = g(s,u(s)) and a
b—metric on X defined as:
_ _ 2
d(u,v) = max | u(t) —v(t) [*-

Note that (X, d) is a complete b—metric space. Also, an integral inclusion problem (15) can
be reformulated as: w is a solution of the problem (15) if and only if it is a fixed point of
f:X — X, where

b
fu={x e X : x(t) € v(t) —l—’y/ G(t, s)g(s,u(s))ds, t € [a,b]}.

Assume that:
1: [y[<1,

. b2 < 1
2: argg;{bfa G?(t,2)dz < =

3: forall z,y € X and w,(t) € g, (t), there exists hy(t) € g, (t) such that |w, (t)—h,(t)]* <
3: | 2(t) —y(®) [, t € [a,0],
then multivalued mapping f has a unique fixed point. Suppose that z,y € X and w € fx,
by definition, we have

b b
w(t) € v(t) + 7/ G(t,s)g(s,z(s))ds = v(t) + ’y/ G(t,8)gz(s)ds.
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By Michael’s selection theorem, (in [18] Theorem 1) it follows that there exists a continuous

single valued mapping w;(s) € g,(s) such that w(t) =

(t) +’Yff G(t, s)w,(s)ds. According

to assumption 3, for w,(s) € g»(s), there exists an hy(s) € g,(s) such that

wa(5) — hy () < = | a(s) —

= 2s

for all s € [a,b]. We define

that is

p(r) =
©(2s

2

d(w,

, we have

h))

IN

IN

<

y(s) %,

b
h(t) :v(t)+7/ G(t, 5)hy (s)ds

b
h(t) € v(t) + 7/ G(t,s)gy(s)ds.

Therefore h € fy. Using the Cauchy-Schwarz inequality and conditions 1 — 3, for L = 0,

2
Jnax [w(t) —h(t)]",

b
Jnax, | v(t —l—’y/a G(t, s)wy(s)ds — (v(t

b
7P s | [ Gles) wa(s) ~ )

| v |2 max

{%%/G”S““/'%
7 P

_CL{2S x(s) |2 dS}7
2 b
28(;—| a) / Jnax, | 2(s) —y(s) | ds
| gsl atey w(s) —y(s) |,
| ;sl d(z,y) < %d(x,y) < %S(m,y),
p(S(x,y)) + Lo(I(x,y)).

s ([ @as [t -

b
>+w/<nuememeﬁ,
)ds |2
s) |” ds},

he(s) |2 ds},

Hence all the conditions of Theorem 2.1 part (iv) are satisfied, which implies that f has a
unique fixed point u € X such that the integral inclusion (15) has a solution that belongs
to Cla, b].

Now, we are going to provide an application of the Banach’s fixed point theorem
in b—metric spaces to establish the existence of the unique solution of linear system of

equations:

Consider we have the following system of linear equations

aj1xy + ajp2xs + - - -

(2171 + G22T2 + - -

Ap1x1 + Ap2Xo + - -+

+ 1Ty = bla

+ agnTn = b27

+ AnnTn = bna
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which has a unique solution under certain conditions. Then, we have to define
T = { a”azjl §¢§f
and a b—metric as:
d(z, y) = max(x; - vi)?,
for all x,y € R™. Also, the self-mapping T : R™ — R is defined as:
Te=(A+ 1)z —b,

where A is an n x n matrix with a;; arrays and I is an identical matrix, b = [by,. .., b) "
Now, we have to show that the self-mapping T satisfies the Banach’s contraction principle
in b—metric spaces. Using Cauchy-Schwarz inequality, we have

1<i<n 4

d(Tz,Ty) = max (Y vij(z; — ;)%
Jj=1

n n

2 2
< lfél%xn(zl%j Z(% = ¥;)7),
i=

=1

IN

n® max~;; max(z; —y;)°,
2,] J
< n’maxy;; d(z,y).
]

Corollary 2.2 implies that if n* max~7; < 1 then T has a fixed point. So, the linear system
i.j

has a unique solution.

4. Conclusion

In this article, we defined p—multivalued contractive mapping and obtained fixed
point results in “b-metric space”. As a consequence of our main result, we obtained Nadler’s
theorem in “b-metric space”and Banach fixed point theorem by relaxing the assumptions
on contractive constant k € [%, 1) in contraction theorems proved for b—metric spaces. In
this way, we addressed an open problem by showing that the results hold even contractive
constant k lies in [%, 1), where s > 1. We also presented an application to a particular form
of integral inclusions and to the system of a linear equation to support the results thus
obtained.
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