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WEIGHTED ENTROPY FUNCTION AS AN EXTENSION OF THE

KOLMOGOROV-SINAI ENTROPY

Uosef Mohammadi1

In this paper, the concept of weighted entropy function for dynamical systems

on compact metric spaces is introduced using the generator notion. It is proved that this
concept is an extension of the Kolmogorov-Sinai entropy. The independence of weighted
entropy function of generators is proved. The persistence of weighted entropy function
under a topological conjugate relation is deduced. A version of Jacobs Theorem con-

cerning the entropy of a dynamical system is given. Moreover it is shown that weighted
entropy function generates the Kolmogorov-Sinai entropy as a special case.
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1. Introduction

Ergodic theory today is a large and rapidly developing subject. It deals primarily
with the complex behavior of all transformations that preserve the structure of measure
spaces. Entropy was first introduced into the ergodic theory by Kolmogorov [3] and Sinai
[10] via a measure theoretic approach. Kolmogorov-Sinai entropy measures the maximal loss
of information for the iteration of finite partitions in a measure preserving transformation.
Entropy has been studied from different viewpoints [2, 4, 5, 8, 11, 12, 13]. In all of this view-
points, entropy is given as a non-negative extended real number. This paper is an attempt
to present an extension of the Kolmogorov-Sinai entropy as a linear function rather than
a non-negative number. In this article, a weight factor f(x) to any point x ∈ X, where
X denotes the base space of the system is assigned and the weighted entropy function for
topological dynamical systems is defined using the generator notion. The weight factor can
be cosidered as the local loss of information caused by the lack of experience of any intelli-
gent point. The weighted entropy function concides with the Kolmogorov-Sinai entropy for
dynamical systems when there is no weight factor in the middle.

2. Preliminary facts

This section is devoted to provide the prerequisites that are necessary for the next
section. Let (X,β) denotes a σ−finite measure space, i.e. a set equiped with a σ−algebra
β of subsets of X. Further let µ denote a probability measure on (X,β). Then (X,β, µ) is
called a probability space. Let T : X → X be a measure preserving invertible transforma-
tion of probability space (X,β, µ). In particular T (β) = β and µ(T−1(A)) = µ(A) for all
A ∈ β. Then (X,β, µ, T ) is called a dynamical system.
In this article the set of all probability measures on X preserving T is denoted by M(X,T ).
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We also write E(X,T ) for the set of all ergodic measures of T . Finally, for µ ∈ M(X,T ),
hµ(T ) denotes the Kolomogorov-Sinai entropy of T . In the following we recall some defini-
tions and classical results that we need in the sequel.

Theorem 2.1. (Birkhoff Ergodic Theorem[14]) Suppose T : (X,β, µ) → (X,β, µ) is measure

preserving (where we allow (X,β, µ) to be σ−finite ) and f ∈ L1(µ). Then
1

n

∑n−1
i=0 f(T i(x))

convergence a.e. to a function f∗ ∈ L1(µ). Also f∗oT = f∗ a.e. and if µ(X) < ∞, then∫
X
f∗dµ =

∫
X
fdµ.

Definition 2.1. A partition ξ is a refinement of a partition η, if every element of η is a
union of elements of ξ. If ξ is a refinement of η, we write η ≺ ξ.

Definition 2.2. Given two partitions ξ, η we define their common refinement

ξ ∨ η = {Ai ∩Bj ;Ai ∈ ξ,Bj ∈ η}.

Definition 2.3. The entropy of the partition ξ = {A1, ..., An} of the probability space is
defined by

Hµ(ξ) = −
n∑

i=1

µ(Ai) log µ(Ai)

and the entropy of the partition of the dynamical system is given by

hµ(T, ξ) = lim
n→∞

1

n
Hµ(ξ ∨ T−1ξ ∨ ...T−nξ)

where T−1ξ = {T−1A1, ..., T
−1An}. Then the Kolmogrov- Sinai entropy of the automor-

phism T is defined by

hµ(T ) = sup
ξ

hµ(T, ξ)

where the supremum is over all finite partitions.

Definition 2.4. We say that a partition ξ with Hµ(ξ) < ∞ is called a generator for the
probability space (X,β, µ) if ∨∞

i=1T
−i(ξ) = β.

Theorem 2.2. (Kolmogrov- Sinai Theorem [7]) If ξ is a generator then hµ(T ) = h(T, ξ).

Theorem 2.3. (Choquet [6]) Suppose that Y is a compact convex metrisable subset of a
locally covex space E, and x0 ∈ Y . Then, there exists a probability measure τ on Y which
represents x0 and is supported by the extreme points of Y , that is, Φ(x0) =

∫
Y
Φdτ for every

continuous linear functional Φ on E, and τ(ext(Y )) = 1.

Let µ ∈ M(X,T ) and f : X → R be a bounded measurable function. As we know
that E(X,T ) equals the extreme points of M(X,T ), applying the Choquets Theorem for
E = M(X), the space of finite regular Borel measures on X, and Y = M(X,T ), and
using the linear functional Φ : M(X) → R given by Φ(µ) =

∫
X
fdµ, we have the following

corollary:

Corollary 2.1. Suppose that T : X → X is a continuous map on the compact metric space
X. Then, for each µ ∈ M(X,T ), there is a unique measure τ on the Borel subsets of the
compact metrsable space M(X,T ), such that τ(E(X,T )) = 1 and∫

X

f(x)dµ(x) =

∫
E(X,T )

(

∫
X

f(x)dm(x))dτ(m)

for every bounded measurable function f : X → R.

Under the assumptions of Corollary 2.8, we write µ =
∫
E(X,T )

mdτ(m), called the

ergodic decomposition of µ.
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Theorem 2.4. (Jacobs [14]) Let T : X → X be a continuous map on a compact metrisable
space. If µ ∈ M(X,T ) and µ =

∫
E(X,T )

mdτ(m) is the ergodic decomposition of µ, then we

have:

(i) If ξ is a finite Borel partition of X, then, hµ(T, ξ) =
∫
E(X,T )

hm(T, ξ)dτ(m).

(ii) hµ(T ) =
∫
E(X,T )

hm(T )dτ(m) (both sides could be ∞).

3. weighted entropy function of dynamical systems

In this section, the notion of weighted entropy function of dynamical systems is in-
troduced and some of its ergodic properties is proved.

Definition 3.1. Suppose that T : X → X is a continuous map on the topological space
X,x ∈ X and A a Borel subset of X. Then

mT
x (A) = lim sup

n→∞

1

n

n−1∑
i=0

χA(T
i(x)).

Where χA is the characteristic function of A defined by

χA(x) =

{
1 if x ∈ A
0 if x ∈ Ac

We write mx for mT
x where there is no confusion.

Now, let x ∈ X and ξ = {A1, A2, ..., An} be a finite Borel partition of X. We define

ρ(x, T, ξ) := −
n∑

i=1

mx(Ai) logmx(Ai);

(We assume that log 0 = −∞ and 0×∞ = 0).

It is clear ρ(x, T, ξ) ≥ 0.

Definition 3.2. Suppose that T : X → X is a continuous map on the topological space
X,x ∈ X and ξ be a finite Borel partition of X. The map h(., T, ξ) : X → [0,∞] is defined
as

h(x, T, ξ) = lim sup
l→∞

1

l
ρ(x, T,∨l−1

i=0T
−iξ).

Definition 3.3. Suppose that T : X → X is a continuous map on the topological space
X,x ∈ X and ξ be a finite Borel partition of X. We define the local entropy of T at x by

h(x, T ) = sup
ξ

h(x, T, ξ).

Definition 3.4. Suppose that T : X → X is a continuous map on the compact metric space
X, and ξ be a generator for the dynamical system (X,T ). Let µ ∈ M(X,T ) be such that
hµ(T ) < ∞. The weighted entropy function of T ( with respect to µ), LT (., µ, ξ) : C(X) → R,
is defined as

LT (f, µ, ξ) =

∫
X

f(x)h(x, T, ξ)dµ(x)

for all f ∈ C(X) (again 0×∞ := 0).

In the following, we will prove the independence of weighted entropy function from
the selection of the generator.
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Theorem 3.1. Definition 3.4 is independent of the choice of generator i.e if ξ and η are
two generators of T then,

LT (f, µ, ξ) = LT (f, µ, η).

for all f ∈ C(X).

Proof : First, let m ∈ E(X,T ). For any Borel set A ⊂ X and x ∈ X, applying
Birkhoff Ergodic Theorem, we have

mx(A) = m(A)

for almost all x ∈ X. Hence, if ξ = {A1, A2, ..., An} is a finite Borel partition of X, then,

ρ(x, T, ξ) = −
n∑

i=1

m(Ai) logm(Ai) = Hm(ξ)

for almost all x ∈ X. Thus,

(1) lim sup
l→∞

1

l
ρ(x, T,∨l−1

i=0T
−iξ) = hm(T, ξ)

and

(2) lim sup
l→∞

1

l
ρ(x, T,∨l−1

i=0T
−iη) = hm(T, η)

Applying (1), (2), and Kolmogorov- Sinai Theorem, we have

h(x, T, ξ) = lim sup
l→∞

1

l
ρ(x, T,∨l−1

i=0T
−iξ)

= hm(T, ξ) = hm(T ) = hm(T, η)

= lim sup
l→∞

1

l
ρ(x, T,∨l−1

i=0T
−iη) = h(x, T, η)

So, if f ∈ C(X), then,

f(x)h(x, T, ξ) = f(x)h(x, T, η)

for all x ∈ X. Therefore,

LT (f,m, ξ) = LT (f,m, η).

Remark 3.1. By Theorem 3.5, we conclude that the definition of weighted entropy function
is independent of the selction of generators. Therefore, given any invariant measure µ and
any generator ξ, we have the unique weighted entropy function. So, we can write LT (f, µ)
for LT (f, µ, ξ) without confusion.

Definition 3.5. we say that two dynamical systems (X,T1) and (Y, T2) are conjugate if
there exists a homeomorphism φ : X → Y such that φoT1(x) = T2oφ(x) for all x ∈ X.

Theorem 3.2. Suppose that T : X → X is a continuous map on the compact metric space
X. Then,

(i) Given any µ ∈ M(X,T ), the weighted entropy function f → LT (f, µ) is linear.
(ii) Given any f ∈ C(X), the map µ → LT (f, µ) is affine.
(iii) If two dynamical systems (X,T1) and (Y, T2) are conjugate, and µ ∈ M(X,T ), then,

LT1(f, µ) = LT2(fφ
−1, µφ−1)

for all f ∈ C(X).

Proof :

(i) and (ii) are trivial.
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(iii) For x ∈ X and the Borel set A ⊂ X, we have mx
T1(A) = mφ(x)

T2(φ(A)). Therefore,
ρ(x, T1, ξ) = ρ(φ(x), T2, φ(ξ)) for any finite Borel partition ξ. By definition of h(., T, ξ)
we have h(., T1, ξ) = h(., T2, φ(ξ))oφ. Note that φ(ξ) = {φ(A);A ∈ ξ}. Let µ ∈
M(X,T1), and f ∈ C(X). Then,

LT1(f, µ) =

∫
X

f(x)h(x, T1, ξ)dµ(x)

=

∫
X

f(x)h(φ(x), T2, φ(ξ))dµ(x)

=

∫
Y

f(φ−1(x))h(x, T2, φ(ξ))d(µφ
−1)(x)

= LT2(fφ
−1, µφ−1).

2

Now we can deduce the following version of Jacobs theorem.

Theorem 3.3. Suppose that T : X → X is a continuous map on the compact metric space
X. If µ ∈ M(X,T ) and µ =

∫
E(X,T )

mdτ(m) is the ergodic decomposition of µ, then,

LT (f, µ) =

∫
E(X,T )

LT (f,m)dτ(m)

for all f ∈ C(X).

Proof : Let ξ be a generator of dynamical system (X,T ). Let f ∈ C(X). Applying
Corollary 2.7, we have

LT (f, µ, ξ) =

∫
X

f(x)h(x, T, ξ)dµ(x)

=

∫
E(X,T )

(

∫
X

f(x)h(x, T, ξ)dm(x))dτ(m)

=

∫
E(X,T )

LT (f,m)dτ(m).

2

In the following theorem, we extract the Kolmogorov-Sinai entropy from the weighted en-
tropy function as a special case.

Theorem 3.4. Suppose that T : X → X is a continuous map on the compact metric space
X. Then LT (1, µ) = hµ(T ).

Proof : Let ξ be a generator and m ∈ E(X,T ). As in the proof of Theorem 3.5, we
have

h(x, T, ξ) = hm(T ).

Therefore,

L(1,m) =

∫
X

h(x, T, ξ)dm(x) = hm(T ).

Now, let µ ∈ M(X,T ), and µ =
∫
E(X,T )

mdτ(m) be the ergodic decomposition of µ. Apply-

ing Theorem 2.8 and Theorem 3.9 we have,

LT (1, µ) =

∫
E(X,T )

LT (1,m)dτ(m)

=

∫
E(X,T )

hm(T )dτ(m)

= hµ(T ).
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2

Theorem 3.5. Suppose that T : X → X is a continuous map on the compact metric space
X. Then, the weighted entropy function f → LT (f, µ) is a continuous linear function on
C(X), and ∥LT (., µ)∥ = hµ(T ).

Proof : Let ξ be a generator. Let f ∈ C(X), then,

|LT (f, µ)| = |
∫
X

f(x)h(x, T, ξ)dµ(x)| ≤
∫
X

|f(x)|h(x, T, ξ)dµ(x)

≤ ∥f∥∞
∫
X

h(x, T, ξ)dµ(x) = ∥f∥∞LT (1, µ) = ∥f∥∞hµ(T )

Therefore, the weighted entropy function is a continuous function and ∥LT (., µ)∥ ≤ hµ(T ).
The equality holds by Theorem 3.10. 2

4. Concluding remarks and open problems

In this paper, the notion of weighted entropy function for dynamical sytems on com-
pact metric spaces is introduced. It is a continuous linear function on C(X) such that its
norm equals the Kolmogorov-Sinai entropy of T . Theorem 3.8 (ii) is the generalized form of
the property that, the entropy map µ → hµ(T ) is affine. Theorem 3.8 (iii) generalizes the
invariance of the entropy of a system, under topological conjugacy, to the weighted entropy
function. Theorem 3.9 is the generalized Jacobs Theorem concerning the entropy of a dy-
namical system. Finally, LT (1, µ) is the Kolmogorov-Sinai entropy of T .
An interesting open problem is to estabilish a proposition on existence of generators having
finite weighted entropy function.
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