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THE WEIGHTING METHOD AND MULTIOBJECTIVE
PROGRAMMING UNDER NEW CONCEPTS OF
GENERALIZED (®, p)-INVEXITY

Tadeusz ANTCZAK?, Manuel ARANA-JIMENEZ?2

In the paper, the weighting method is used for solving the considered nonconvex vector
optimization problem. The equivalence between a weak Pareto solution of the original vector
optimization problem and an optimal solution of its corresponding unconstrained scalar
optimization problem is established under (@,p)-invexity. Further, the definition of a
differentiable KT-(®,p)-invex vector optimization problem is introduced and the sufficient
optimality conditions are established for such nonconvex differentiable multiobjective
programming problems. In order to prove several Mond-Weir duality results for a new class of
nonconvex differentiable vector optimization problems, the concept of WD-(®,p)-invexity is
introduced. It turns out that the results presented in the paper are proved also for such
nonconvex vector optimization problems in which not all functions constituting them have the
fundamental property of many generalized convexity notions, earlier introduced in the
literature.
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1. Introduction

In recent years, attempts are made by several authors to define various classes of
nonconvex optimization problems and to study their optimality criteria and duality results.
In [25], Martin proposed two weaker notions than invexity introduced by Hanson [14],
called KT-invexity and WD-invexity. He proved that every Kuhn-Tucker point is a
minimizer of a scalar optimization problem with inequality constraints if and only if this
problem is KT-invex. Also, he established that Wolfe weak duality holds if and only if the
primal optimization problem is WD-invex. In recent years, several generalizations of
Martin’s definitions have been introduced to optimization theory in order to weaken the
assumption of convexity in establishing optimality and duality results for new classes of
nonconvex differentiable optimization problems (see, for example, [1], [2], [3], [4]. 5],
[6], [13], [16], [17], [18], [19], [20], [21], [22]). Recently, Caristi et al. [8] and later Ferrara
and Stefanescu [10] established sufficient optimality conditions and duality results for
differentiable scalar and vector optimization problems under (®,p)-invexity hypotheses.

In the paper, we use the weighting method for solving differentiable vector
optimization problems involving (®,p)-invex functions. Thus, we relate a weak Pareto
solution of such nonconvex smooth vector optimization problem to an optimal solution of
its corresponding weighting scalar optimization problem constructed in this method.
Further, by taking the motivation from Martin [14] and Caristi et al. [8], we generalize the
definitions of KT-invexity, WD-invexity and (®,p)-invexity to the case of differentiable
multiobjective programming problems with inequality constraints. Namely, we introduce
the concepts of KT-(®,p)-invexity and WD-(®,p)-invexity for nonconvex differentiable
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vector optimization problems. We use the introduced notion of KT-(®,p)-invexity to
establish sufficient optimality conditions and WD-(®,p)-invexity to establish several
Mond-Weir duality results for a new class of nonconvex differentiable vector optimization
problems. We also prove the equivalence between a weakly efficient solution of the KT-
(D,p)-invex vector optimization problem and a minimizer in its associated scalar
optimization problem constructed in the weighting method. It turns out that the sufficient
optimality conditions and Mond-Weir duality results are established for such nonconvex
vector optimization problems for which other generalized convexity notions existing in the
literature may avoid.

2. Scalarization method for a new class of nonconvex differentiable vector
optimization problems

For any vectors x = (x4, ..., x,)7, ¥ = (¥1, ..., y)T in R", we define: x <y if and only if
xi<vyiforali=12..n;x =1y ifandonly if xi =vy forall i =12..,n;
x<y ifandonlyifx=yandx=y; x=yifand only if x;=y; foralli=1,2,...,n;

We consider the following unconstrained vector optimization problem:

fx) = (fl(x), ...,fk(x)) - min st xeX, (UVOP)
where f: X — R¥ is a differentiable function on a nonempty open convex set X cRx.
Definition 2.1. A feasible point x is said to be a weak Pareto (weakly efficient, weak

minimum) solution for (UVOP) if and only if there exists no x € X such that f (x) < f(x).

Definition 2.2. A feasible point X is said to be a Pareto (efficient) solution for
(UVORP) if and only if there exists no x € X such that f(x) < f(x).

Definition 2.3. [10] The function f: X — R¥ is said to be (@, p, )-invex at % € X

on X if there exist a function @ : X x X x R"*1 — R, where ®(x, x,") is convex on R"*1,
®(x,%,(0,a)) 20 for all x € X and any a € Ry, p = (py, ..., px) € R¥, such that, the
following inequalities

fi0) = D 2 0 (0,2 (Vi@ pyr). i=1...k, (1)
hold for all x € X. If inequalities (1) are satisfied at any point x € X, then f is said to be a
(CD, pf)—invex function on X.

Definition 2.4. A feasible point x € X is said to be a vector critical point of the
problem (UVOP) if there exists a vector 1 € R with A > 0 such that Vf(x) = 0.

Scalar stationary points are those whose vector gradients are zero. For vector
optimization problems, vector critical points are those such that there exists a non-negative
linear combination of the gradient vectors of each component objective function, valued at
this point, equal to zero. Craven [9] established the following result for the problem
(UVOP):

Theorem 2.1. Let x € X be a weakly efficient solution to the problem (UVOP).
Then there exists vector 1 € R* with A > 0 such that AVf(x) = 0, in other words, X is a
critical point to the problem (UVOP).

Now, we give a condition under which any critical point of the unconstrained
vector optimization problem (UVOP) is its weakly efficient solution.
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Theorem 2.2. Let ¥ € X be a vector critical point of the unconstrained vector
optimization problem (UVOP), that is, there exists A > 0 such that AVf(x) = 0. Further,

assume that the objective function f is (@, pf)-invex at x € X on X, where ¥ &; Py, =

0. Then x is a weakly efficient solution of the problem (UVOP).
Proof Since X is a vector critical point of the unconstrained vector optimization

problem (UVOP), there exists & > 0 such that AVf (x) = 0. By assumption, f is a (CD, pf)—

invex function at i on X. Then, by Definition 2.3, inequalities (1) are satisfied. Multiplying
(1) by A;, i=1,....k, we have

Rifi() = 1fi® 210 (0,2, (Vi@ pp)). =1,k 2

Let us denote a; = Z{-‘;lﬁ. Note that 0 = @; =0, but at least one @; > 0 and,
moreover, Y . & = 1. Then, (2) yields

T Tfi(x) - TEL T () 2 5K, 0 (3 7, (VD) 7)) 3)

By definition, ®(x, x,") is convex on R™*1. Since 0 < &; = 0 and, moreover, ¥¥ , a; =
1, by the definition of a convex function, we have

o (2% (B @VA®, I, %pp) ) S 5K, 00 (% (VA@ op)) - (4)
By (3) and (4), it follows that

T W) — T @fi(0) 2 0 (% (T, @VA®), T @y, ). (5)
By AVf(x) = 0, (5) gives
TG0 - Y i) 2 @ (x, X'ﬁ (0,2, XiPﬁ-))- (6)

By definition, ®(x,x,(0,a)) 20 for all x € X and any a € R,. Hence, hypothesis
Y hipr, 20 and (6) yield that the following inequality Yi—; &;f;(x) = T @ f; (%)
holds for all x € X. Since & > 0, the above inequality implies that x is a weakly efficient
solution of the problem (UVOP).

One of the methods used for solving vector optimization problems, the weighting
method, relates their weakly efficient solutions to optimal solutions of corresponding scalar
problems. In this approach, the following scalar unconstrained optimization problem, the
so-called weighting scalar optimization problem, is constructed for the considered
multiobjective programming problem ¥¥_ 1, f;(x) - min st. x €X, (P(V)
where 1 € R¥. The following result is well-known in the literature (see, [15]):

Theorem 2.3. A minimizer of the weighting scalar optimization problem (P())) is
a weakly efficient solution of the vector optimization problem (UVOP). If all weighting
coefficients are positive, that is 4; > 0, i = 1,...,k, then an optimal solution of the problem
(P(L)) is an efficient solution of the problem (UVOP).

Now, we prove the converse result for a new class of nonconvex vector
optimization problems.

Theorem 2.4. Let the objective function f in the problem (UVOP) be ((D, pf)-

invex on X. Further, assume that x is a weakly efficient solution in problem (UVOP) and
the necessary optimality conditions are satisfied at x with Lagrange multiplier A € R*, % >
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0 with ¥ . &; pr, = 0. Then a weakly efficient solution x of (UVOP) solves a weighting
scalar optimization problem.
Proof The proof is similar to the proof of Theorem 2.2 and, hence, it is omitted.
Corollary 2.1. Let the objective function f in the problem (UVOP) be (CD, pf)—

invex on X with ps. = 0, i = 1,...k. Then every weakly efficient solution of the problem
(UVOP) solves a weighting scalar optimization problem.

3. KT-(®, p)-invexity and optimality

In many practical applications, a vector optimization problem has the set of all
feasible solutions given by a number of inequality constraints. Therefore, we consider the
following constrained vector optimization problem with inequality constraints:

FO) = (f1(x), ..., fr(x)) > min st. g;(x) S0, j=1,..,m, x €X, (VP)
where fi:X - R, i e I = {1,..k} and g;:X - R, j € J = {1,..m}, are differentiable
functions defined on a nonempty open convex set X< R™. Further, let D :=
{xeX: gj(x) =0, j=1,..,m} be the set of all feasible solutions of the considered
vector optimization problem (VP) and J () = {j € J: g;(¥) = 0}.

In this section, for the considered multiobjective programming problem (VP), we
define a new concept of generalized convexity which is a generalization of a class of (®,p)-
invex functions earlier defined by Caristi et al. [8] and the class of differentiable KT-invex
vector optimization problems introduced by Osuna-Gomez et al. [17].

Definition 3.1. Let u € D be given. If there exist a function ®: D x D x R"*1 -
R, where ®(x,u,”) is convex on R™*1, ®(x,u, (0,a)) 2 0 forall x € D and any a € R,

p= (pfl, s P Pg» ...,pgm) € R**™ sych that

X, u€D fi() — fi(w) 2 (D(x, u, (Vfl-(u),pfi)), i€l
gx)=0|= ©)
gw) =0 CD(x, u, (Vg,-(u),pgj)> =0, jeJw),

then the vector optimization problem (VP) is said to be a vector KT-(®,p)-invex
optimization problem at u € D on D (with respect to @, prand py). If (7) is satisfied at any
point u € D, then the vector optimization problem (VP) is said to be a vector KT-(®,p)-
invex optimization problem on D.

Definition 3.2. Let u € D be given. If there exist a function @D x D x R"*1 -
R, where @(x,u,") is convex on R™*1, cD(x, u, (0, a)) =0forallx e Dandany a € Ry,

p = (ps,, s Pfpr Py ...,pgm) € Rk*™ sych that

xu€D, x#u) [f,() - f,(w) > & (x,u (Vfi(w,pp,)), i€,
gx)=0 |= (8)
gw) =0 @ (x, u, (ng(u),pgj)) =0, je/(w,

then the vector optimization problem (VP) is said to be a vector strict KT-(®,p)-invex
optimization problem at u € D on D (with respect to @, pr and pg. If the above relation is
satisfied at any point u € D, then the vector optimization problem (\VP) is said to be a vector
strict KT-(®,p)-invex optimization problem on D.
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In this section, we prove the sufficient optimality conditions for (weak) Pareto
optimality in the considered multiobjective programming problem (VP) under assumption
that (VP) is vector (strict) KT-(®,p)-invex. It is well known (see, for example, [11], [15])
that, under a suitable constraint qualification, if x € D is a (weak) Pareto optimal solution
in the considered multiobjective programming problem (\VP), then the following necessary
optimality conditions, known as Karush-Kuhn-Tucker conditions, are satisfied:

Theorem 3.1. (Karush-Kuhn-Tucker necessary optimality conditions). Let x € D
be a weak Pareto solution of the problem (VP) and a suitable constraint qualification be
satisfied at x. Then, there exist A € R¥ and 1 € R™ such that

Y AV + X, 1;Vg;(®) =0, 9)
fjgj(x) =0, j €], (10)
L=0, £=0. (11)

Definition 3.3. The point (%,%,2) € D x R* x R™ is said to be a vector Karush-
Kuhn-Tucker point of the considered vector optimization problem (VP), if the conditions
(9)-(10) are satisfied at x with Lagrange multipliers x and /.

Theorem 3.2. Let the considered multiobjective programming problem (VP) be a
vector KT-(®,p)-invex optimization problem on D with respect to @, prand pg. Then, every
vector Karush-Kuhn-Tucker point (x,%,/z) € D x R¥ x R™ of the problem (VP) is its
weakly efficient solution if ¥¥_, %; [ DY ﬁjpgj = 0.

Proof Let the considered vector optimization problem (VP) be a vector KT-(®,p)-
invex optimization problem on D. Further, we assume that (x,2, /1) € D X R* x R™ is a
vector Karush-Kuhn-Tucker point of the problem (VVP). Suppose, contrary to the result, that
X is not a weakly efficient solution of the problem (VP). Then, by definition, there exists a
feasible solution ¥ of the problem (\VP) such that (%) < f(x). Since the problem (VP) is
a vector KT-(®,p)-invex optimization problem on D, by Definition 3.1 and the Karush-
Kuhn-Tucker necessary optimality condition (11), we get

L0 (%% (V@) p7,)) S0, L€, (12)
L@ (3?, X, (Vfl-*(f),pfi*)) < 0 for atleastone i* € I, (13)
i@ (az %, (ng(f), pgj)) <0, jEJ&. (14)
gooyk Mo gooyk W
Let us denote @; = 2‘212{-‘:1%+2}11ﬁ/1 1,....k, B; ‘=1Z{-‘:1Xi+2}":1ﬁj’1 1,...,m. Note

that0 = @; = 0, butatleastonea; > 0,0 = f; < 0,and, moreover, ¥i_; @; + Y7L, B; =
1. By (12)-(14), it follows that

S0 (2,5 (VA0 p7,)) + Ea By @ (2.2, (V9,00 ) < 0. (29)

By Definition 3.1, we have that ®(%, x,") is convex on R™*1. Thus, by (15) and convexity
of ®(%, x,"), we obtain

@ (%%, (S0 VAGD) + Xy By V9, (0, 5 oy, + X By, ) ) <

5k, @0 (3,5, (VD). 7)) + E7a B0 (2.5, (V9,pg,)) (16)
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Combining (15) and (16), we get that the following inequality
O (2%, (Sa @ VA + Sty B V9,0, 5, oy, + S oy, ) ) <O
holds. By the Karush-Kuhn-Tucker necessary optimality condition (9), we have
@ (%%, (0,4 @ py, + ZJ21 Bipg, ) ) <O an
By assumption, it follows that ¥¥_, @; pr, t+ Z}’;lﬁjpgj = 0. As it follows from Definition
3.1, ®(%,x,(0,a)) = 0 for any a € R,. This implies that the inequality

CD(J?, X, (OJZ’iC=1 @ pp, + X1 ﬁjpgj)) =0
holds, contradicting (17). This completes the proof of this theorem.

Theorem 3.3. Let the considered vector optimization problem (VP) be vector KT-
(d,p)-invex on D, a suitable constraint qualification be satisfied at any weakly efficient
solution x of the problem (VP) and the Karush-Kuhn-Tucker necessary optimality
conditions be at x satisfied with Lagrange multipliers > € R* and i € R™. If T, &; py, +

}ilﬁjpgj = 0, then every weakly efficient solution of the original vector optimization

problem (VP) solves a weighting scalar optimization problem.

In order to illustrate the results established in this section, we consider the example
of a multiobjective programming problem with KT-(®,p)-invex functions.

Example 3.1. Consider the following nonconvex multiobjective programming
problem

fG) = (G = 1)? + 1), In((x; — D* + 1))

gx)=1—xx, =0.
Note that D = {(x1x,) € R%:x;x, = 1} and ¥ = (1,1) is such a feasible solution at which
the Karush-Kuhn-Tucker necessary optimality conditions are satisfied. It can be shown, by
Definition 3.1, that (VP1) is KT-(®,p)-invex at X on D, where
D(x,%, (9,p)) =91 In((x, — D? + 1) + 9, In((x; — 1)* + 1)
+ (2 = D(In((x; — D2+ 1) + In((x; — D? + 1)),

and p is equal to p, =0, pr, = 0 and p, = 1, respectively. Note that all hypotheses of
Theorem 3.3 are satisfied, then x is Pareto optimal to the considered multiobjective
programming problem. It is not difficult to show that the constraint function g is not invex
on D with respect to any function n: D x D - R?. This follows from the fact that a
stationary point of the constraint function g is not its global minimizer (see [7]). Since not
all functions constituting the considered vector optimization problem are invex with respect
to the same function n (what is more, some of them are not invex with respect to any n),
then the sufficient optimality conditions given in [17] are not applicable in this case.
Further, the objective function f and the constraint function g are not (®,p)-invex at X on
D with respect to ® and p defined above and, therefore, also the sufficient conditions given
in [10] are not applicable in this case. Thus, the optimality conditions established in the
paper are applicable for a larger class of nonconvex vector optimization problems than the
sufficient optimality conditions established under other generalized convexity notions,
even those ones mentioned above.

(VP1)
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4. WD-(®,p)-invexity and duality

In this section, for the considered multiobjective programming problem (VP),

consider the following dual problem in the sense of Mond-Weir:
f) »min s.t. ¥, 4 V@) + X7, 15 Vg(y) =0,

wg;=0j=1.,m A€R L>0,pue R™u20,x€X.
Let © be the set of all feasible solutions in problem (VD). Further, denote Y = {y € X :
(y, A1) € Q}. In order to prove several duality results between the considered vector
optimization problem (VP) and its vector dual problem in the sense of Mond-Weir (VD),
we now introduce the definition of WD-(®,p)-invexity on a nonempty subset of S
containing the set DUY. Let S be a nonempty subset of X such that DUY c Sandu € S
be an arbitrary point.

Definition 4.1. Let u € S be given. If there exist a function ® : § x § x R"**1 -
R, where ®(x,u,") is convex on R™**1, CD(x, u, (0, a)) =0forallxeSandany a € R,

p= (pfl, s P Pgs ...,pgm) € R**™ sych that

(VD)

xX€S f:00) = i 2 @ (20, (Vfilw,pp)), 1€,
ueEsS |= (18)
gy =ol |-g;W~- d)(x, u (Vg,-(u),pg,.)) =0, j€J,

then the vector optimization problem (VP) is said to be a vector WD-(®,p)-invex
optimization problem at u € S on S (with respect to @, prand pg). If (18) is satisfied at any
point u € S, then the vector optimization problem (VP) is said to be a vector WD-(®,p)-
invex optimization problem on S.

Definition 4.2. Let u € S be given. If there exist a function @ : § x § x R"**1 -
R, where @(x,u,") is convex on R™*1, ®(x,u, (0,a)) = 0 for all x € S and any a € R,

p= (pfl, s P Pg> ...,pgm) € R**™ sych that
xu€S, x#ul |fi)—fiw>o(xu (Viw,pep)), i€l

=
gx) =0 —g;(u) - (D(x,u, (ng(u),pg].)) =0, j€J,
then the vector optimization problem (VP) is said to be a vector strict WD-(®,p)-invex
optimization problem at u € S on S (with respect to @, psand pg). If (19) is satisfied at any
point u € S, then the vector optimization problem (VP) is said to be a vector strict WD-
(D,p)-invex optimization problem on S.
Theorem 4.1. (Weak duality). Let x and (y,A,un) be any feasible solutions of the
vector optimization problem (VP) and its vector Mond-Weir dual problem (VD),
respectively. Further, assume that problem (VP) is WD-(®,p)-invex on DUY with respect
to @, prand pg. If Xi; 4 pr, + Xjt1 Py, Z 0, then f(x) « f(y).
Proof Suppose, contrary to the result, that f(x) < f(y). By the feasibility of (y,A,u)
to the problem (VD), it follows that
ki i) < Zho M i) (20)
By assumption, the vector optimization problem (VVP) is WD-(®,p)-invex on DUY with
respect to @, pr and pg. Therefore, by Definition 4.1, the inequality

(19)
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S i) — By 2fi0) 2 3 40 (23, (VG 7)) (21)
holds. Hence, (20) and (21) yield
21 40 (x. y, (Vfi(}’)»pfi)) <0. (22)

Using Definition 4.1 again together with (y,A,u) € Q, we get

~ S 595 ) 2 Xy 1,0 (., (Vg0 ) )
Thus, the second constraint of problem (VD) implies

ST D (x, u, (ng(u),pgj)) <o. 23)
Combining (22) and (23), we obtain
554 200 (23, (V00,07,)) + Za i@ (1,0, (Vg5 pg,) ) <0, (28)
Letusdenotea; = K , —1 i=1,...k B; = X — Y i=1,...,m. Note

SR AT UL AT
that0 = a; < 0, butatleastone; > 0,0 = B; < 0, and, moreover, ¥, a; + XieiB; =
1. By (24), it follows that
T a® (xy, (VAG), pp,)) + Zs By ® (X, Y, (Vg,-(y),pg,-)) <. (25)
By Definition 4.1, we have that ®(x, y,") is convex on R™*1. Hence, by (25) and convexity
of ®(x,y,"), we get

K@ (xy, (VW) pr)) + Z B @ (x, Y, (ng(y).pg,-))- (26)
Thus, (25) and (26) yield that the following inequality
@ (2,3, (Za o4 V0D + S By V9,00, T 4y, + S By, )) < O
holds. By the first constraint of (VD), the inequality above implies
1 k

®<X,y,m(0,zi=1 Aipg, +Z;~n=1,ujpgj)> <0. (27)
By assumption, YK 2, pr; + Z}’;lyjpgj = 0. Then, since from Definition 3.1,
CD(JZ, %, (0, a)) = 0 for any a € R., then, by assumption, the following inequality

1

S (O 2 ko Zﬁilﬂfpg,-)) =0
i= 3 j=

holds, contradicts (27). This completes the proof of this theorem.

Theorem 4.2. (Weak duality). Let x and (y,A,u) be any feasible solutions of (VP)
and (VD), respectively. Further, assume that problem (VP) is strict WD-(®,p)-invex on
DUY with respect to @, prand pg. If X1y 4; py, + Z;-’;lyjpgj = 0, then f(x) < f(y).

Theorem 4.3. (Strong duality). Let x € D be a (weak) Pareto solution of the vector
optimization problem (VP) and the suitable constraint qualification be satisfied at x. Then,
there exist A € R¥ and i € R™ such that (%,, i) is feasible for (VD) and the objective
functions of (VP) and (VD) are equal to these points. If all hypotheses of the weak duality

D (x, N
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theorem (Theorem 4.2 or Theorem 4.3) are satisfied, then (9?, A, ﬁ) is a (weakly) efficient
solution of a maximum type for (VD)

Proof By assumption, x € D is a (weak) Pareto solution of (\VP) and the suitable
constraint qualification is satisfied at x. Then, there exist Lagrange multipliers . € R* and
il € R™ such that the Karush-Kuhn-Tucker necessary optimality conditions (9)-(11) are
satisfied at . Then, the feasibility of (x, %, it) in (VD) follows directly from these necessary
optimality conditions. Hence, the objective functions of problems (VP) and (VD) are equal
at x and (%, i) are equal at these points. Thus, (weak) efficiency of (%,, ) in (VD)
follows directly from the weak duality theorem (Theorem 4.2 or Theorem 4.3).

Theorem 4.4. (Converse duality). Let (y,X, n) be a (weakly) efficient of a
maximum type to the vector Mond-Weir dual problem (VD) such that y € D. Further,
assume that the considered multiobjective programming problem (VP) is (strict) WD-
(@,p)-invex at y on DUY with respect to @, prand pg. If ¥, &; pr; + Z}’Llﬁjpgj =0,

then y is a weak Pareto solution (Pareto solution) of the considered multiobjective
programming problem (VP).

Proof Proof of this theorem follows directly from the weak duality theorem
(Theorem 4.2 or Theorem 4.3).

Theorem 4.5. (Restricted converse duality): Let (37, A, n) be feasible to Mond-
Weir vector dual problem (VD). Further, assume that the considered multiobjective
programming problem (VP) is (strict) WD-(®,p)-invex at y on DUY with respect to @, ps
and py with Y%, pr, + Z}"zlﬁjpgj = 0. If there exists x € D such that f(x) = f(¥),

then x is a (weak) Pareto solution of the problem (VP).
5. Conclusions

In the paper, the scalarization method, that is, the weighting method, has been used
for solving a new class of nonconvex differentiable vector optimization problems. It has
been established that a weakly efficient solution of an unconstrained smooth vector
optimization problem in which the objective function is (®,p)-invex is related to an optimal
solution of its corresponding weighting scalar optimization problem constructed in this
method. Further, we have established the same result in the case when the weighting
method has been used for solving the KT-(®,p)-invex constrained vector optimization
problem. Hence, the weighting method has been used for a larger class of nonconvex
differentiable vector optimization problems, in comparison to other similar results,
previously established in the literature under other generalized convexity notions.

Further, new classes of nonconvex multiobjective programming problems have
been defined in the paper. By introducing the concepts of KT-(®,p)-invexity and WD-
(d,p)-invexity, we have generalized notions of generalized convexity introduced by Martin
[14] for scalar optimization problems to new classes of nonconvex differentiable vector
optimization problems. The definition of a KT-(®,p)-invex vector optimization problem
introduced in the paper unifies many classes of generalized convex optimization problems,
earlier defined in optimization theory. Therefore, the sufficient optimality conditions
established in the paper are applicable also for such nonconvex vector optimization
problems for which other generalized convexity notions may avoid in proving such a result.
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It has been shown that there exists such a nonconvex vector optimization problem for which
we are not in a position to prove the sufficient optimality conditions under many other
generalized convexity notions, previously defined in the literature. However, KT-(®,p)-
invexity is useful in proving this result for nonconvex multiobjective programming
problems of such a type. In order to prove several duality results in the sense of Mond-
Weir, the concept of WD-(®d,p)-invexity has been introduced. Hence, also duality results
have been proved for a larger class of nonconvex vector optimization problems, in
comparison to those ones established in the literature under other concepts of generalized

convexity.
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