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THE WEIGHTING METHOD AND MULTIOBJECTIVE 

PROGRAMMING UNDER NEW CONCEPTS OF 

GENERALIZED (, )-INVEXITY 

Tadeusz ANTCZAK1, Manuel ARANA-JIMÉNEZ2 

In the paper, the weighting method is used for solving the considered nonconvex vector 

optimization problem. The equivalence between a weak Pareto solution of the original vector 

optimization problem and an optimal solution of its corresponding unconstrained scalar 

optimization problem is established under (,)-invexity. Further, the definition of a 

differentiable KT-(,)-invex vector optimization problem is introduced and the sufficient 

optimality conditions are established for such nonconvex differentiable multiobjective 

programming problems. In order to prove several Mond-Weir duality results for a new class of 

nonconvex differentiable vector optimization problems, the concept of WD-(,)-invexity is 

introduced. It turns out that the results presented in the paper are proved also for such 

nonconvex vector optimization problems in which not all functions constituting them have the 

fundamental property of many generalized convexity notions, earlier introduced in the 

literature. 
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1. Introduction 

In recent years, attempts are made by several authors to define various classes of 

nonconvex optimization problems and to study their optimality criteria and duality results. 

In [25], Martin proposed two weaker notions than invexity introduced by Hanson [14], 

called KT-invexity and WD-invexity. He proved that every Kuhn-Tucker point is a 

minimizer of a scalar optimization problem with inequality constraints if and only if this 

problem is KT-invex. Also, he established that Wolfe weak duality holds if and only if the 

primal optimization problem is WD-invex. In recent years, several generalizations of 

Martin’s definitions have been introduced to optimization theory in order to weaken the 

assumption of convexity in establishing optimality and duality results for new classes of 

nonconvex differentiable optimization problems (see, for example, [1], [2], [3], [4], [5], 

[6], [13], [16], [17], [18], [19], [20], [21], [22]). Recently, Caristi et al. [8] and later Ferrara 

and Stefanescu [10] established sufficient optimality conditions and duality results for 

differentiable scalar and vector optimization problems under (,)-invexity hypotheses. 

In the paper, we use the weighting method for solving differentiable vector 

optimization problems involving (,)-invex functions. Thus, we relate a weak Pareto 

solution of such nonconvex smooth vector optimization problem to an optimal solution of 

its corresponding weighting scalar optimization problem constructed in this method. 

Further, by taking the motivation from Martin [14] and Caristi et al. [8], we generalize the 

definitions of KT-invexity, WD-invexity and (,)-invexity to the case of differentiable 

multiobjective programming problems with inequality constraints. Namely, we introduce 

the concepts of KT-(,)-invexity and WD-(,)-invexity for nonconvex differentiable 
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vector optimization problems. We use the introduced notion of KT-(,)-invexity to 

establish sufficient optimality conditions and WD-(,)-invexity to establish several 

Mond-Weir duality results for a new class of nonconvex differentiable vector optimization 

problems. We also prove the equivalence between a weakly efficient solution of the KT-

(,)-invex vector optimization problem and a minimizer in its associated scalar 

optimization problem constructed in the weighting method. It turns out that the sufficient 

optimality conditions and Mond-Weir duality results are established for such nonconvex 

vector optimization problems for which other generalized convexity notions existing in the 

literature may avoid. 

2. Scalarization method for a new class of nonconvex differentiable vector 

optimization problems 

For any vectors 𝑥 = (𝑥1, … , 𝑥𝑛)𝑇, 𝑦 = (𝑦1, … , 𝑦𝑛)𝑇 in Rn, we define: x < y  if and only if 

xi < yi for all i = 1,2,...,n; x ≦ y  if and only if xi ≦ yi for all i = 1,2,...,n;  

x  y  if and only if x ≦ y and x  y; x = y if and only if xi = yi for all i = 1,2,...,n;  

We consider the following unconstrained vector optimization problem: 

 𝑓(𝑥) = (𝑓1(𝑥), … , 𝑓𝑘(𝑥)) → 𝑚𝑖𝑛     s.t.    x  X,     (UVOP) 

where 𝑓: 𝑋 → 𝑅𝑘 is a differentiable function on a nonempty open convex set X Rⁿ. 

Definition 2.1. A feasible point 𝑥̅ is said to be a weak Pareto (weakly efficient, weak 

minimum) solution  for (UVOP) if and only if there exists no 𝑥 ∈ 𝑋 such that 𝑓(𝑥) < 𝑓(𝑥̅). 

Definition 2.2. A feasible point 𝑥̅ is said to be a Pareto (efficient) solution for 

(UVOP) if and only if there exists no x ∈ X such that 𝑓(𝑥) ≤ 𝑓(𝑥̅). 

Definition 2.3. [10] The function 𝑓: 𝑋 → 𝑅𝑘 is said to be (,𝑓)-invex at 𝑥̅ ∈ 𝑋 

on X if there exist a function  ∶ 𝑋 × 𝑋 × 𝑅𝑛+1 → 𝑅, where (𝑥, 𝑥̅,∙) is convex on 𝑅𝑛+1, 

(𝑥, 𝑥̅, (0, 𝑎)) ≧ 0 for all 𝑥 ∈ 𝑋 and any 𝑎 ∈ 𝑅+, 𝜌 = (𝜌1, … , 𝜌𝑘) ∈ 𝑅𝑘, such that, the 

following inequalities 

 𝑓𝑖(𝑥) − 𝑓𝑖(𝑥̅) ≧  (𝑥, 𝑥̅, (∇𝑓𝑖(𝑥̅), 𝜌𝑓𝑖
)),    i = 1,…,k, (1) 

hold for all 𝑥 ∈ 𝑋. If inequalities (1) are satisfied at any point 𝑥̅ ∈ 𝑋, then f is said to be a 

(,𝑓)-invex function on X. 

Definition 2.4. A feasible point 𝑥̅ ∈ 𝑋 is said to be a vector critical point of the 

problem (UVOP) if there exists a vector  ∈ 𝑅𝑘 with  ≥ 0 such that ∇f(𝑥̅) = 0. 

Scalar stationary points are those whose vector gradients are zero. For vector 

optimization problems, vector critical points are those such that there exists a non-negative 

linear combination of the gradient vectors of each component objective function, valued at 

this point, equal to zero. Craven [9] established the following result for the problem 

(UVOP): 

Theorem 2.1. Let 𝑥̅ ∈ 𝑋 be a weakly efficient solution to the problem (UVOP). 

Then there exists vector ̅ ∈ 𝑅𝑘 with ̅ ≥ 0 such that ̅∇𝑓(𝑥̅) = 0, in other words, 𝑥̅ is a 

critical point to the problem (UVOP). 

Now, we give a condition under which any critical point of the unconstrained 

vector optimization problem (UVOP) is its weakly efficient solution. 
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Theorem 2.2. Let 𝑥̅ ∈ 𝑋 be a vector critical point of the unconstrained vector 

optimization problem (UVOP), that is, there exists ̅ ≥ 0 such that ̅∇𝑓(𝑥̅) = 0. Further, 

assume that the objective function f is (,𝑓)-invex at 𝑥̅ ∈ 𝑋 on 𝑋, where ∑ ̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

≧

0. Then 𝑥̅ is a weakly efficient solution of the problem (UVOP). 

Proof Since 𝑥̅ is a vector critical point of the unconstrained vector optimization 

problem (UVOP), there exists ̅ ≥ 0 such that ̅∇𝑓(𝑥̅) = 0. By assumption, f is a (,𝑓)-

invex function at 𝑥̅ on X. Then, by Definition 2.3, inequalities (1) are satisfied. Multiplying 

(1) by ̅𝑖, i=1,…,k, we have 

 ̅𝑖𝑓𝑖(𝑥) − ̅𝑖𝑓𝑖(𝑥̅) ≧ ̅𝑖 (𝑥, 𝑥̅, (∇𝑓𝑖(𝑥̅), 𝜌𝑓𝑖
)),    i = 1,…,k. (2) 

Let us denote 𝛼̅𝑖 = ∑
̅𝑖

∑ ̅𝑡
𝑘
𝑡=1

𝑘
𝑖=1 . Note that 0 ≦ 𝛼̅𝑖 ≦ 0, but at least one 𝛼̅𝑖 > 0 and, 

moreover, ∑ 𝛼̅𝑖
𝑘
𝑖=1 = 1. Then, (2) yields  

 ∑ α̅𝑖𝑓𝑖(𝑥)𝑘
𝑖=1 − ∑ α̅𝑖𝑓𝑖(𝑥̅)𝑘

𝑖=1 ≧ ∑ α̅𝑖 (𝑥, 𝑥̅, (∇𝑓𝑖(𝑥̅), 𝜌𝑓𝑖
))𝑘

𝑖=1 . (3) 

By definition, (𝑥, 𝑥̅,∙) is convex on 𝑅𝑛+1. Since 0 ≦ 𝛼̅𝑖 ≦ 0 and, moreover, ∑ 𝛼̅𝑖
𝑘
𝑖=1 =

1, by the definition of a convex function, we have 

  (𝑥, 𝑥̅, (∑ α̅𝑖∇𝑓𝑖(𝑥̅)𝑘
𝑖=1 , ∑ α̅𝑖𝜌𝑓𝑖

𝑘
𝑖=1 )) ≦ ∑ α̅𝑖 (𝑥, 𝑥̅, (∇𝑓𝑖(𝑥̅), 𝜌𝑓𝑖

))𝑘
𝑖=1 . (4) 

By (3) and (4), it follows that 

 ∑ α̅𝑖𝑓𝑖(𝑥)𝑘
𝑖=1 − ∑ α̅𝑖𝑓𝑖(𝑥̅)𝑘

𝑖=1 ≧  (𝑥, 𝑥̅, (∑ α̅𝑖∇𝑓𝑖(𝑥̅)𝑘
𝑖=1 , ∑ α̅𝑖𝜌𝑓𝑖

𝑘
𝑖=1 )). (5) 

By ̅∇𝑓(𝑥̅) = 0, (5) gives 

 ∑ α̅𝑖𝑓𝑖(𝑥)𝑘
𝑖=1 − ∑ α̅𝑖𝑓𝑖(𝑥̅)𝑘

𝑖=1 ≧ (𝑥, 𝑥̅,
1

∑ ̅𝑡
𝑘
𝑡=1

(0, ∑ ̅𝑖𝜌𝑓𝑖

𝑘
𝑖=1 )). (6) 

By definition, (𝑥, 𝑥̅, (0, 𝑎)) ≧ 0 for all 𝑥 ∈ 𝑋 and any 𝑎 ∈ 𝑅+. Hence, hypothesis 

∑ ̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

≧ 0 and (6) yield that the following inequality ∑ α̅𝑖𝑓𝑖(𝑥)𝑘
𝑖=1 ≧ ∑ α̅𝑖𝑓𝑖(𝑥̅)𝑘

𝑖=1  

holds for all 𝑥 ∈ 𝑋. Since 𝛼̅ ≥ 0, the above inequality implies that 𝑥̅ is a weakly efficient 

solution of the problem (UVOP). 

One of the methods used for solving vector optimization problems, the weighting 

method, relates their weakly efficient solutions to optimal solutions of corresponding scalar 

problems. In this approach, the following scalar unconstrained optimization problem, the 

so-called weighting scalar optimization problem, is constructed for the considered 

multiobjective programming problem ∑ 𝑖𝑓𝑖(𝑥) → 𝑚𝑖𝑛𝑘
𝑖=1         s.t.    𝑥 ∈ 𝑋,         (P()) 

where  ∈ 𝑅𝑘. The following result is well-known in the literature (see, [15]): 

Theorem 2.3. A minimizer of the weighting scalar optimization problem (P()) is 

a weakly efficient solution of the vector optimization problem (UVOP). If all weighting 

coefficients are positive, that is 𝑖 > 0, i = 1,...,k, then an optimal solution of the problem 

(P()) is an efficient solution of the problem (UVOP). 

Now, we prove the converse result for a new class of nonconvex vector 

optimization problems. 

Theorem 2.4. Let the objective function f in the problem (UVOP) be (,𝑓)-

invex on X. Further, assume that 𝑥̅ is a weakly efficient solution in problem (UVOP) and 

the necessary optimality conditions are satisfied at 𝑥̅ with Lagrange multiplier ̅ ∈ 𝑅𝑘, ̅ ≥
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0 with ∑ ̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

≧ 0. Then a weakly efficient solution 𝑥̅ of (UVOP) solves a weighting 

scalar optimization problem. 

Proof The proof is similar to the proof of Theorem 2.2 and, hence, it is omitted. 

Corollary 2.1. Let the objective function f in the problem (UVOP) be (,𝑓)-

invex on X with 𝜌𝑓𝑖
≧ 0, i = 1,…k. Then every weakly efficient solution of the problem 

(UVOP) solves a weighting scalar optimization problem. 

3. KT-(, )-invexity and optimality 

In many practical applications, a vector optimization problem has the set of all 

feasible solutions given by a number of inequality constraints. Therefore, we consider the 

following constrained vector optimization problem with inequality constraints: 

𝑓(𝑥) = (𝑓1(𝑥), … , 𝑓𝑘(𝑥)) → 𝑚𝑖𝑛  s.t.  𝑔𝑗(𝑥) ≦ 0, 𝑗 = 1, … , 𝑚, 𝑥 ∈ 𝑋, (VP) 

where 𝑓𝑖: 𝑋 → 𝑅, i  I = {1,...,k} and 𝑔𝑗: 𝑋 → 𝑅, j  J = {1,...m}, are differentiable 

functions defined on a nonempty open convex set X  Rn. Further, let 𝐷 ≔

{𝑥 ∈ 𝑋:  𝑔𝑗(𝑥) ≦ 0, 𝑗 = 1, … , 𝑚}  be the set of all feasible solutions of the considered 

vector optimization problem (VP) and 𝐽(𝑥̅) ≔ {𝑗 ∈ 𝐽:  𝑔𝑗(𝑥̅) = 0}. 

In this section, for the considered multiobjective programming problem (VP), we 

define a new concept of generalized convexity which is a generalization of a class of (,)-

invex functions earlier defined by Caristi et al. [8] and the class of differentiable KT-invex 

vector optimization problems introduced by Osuna-Gómez et al. [17]. 

Definition 3.1. Let u  D be given. If there exist a function : 𝐷 × 𝐷 × 𝑅𝑛+1 →
𝑅, where (𝑥, 𝑢,∙) is convex on 𝑅𝑛+1, (𝑥, 𝑢, (0, 𝑎)) ≧ 0 for all 𝑥 ∈ 𝐷 and any 𝑎 ∈ 𝑅+, 

𝜌 = (𝜌𝑓1
, … , 𝜌𝑓𝑘

, 𝜌𝑔 , … , 𝜌𝑔𝑚
) ∈ 𝑅𝑘+𝑚, such that 

 

𝑥, 𝑢 ∈ 𝐷
𝑔(𝑥) ≦ 0

𝑔(𝑢) ≦ 0
] [

𝑓𝑖(𝑥) − 𝑓𝑖(u) ≧  (𝑥, u, (∇𝑓𝑖(u), 𝜌𝑓𝑖
)) ,   𝑖 ∈ 𝐼,

 (𝑥, u, (∇𝑔𝑗(u), 𝜌𝑔𝑗
)) ≦ 0,    𝑗 ∈ 𝐽(𝑢),

 (7) 

then the vector optimization problem (VP) is said to be a vector KT-(,)-invex 

optimization problem at u  D on D (with respect to , f and g). If (7) is satisfied at any 

point u  D, then the vector optimization problem (VP) is said to be a vector KT-(,)-

invex optimization problem on D. 

Definition 3.2. Let u  D be given. If there exist a function : 𝐷 × 𝐷 × 𝑅𝑛+1 →

𝑅, where (𝑥, 𝑢,∙) is convex on 𝑅𝑛+1, (𝑥, 𝑢, (0, 𝑎)) ≧ 0 for all 𝑥 ∈ 𝐷 and any 𝑎 ∈ 𝑅+, 

𝜌 = (𝜌𝑓1
, … , 𝜌𝑓𝑘

, 𝜌𝑔 , … , 𝜌𝑔𝑚
) ∈ 𝑅𝑘+𝑚, such that 

 

𝑥, 𝑢 ∈ 𝐷,   𝑥 ≠ 𝑢
𝑔(𝑥) ≦ 0

𝑔(𝑢) ≦ 0
] [

𝑓𝑖(𝑥) − 𝑓𝑖(u) >  (𝑥, u, (∇𝑓𝑖(u), 𝜌𝑓𝑖
)) ,   𝑖 ∈ 𝐼,

 (𝑥, u, (∇𝑔𝑗(u), 𝜌𝑔𝑗
)) ≦ 0,    𝑗 ∈ 𝐽(𝑢),

 (8) 

then the vector optimization problem (VP) is said to be a vector strict KT-(,)-invex 

optimization problem at u  D on D (with respect to , f and g). If the above relation is 

satisfied at any point u  D, then the vector optimization problem (VP) is said to be a vector 

strict KT-(,)-invex optimization problem on D. 



The weighting method and multiobjective programming under new concepts of generalized (, )-invexity7 

In this section, we prove the sufficient optimality conditions for (weak) Pareto 

optimality in the considered multiobjective programming problem (VP) under assumption 

that (VP) is vector (strict) KT-(,)-invex. It is well known (see, for example, [11], [15]) 

that, under a suitable constraint qualification, if 𝑥̅  D is a (weak) Pareto optimal solution 

in the considered multiobjective programming problem (VP), then the following necessary 

optimality conditions, known as Karush-Kuhn-Tucker conditions, are satisfied: 

Theorem 3.1. (Karush-Kuhn-Tucker necessary optimality conditions). Let 𝑥̅ ∈ 𝐷 

be a weak Pareto solution of the problem (VP) and a suitable constraint qualification be 

satisfied at 𝑥̅. Then, there exist ̅ ∈ 𝑅𝑘 and μ̅ ∈ 𝑅𝑚 such that 

 ∑ ̅𝑖∇𝑓𝑖(𝑥̅)𝑘
𝑖=1 + ∑ 𝜇̅𝑗∇𝑔𝑗(𝑥̅) 𝑚

𝑗=1 = 0, (9) 

 𝜇̅𝑗𝑔𝑗(𝑥̅) = 0,    𝑗 ∈ 𝐽, (10) 

  ̅ ≥ 0,   𝜇̅ ≧ 0.  (11) 

Definition 3.3. The point (𝑥̅,,̅ 𝜇̅) ∈ 𝐷 × 𝑅𝑘 × 𝑅𝑚 is said to be a vector Karush-

Kuhn-Tucker point of the considered vector optimization problem (VP), if the conditions 

(9)-(10) are satisfied at 𝑥̅ with Lagrange multipliers ̅ and 𝜇̅. 

Theorem 3.2. Let the considered multiobjective programming problem (VP) be a 

vector KT-(,)-invex optimization problem on D with respect to , f and g. Then, every 

vector Karush-Kuhn-Tucker point (𝑥̅,,̅ 𝜇̅) ∈ 𝐷 × 𝑅𝑘 × 𝑅𝑚 of the problem (VP) is its 

weakly efficient solution if ∑ ̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝜇̅𝑗𝑔𝑗

𝑚
𝑗=1 ≧ 0. 

Proof Let the considered vector optimization problem (VP) be a vector KT-(,)-

invex optimization problem on D. Further, we assume that (𝑥̅,,̅ 𝜇̅) ∈ 𝐷 × 𝑅𝑘 × 𝑅𝑚 is a 

vector Karush-Kuhn-Tucker point of the problem (VP). Suppose, contrary to the result, that 

𝑥̅ is not a weakly efficient solution of the problem (VP). Then, by definition, there exists a 

feasible solution 𝑥̃ of the problem (VP) such that 𝑓(𝑥̃) < 𝑓(𝑥̅). Since the problem (VP) is 

a vector KT-(,)-invex optimization problem on D, by Definition 3.1 and the Karush-

Kuhn-Tucker necessary optimality condition (11), we get 

 ̅𝑖 (𝑥̃, 𝑥̅, (∇𝑓𝑖(𝑥̅), 𝜌𝑓𝑖
)) ≦ 0,   𝑖 ∈ 𝐼, (12) 

 ̅𝑖∗ (𝑥̃, 𝑥̅, (∇𝑓𝑖∗(𝑥̅), 𝜌𝑓𝑖∗ )) < 0 for at least one  𝑖∗ ∈ 𝐼, (13) 

 𝜇̅𝑗 (𝑥̃, 𝑥̅, (∇𝑔𝑗(𝑥̅), 𝜌𝑔𝑗
)) ≦ 0,    𝑗 ∈ 𝐽(𝑥̅). (14) 

Let us denote 𝛼̅𝑖 = ∑
̅𝑖

∑ ̅𝑖+∑ 𝜇̅𝑗
𝑚
𝑗=1

𝑘
𝑖=1

𝑘
𝑖=1 , i =1,…,k, 𝛽̅𝑗 = ∑

μ̅𝑗

∑ ̅𝑖+∑ 𝜇̅𝑗
𝑚
𝑗=1

𝑘
𝑖=1

𝑘
𝑖=1 , j = 1,…,m. Note 

that 0 ≦ 𝛼̅𝑖 ≦ 0, but at least one 𝛼̅𝑖 > 0, 0 ≦ 𝛽̅𝑗 ≦ 0, and, moreover, ∑ 𝛼̅𝑖
𝑘
𝑖=1 + ∑ 𝛽̅𝑗

𝑚
𝑗=1 =

1. By (12)-(14), it follows that 

 ∑ α̅𝑖 (𝑥̃, 𝑥̅, (∇𝑓𝑖(𝑥̅), 𝜌𝑓𝑖
))𝑘

𝑖=1 + ∑ 𝛽̅𝑗
𝑚
𝑗=1  (𝑥̃, 𝑥̅, (∇𝑔𝑗(𝑥̅), 𝜌𝑔𝑗

)) < 0. (15) 

By Definition 3.1, we have that (𝑥̃, 𝑥̅,∙) is convex on 𝑅𝑛+1. Thus, by (15) and convexity 

of (𝑥̃, 𝑥̅,∙), we obtain 

  (𝑥̃, 𝑥̅, (∑ α̅𝑖
𝑘
𝑖=1 ∇𝑓𝑖(𝑥̅) + ∑ 𝛽̅𝑗

𝑚
𝑗=1 ∇𝑔𝑗(𝑥̅), ∑ α̅𝑖

𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝛽̅𝑗𝜌𝑔𝑗

𝑚
𝑗=1 )) ≦

                           ∑ α̅𝑖 (𝑥̃, 𝑥̅, (∇𝑓𝑖(𝑥̅), 𝜌𝑓𝑖
))𝑘

𝑖=1 + ∑ 𝛽̅𝑗
𝑚
𝑗=1  (𝑥̃, 𝑥̅, (∇𝑔𝑗(𝑥̅), 𝜌𝑔𝑗

)). (16) 
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Combining (15) and (16), we get that the following inequality 

 (𝑥̃, 𝑥̅, (∑ α̅𝑖
𝑘
𝑖=1 ∇𝑓𝑖(𝑥̅) + ∑ 𝛽̅𝑗

𝑚
𝑗=1 ∇𝑔𝑗(𝑥̅), ∑ α̅𝑖

𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝛽̅𝑗𝜌𝑔𝑗

𝑚
𝑗=1 )) < 0  

holds. By the Karush-Kuhn-Tucker necessary optimality condition (9), we have 

  (𝑥̃, 𝑥̅, (0, ∑ α̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝛽̅𝑗𝜌𝑔𝑗

𝑚
𝑗=1 )) < 0.  (17) 

By assumption, it follows that ∑ α̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝛽̅𝑗𝑔𝑗

𝑚
𝑗=1 ≧ 0. As it follows from Definition 

3.1, (𝑥̃, 𝑥̅, (0, 𝑎)) ≧ 0 for any 𝑎 ∈ 𝑅+. This implies that the inequality 

  (𝑥̃, 𝑥̅, (0, ∑ α̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝛽̅𝑗𝜌𝑔𝑗

𝑚
𝑗=1 )) ≧ 0   

holds, contradicting (17). This completes the proof of this theorem. 

Theorem 3.3. Let the considered vector optimization problem (VP) be vector KT-

(,)-invex on D, a suitable constraint qualification be satisfied at any weakly efficient 

solution 𝑥̅ of the problem (VP) and the Karush-Kuhn-Tucker necessary optimality 

conditions be at 𝑥̅ satisfied with Lagrange multipliers ̅ ∈ 𝑅𝑘 and μ̅ ∈ 𝑅𝑚. If ∑ ̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+

∑ 𝜇̅𝑗𝑔𝑗

𝑚
𝑗=1 ≧ 0, then every weakly efficient solution of the original vector optimization 

problem (VP) solves a weighting scalar optimization problem. 

In order to illustrate the results established in this section, we consider the example 

of a multiobjective programming problem with KT-(,)-invex functions. 

Example 3.1. Consider the following nonconvex multiobjective programming 

problem 

𝑓(𝑥) = (𝑙𝑛((𝑥1 − 1)2 + 1) , 𝑙𝑛((𝑥2 − 1)2 + 1))

𝑔(𝑥) = 1 − 𝑥1𝑥2 ≦ 0.
     (𝑉𝑃1) 

Note that 𝐷 = {(𝑥1,𝑥2) ∈ 𝑅2: 𝑥1𝑥2 ≧ 1} and 𝑥̅ = (1,1) is such a feasible solution at which 

the Karush-Kuhn-Tucker necessary optimality conditions are satisfied. It can be shown, by 

Definition 3.1, that (VP1) is KT-(,)-invex at 𝑥̅ on D, where 

(x, 𝑥̅, (𝜗, 𝜌)) = ϑ1 ln((x1 − 1)2 + 1) + ϑ2 ln((x2 − 1)2 + 1)

+ (2𝜌 − 1)(ln((x1 − 1)2 + 1) +  ln((x2 − 1)2 + 1)), 

and  is equal to 𝜌𝑓1
= 0, 𝜌𝑓2

= 0 and 𝜌𝑔 = 1, respectively. Note that all hypotheses of 

Theorem 3.3 are satisfied, then 𝑥̅ is Pareto optimal to the considered multiobjective 

programming problem. It is not difficult to show that the constraint function g is not invex 

on D with respect to any function  ∶ 𝐷 × 𝐷 → 𝑅2. This follows from the fact that a 

stationary point of the constraint function g is not its global minimizer (see [7]). Since not 

all functions constituting the considered vector optimization problem are invex with respect 

to the same function  (what is more, some of them are not invex with respect to any ), 

then the sufficient optimality conditions given in [17] are not applicable in this case. 

Further, the objective function f and the constraint function g are not (,)-invex at 𝑥̅ on 

D with respect to  and  defined above and, therefore, also the sufficient conditions given 

in [10] are not applicable in this case. Thus, the optimality conditions established in the 

paper are applicable for a larger class of nonconvex vector optimization problems than the 

sufficient optimality conditions established under other generalized convexity notions, 

even those ones mentioned above. 
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4. WD-(,)-invexity and duality 

In this section, for the considered multiobjective programming problem (VP), 

consider the following dual problem in the sense of Mond-Weir: 

𝑓(𝑦) → 𝑚𝑖𝑛   s. t.  ∑ 𝑖
𝑘
𝑖=1 ∇𝑓𝑖(y) + ∑ μ𝑗

𝑚
𝑗=1 ∇𝑔𝑗(y) = 0,

μ𝑗𝑔𝑗(y) = 0, j =  1, … , m,  ∈ 𝑅𝑘,  0, 𝜇 ∈ 𝑅𝑚, 𝜇 ≧ 0, 𝑥 ∈ 𝑋.
   (VD) 

Let  be the set of all feasible solutions in problem (VD). Further, denote Y = {y  X : 

(y,,)  }. In order to prove several duality results between the considered vector 

optimization problem (VP) and its vector dual problem in the sense of Mond-Weir (VD), 

we now introduce the definition of WD-(,)-invexity on a nonempty subset of S 

containing the set DY. Let S be a nonempty subset of X such that DY  S and u  S 

be an arbitrary point. 

Definition 4.1. Let u  S be given. If there exist a function  ∶ 𝑆 × 𝑆 × 𝑅𝑛+1 →

𝑅, where (𝑥, 𝑢,∙) is convex on 𝑅𝑛+1, (𝑥, 𝑢, (0, 𝑎)) ≧ 0 for all 𝑥 ∈ 𝑆 and any 𝑎 ∈ 𝑅+, 

𝜌 = (𝜌𝑓1
, … , 𝜌𝑓𝑘

, 𝜌𝑔 , … , 𝜌𝑔𝑚
) ∈ 𝑅𝑘+𝑚, such that 

 

𝑥 ∈ 𝑆
𝑢 ∈ 𝑆

𝑔(𝑥) ≦ 0
] [

𝑓𝑖(𝑥) − 𝑓𝑖(u) ≧  (𝑥, u, (∇𝑓𝑖(u), 𝜌𝑓𝑖
)) ,   𝑖 ∈ 𝐼,

−𝑔𝑗(u) −  (𝑥, u, (∇𝑔𝑗(u), 𝜌𝑔𝑗
)) ≦ 0,    𝑗 ∈ 𝐽,

 (18) 

then the vector optimization problem (VP) is said to be a vector WD-(,)-invex 

optimization problem at u  S on S (with respect to , f and g). If (18) is satisfied at any 

point u  S, then the vector optimization problem (VP) is said to be a vector WD-(,)-

invex optimization problem on S. 

Definition 4.2. Let u  S be given. If there exist a function  ∶ 𝑆 × 𝑆 × 𝑅𝑛+1 →

𝑅, where (𝑥, 𝑢,∙) is convex on 𝑅𝑛+1, (𝑥, 𝑢, (0, 𝑎)) ≧ 0 for all 𝑥 ∈ 𝑆 and any 𝑎 ∈ 𝑅+, 

𝜌 = (𝜌𝑓1
, … , 𝜌𝑓𝑘

, 𝜌𝑔 , … , 𝜌𝑔𝑚
) ∈ 𝑅𝑘+𝑚, such that 

 
𝑥, 𝑢 ∈ 𝑆,   𝑥 ≠ 𝑢

𝑔(𝑥) ≦ 0
] [

𝑓𝑖(𝑥) − 𝑓𝑖(u) >  (𝑥, u, (∇𝑓𝑖(u), 𝜌𝑓𝑖
)) ,   𝑖 ∈ 𝐼,

−𝑔𝑗(u) −  (𝑥, u, (∇𝑔𝑗(u), 𝜌𝑔𝑗
)) ≦ 0,    𝑗 ∈ 𝐽,

 (19) 

then the vector optimization problem (VP) is said to be a vector strict WD-(,)-invex 

optimization problem at u  S on S (with respect to , f and g). If (19) is satisfied at any 

point u  S, then the vector optimization problem (VP) is said to be a vector strict WD-

(,)-invex optimization problem on S. 

Theorem 4.1. (Weak duality). Let x and (y,,) be any feasible solutions of the 

vector optimization problem (VP) and its vector Mond-Weir dual problem (VD), 

respectively. Further, assume that problem (VP) is WD-(,)-invex on DY with respect 

to , f and g. If ∑ 𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 
𝑗
𝑔𝑗

𝑚
𝑗=1 ≧ 0, then f(x) ≮ f(y). 

Proof Suppose, contrary to the result, that f(x) < f(y). By the feasibility of (y,,) 

to the problem (VD), it follows that 

 ∑ 𝑖
𝑘
𝑖=1 𝑓𝑖(𝑥) < ∑ 𝑖

𝑘
𝑖=1 𝑓𝑖(𝑦). (20) 

By assumption, the vector optimization problem (VP) is WD-(,)-invex on DY with 

respect to , f and g. Therefore, by Definition 4.1, the inequality 
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 ∑ 𝑖𝑓𝑖(𝑥)𝑘
𝑖=1 − ∑ 𝑖𝑓𝑖(𝑦)𝑘

𝑖=1 ≧ ∑ 𝑖 (𝑥, y, (∇𝑓𝑖(y), 𝜌𝑓𝑖
))𝑘

𝑖=1  (21) 

holds. Hence, (20) and (21) yield 

 ∑ 𝑖 (𝑥, y, (∇𝑓𝑖(y), 𝜌𝑓𝑖
))𝑘

𝑖=1 < 0. (22) 

Using Definition 4.1 again together with (y,,)  , we get 

 − ∑ 𝜇𝑗𝑔𝑗(u)𝑚
𝑗=1 ≧ ∑ 𝜇𝑗 (𝑥, u, (∇𝑔𝑗(u), 𝜌𝑔𝑗

))𝑚
𝑗=1 . 

Thus, the second constraint of problem (VD) implies 

 ∑ 𝜇𝑗 (𝑥, u, (∇𝑔𝑗(u), 𝜌𝑔𝑗
)) ≦ 0𝑚

𝑗=1 . (23) 

Combining (22) and (23), we obtain 

 ∑ 𝑖 (𝑥, y, (∇𝑓𝑖(y), 𝜌𝑓𝑖
))𝑘

𝑖=1 + ∑ 𝜇𝑗 (𝑥, u, (∇𝑔𝑗(u), 𝜌𝑔𝑗
))𝑚

𝑗=1 < 0. (24) 

Let us denote 𝛼𝑖 = ∑
𝑖

∑ 𝑖+∑ 𝜇𝑗
𝑚
𝑗=1

𝑘
𝑖=1

𝑘
𝑖=1 , i =1,…,k, 𝛽𝑗 = ∑

μ𝑗

∑ 𝑖+∑ 𝜇𝑗
𝑚
𝑗=1

𝑘
𝑖=1

𝑘
𝑖=1 , j = 1,…,m. Note 

that 0 ≦ 𝛼𝑖 ≦ 0, but at least one 𝛼𝑖 > 0, 0 ≦ 𝛽𝑗 ≦ 0, and, moreover, ∑ 𝛼𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑗

𝑚
𝑗=1 =

1. By (24), it follows that 

 ∑ α𝑖 (x, y, (∇𝑓𝑖(y), 𝜌𝑓𝑖
))𝑘

𝑖=1 + ∑ 𝛽𝑗
𝑚
𝑗=1  (x, y, (∇𝑔𝑗(y), 𝜌𝑔𝑗

)) < 0. (25) 

By Definition 4.1, we have that (𝑥, y,∙) is convex on 𝑅𝑛+1. Hence, by (25) and convexity 

of (𝑥, y,∙), we get 

  (𝑥, y, (∑ α𝑖
𝑘
𝑖=1 ∇𝑓𝑖(y) + ∑ 𝛽𝑗

𝑚
𝑗=1 ∇𝑔𝑗(𝑦), ∑ α𝑖

𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝛽𝑗𝜌𝑔𝑗

𝑚
𝑗=1 )) ≦

                                 ∑ α𝑖 (x, y, (∇𝑓𝑖(y), 𝜌𝑓𝑖
))𝑘

𝑖=1 + ∑ 𝛽𝑗
𝑚
𝑗=1  (x, y, (∇𝑔𝑗(y), 𝜌𝑔𝑗

)). (26) 

Thus, (25) and (26) yield that the following inequality 

 (𝑥, y, (∑ α𝑖
𝑘
𝑖=1 ∇𝑓𝑖(y) + ∑ 𝛽𝑗

𝑚
𝑗=1 ∇𝑔𝑗(𝑦), ∑ α𝑖

𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝛽𝑗𝜌𝑔𝑗

𝑚
𝑗=1 )) < 0  

holds. By the first constraint of (VD), the inequality above implies 

 (𝑥, y,
1

∑ 𝑖+∑ 𝜇𝑗
𝑚
𝑗=1

𝑘
𝑖=1

(0, ∑ 𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 
𝑗
𝜌𝑔𝑗

𝑚
𝑗=1 )) < 0.  (27) 

By assumption, ∑ 𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 
𝑗
𝜌𝑔𝑗

𝑚
𝑗=1 ≧ 0. Then, since from Definition 3.1, 

(𝑥̃, 𝑥̅, (0, 𝑎)) ≧ 0 for any 𝑎 ∈ 𝑅+, then, by assumption, the following inequality 

 (𝑥, y,
1

∑ 𝑖+∑ 𝜇𝑗
𝑚
𝑗=1

𝑘
𝑖=1

(0, ∑ 𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 
𝑗
𝜌𝑔𝑗

𝑚
𝑗=1 )) ≧ 0  

holds, contradicts (27). This completes the proof of this theorem. 

Theorem 4.2. (Weak duality). Let x and (y,,) be any feasible solutions of (VP) 

and (VD), respectively. Further, assume that problem (VP) is strict WD-(,)-invex on 

DY with respect to , f and g. If ∑ 𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 
𝑗
𝑔𝑗

𝑚
𝑗=1 ≧ 0, then f(x) ≰ f(y). 

Theorem 4.3. (Strong duality). Let 𝑥̅ ∈ 𝐷 be a (weak) Pareto solution of the vector 

optimization problem (VP) and the suitable constraint qualification be satisfied at 𝑥̅. Then, 

there exist ̅ ∈ 𝑅𝑘 and μ̅ ∈ 𝑅𝑚 such that (𝑥̅, ̅, μ̅) is feasible for (VD) and the objective 

functions of (VP) and (VD) are equal to these points. If all hypotheses of the weak duality 
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theorem (Theorem 4.2 or Theorem 4.3) are satisfied, then (𝑥̅, ̅, μ̅) is a (weakly) efficient 

solution of a maximum type for (VD)  

Proof By assumption, 𝑥̅ ∈ 𝐷 is a (weak) Pareto solution of (VP) and the suitable 

constraint qualification is satisfied at 𝑥̅. Then, there exist Lagrange multipliers ̅ ∈ 𝑅𝑘 and 

μ̅ ∈ 𝑅𝑚 such that the Karush-Kuhn-Tucker necessary optimality conditions (9)-(11) are 

satisfied at 𝑥̅. Then, the feasibility of (𝑥̅, ̅, μ̅) in (VD) follows directly from these necessary 

optimality conditions. Hence, the objective functions of problems (VP) and (VD) are equal 

at 𝑥̅ and (𝑥̅, ̅, μ̅) are equal at these points. Thus, (weak) efficiency of (𝑥̅, ̅, μ̅) in (VD) 

follows directly from the weak duality theorem (Theorem 4.2 or Theorem 4.3). 

Theorem 4.4. (Converse duality). Let (𝑦̅, ̅, μ̅) be a (weakly) efficient of a 

maximum type to the vector Mond-Weir dual problem (VD) such that 𝑦̅ ∈ 𝐷. Further, 

assume that the considered multiobjective programming problem (VP) is (strict) WD-

(,)-invex at 𝑦̅ on DY with respect to , f and g. If ∑ ̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝜇̅𝑗𝑔𝑗

𝑚
𝑗=1 ≧ 0, 

then 𝑦̅ is a weak Pareto solution (Pareto solution) of the considered multiobjective 

programming problem (VP). 

Proof Proof of this theorem follows directly from the weak duality theorem 

(Theorem 4.2 or Theorem 4.3). 

Theorem 4.5. (Restricted converse duality): Let (𝑦̅, ̅, μ̅) be feasible to  Mond-

Weir vector dual problem (VD). Further, assume that the considered multiobjective 

programming problem (VP) is (strict) WD-(,)-invex at 𝑦̅ on DY with respect to , f 

and g with ∑ ̅𝑖
𝑘
𝑖=1 𝜌𝑓𝑖

+ ∑ 𝜇̅𝑗𝑔𝑗

𝑚
𝑗=1 ≧ 0. If there exists 𝑥̅ ∈ 𝐷 such that 𝑓(𝑥̅) = 𝑓(𝑦̅), 

then 𝑥̅ is a (weak) Pareto solution of the problem (VP). 

5. Conclusions 

In the paper, the scalarization method, that is, the weighting method, has been used 

for solving a new class of nonconvex differentiable vector optimization problems. It has 

been established that a weakly efficient solution of an unconstrained smooth vector 

optimization problem in which the objective function is (,)-invex is related to an optimal 

solution of its corresponding weighting scalar optimization problem constructed in this 

method. Further, we have established the same result in the case when the weighting 

method has been used for solving the KT-(,)-invex constrained vector optimization 

problem. Hence, the weighting method has been used for a larger class of nonconvex 

differentiable vector optimization problems, in comparison to other similar results, 

previously established in the literature under other generalized convexity notions. 

Further, new classes of nonconvex multiobjective programming problems have 

been defined in the paper. By introducing the concepts of KT-(,)-invexity and WD-

(,)-invexity, we have generalized notions of generalized convexity introduced by Martin 

[14] for scalar optimization problems to new classes of nonconvex differentiable vector 

optimization problems. The definition of a KT-(,)-invex vector optimization problem 

introduced in the paper unifies many classes of generalized convex optimization problems, 

earlier defined in optimization theory. Therefore, the sufficient optimality conditions 

established in the paper are applicable also for such nonconvex vector optimization 

problems for which other generalized convexity notions may avoid in proving such a result. 
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It has been shown that there exists such a nonconvex vector optimization problem for which 

we are not in a position to prove the sufficient optimality conditions under many other 

generalized convexity notions, previously defined in the literature. However, KT-(,)-

invexity is useful in proving this result for nonconvex multiobjective programming 

problems of such a type. In order to prove several duality results in the sense of Mond-

Weir, the concept of WD-(,)-invexity has been introduced. Hence, also duality results 

have been proved for a larger class of nonconvex vector optimization problems, in 

comparison to those ones established in the literature under other concepts of generalized 

convexity. 
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