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PCB DEFECT DETECTION ALGORITHM BASED ON SGB-

YOLOv5s 

Xianli JIN 1,4, Jinqiang LI 2,3, Yangyang ZHAO 1,4* 

Industrial PCB defect detection requires fast and accurate search for defect 

types and locations, and target detection methods based on deep learning are mainly 

used in this field. However, in the actual complex production environment, the existing 

detection methods have shortcomings in detection accuracy, speed, and model size, 

and it is difficult to complete real-time monitoring and deployment. To this end, this 

paper proposes a new PCB defect detection method, SGB-YOLOv5s, which greatly 

improves the detection accuracy and speed. In SGB-YOLOv5s, the use of 160*160 

scale detection head and k-means++ clustering algorithm further enhances the 

detection performance of the network for small target defects. Secondly, the weighted 

group convolution involution block (GCI) technologies are used between the 

backbone network and the neck network to reduce the loss of feature information in 

the feature fusion stage. Finally, by introducing a bidirectional multi-scale feature 

pyramid structure (BMFPN) into the neck network, the simultaneous fusion of multi-

scale features is realized. The experimental results show that the average accuracy of 

all defect types in the SGB-YOLOv5s model is map@50 and reaches 99.39%. 

Compared with the original model, the map@50 of all class defects is increased by 

1.15% on the basis of almost no increase in the number of parameters and model size, 

which proves the effectiveness of the improved method. 
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1. Introduction 

With the rapid development of the electronic information industry, the 

quality and reliability of printed circuit board (PCB) as a key component in 

electronic equipment [1-3] directly affect the reliability and stability of the entire 

electronic product. PCB is widely used in many fields such as mobile phones, 

computers, medical treatment, communication equipment and automobiles, so it is 

of great significance to strictly control the production quality of PCB and find and 

repair defects in time to improve the overall quality and market competitiveness of 

products. Each PCB is subject to rigorous quality inspection before leaving the 
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factory, often using optical inspection methods [4] (AOI) or deep learning-based 

object detection algorithms detects defects on printed circuit boards, which can 

achieve faster inspection speed and accuracy than manual inspection, while also 

reducing the cost required in production. The object detection algorithm can be 

divided into two-stage object detection algorithm and single-stage object detection 

algorithm according to the different processing methods of input data, among which 

the two-stage object detection algorithm is mainly represented by the RCNN  series 

network, which has the characteristics of high detection accuracy, but the detection 

speed is slow, and the single-stage object detection algorithm is mainly SSD and 

the YOLO model [5], the most obvious feature of this type of algorithm is that it is 

fast and takes into account the detection accuracy, so it has been favored by many 

scholars, and on this basis, the model is further studied to meet the needs of real-

time industry [6].Therefore, after conducting comparative experiments on various 

mainstream models in the same environment as the dataset and training parameters, 

this paper determines that the YOLOv5 model is used as the baseline model to study 

the dataset and network structure, and the specific experimental results are shown 

in Table 5 below. 

Among them, the single-stage object detection algorithm YOLOv5 network 

consists of three parts: backbone feature extraction network, neck feature fusion 

network and head detection network. It should be noted that insufficient feature 

extraction, poor dataset quality, and poor feature fusion will seriously affect the 

effect of subsequent detection [7]. In order to prevent the occurrence of network 

training overfitting due to the small number of datasets, we need to perform data 

augmentation operations on the datasets used before the network is trained. 

In view of the problems existing in the above analysis, this paper proposes 

a network model with better detection accuracy, speed and model size (SGB-

YOLOv5s), as shown in Fig.1, which provides a framework that includes data 

augmentation technology and object detection technology based on deep learning. 

Firstly, the original data is enhanced by affine transformation, rotation, cropping 

and color transformation, so as to increase the number of original datasets, so that 

the network can extract more defect feature information to prevent the network from 

losing overfitting. Then, the classification and regression of the marked defects in 

the PCB are realized through the SGB-YOLOv5 network, which can quickly and 

accurately locate the location of the defects. The main innovations of the work in 

this paper are as follows: 

(1) For the detection anchor size and scale given by the original YOLOv5 

network, the 20*20 scale anchor frame is discarded and the 160*160 scale anchor 

is designed to improve the detection anchor's ability to feel the wildness of small 

targets. At the same time, in order to better match the size of defects, k-means++ 

clustering algorithm is used to regenerate the new anchor size. 
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(2) In order to reduce the loss of information in the process of transmitting 

features from the backbone feature extraction network to the feature fusion 

network, the Group Convolution Pair Block (GCI), that is, the group convolution 

of the features of the input neck without dimensionality reduction is adopted, and 

the weights of different features are obtained from the training process for 

weighted recombination, so as to retain more feature information extracted from 

the backbone network. 

(3) The PANet feature pyramid structure used in the original YOLOv5 is 

changed to a bi-multi-scale feature pyramid Structure (BMFPN), so that the 

network is able to carry out the process of transferring the low-level features to the 

high-level features at the same time, and to fuse the feature information of different 

scales. 

The rest of the article is organized as follows: Section 2 describes the related 

work. Section 3 describes the design methodology for the SGB-YOLOv5 network. 

Section 4 analyzes the experimental and simulation results. 
 

 
Fig.1. SBG-YOLOv5s framework 

2. Related Work 

2.1 Object Detection 

The evolution of object detection algorithms can be analyzed through two 

dimensions: core technological innovations and architectural optimizations. The 

foundational work began with LeCun et al.'s LeNet-5 network in 1998 [8], which 

established the CNN architecture through synergistic design of convolutional and 

pooling layers, laying the theoretical groundwork for modern object detection. In 

2005, Dalal et al. [9] developed the HOG Detector using gradient histogram 

features for efficient detection, though its local feature modeling mechanism lacked 

global semantic perception capabilities. A significant breakthrough occurred in 

2014 when Kaiming He [10] proposed SPPNet, introducing spatial pyramid pooling 
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modules to overcome traditional CNN input size constraints while significantly 

enhancing model generalization. The technological breakthrough in single-stage 

detectors commenced with Redmon's YOLOv1 in 2015 [11], achieving 

millisecond-level detection speed through an end-to-end architecture, albeit with 

precision limitations from coarse-grained feature fusion. Subsequently, Liu et al.'s 

SSD algorithm in 2016 [12] enhanced small object detection via multi-scale feature 

map fusion while maintaining real-time performance, though its memory footprint 

and hardware dependencies constrained industrial deployment potential. The 

YOLOv3 architecture introduced by Redmon's team in 2018 [13] employed multi-

scale training strategies and Feature Pyramid Networks (FPN) to strengthen multi-

scale detection, yet small target localization accuracy remained suboptimal. The 

subsequent YOLOv4 [14] innovatively integrated the CSPDarkNet53 backbone 

with cosine annealing learning rate scheduling, improving convergence efficiency 

while mitigating overfitting. Recent algorithmic optimizations focus on lightweight 

design and attention mechanism integration. The YOLOv5 framework proposed by 

the Ultralytics team in 2021 achieved precision-speed balance through adaptive 

training strategies and Mosaic data augmentation, with Team L [15] extending its 

application to infrared image detection, validating cross-modal adaptability. Huang 

et al.'s 2023 improvement [16] utilized C2f convolutions to reduce computational 

complexity while incorporating EMA attention mechanisms to enhance multi-scale 

context modeling. Wang et al.'s YOLOv10 in 2024 [17] realized classifier head 

lightweighting through depthwise separable convolutions and spatial-channel 

decoupled downsampling, combined with self-attention mechanisms to strengthen 

feature discriminability. Bakirci et al. [18] applied YOLOv11 to UAV aerial vehicle 

detection, achieving real-time performance while still facing missed detection 

challenges with small-scale aerial targets. 

2.2 PCB Defect Detection 

PCB defect detection algorithms can be roughly divided into two 

categories: traditional methods and deep learning methods. Traditional methods 

integrate mathematical modeling, signal processing, and computer vision 

technologies to achieve defect detection through image preprocessing, feature 

extraction, and classification. Ongshenjit J et al. [19] proposed an algorithm 

capable of simultaneously detecting and classifying 14 types of PCB defects with 

high accuracy, but its computational inefficiency makes it unsuitable for real-

time applications. Ma J et al. [20] developed an "image subtraction" method that 

locates defects by comparing pixel differences between standard and test images, 

demonstrating effectiveness in common areas but exhibiting false 

positives/misses with complex defects. Melnyk and Tushnytskyy [21] employed 

K-means clustering [22] to compute defect feature centers, using Euclidean 

distance thresholds between feature vectors for defect determination, though with 
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limited small-target detection capability. These conventional methods 

predominantly rely on manual feature engineering. This leads to inherent 

limitations in generalization capability and sensitivity to image quality.  

Deep learning methods primarily consist of two-stage frameworks 

(exemplified by RCNN series) and single-stage architectures (represented by 

YOLO series). While two-stage methods achieve higher precision, their 

computational complexity hinders real-time implementation. Hu B et al. [23] 

enhanced Faster-RCNN's accuracy through feature pyramid networks, yet 

inference latency remained problematic. Ding R's team [24] optimized anchor 

boxes via K-means clustering in Faster-RCNN, improving detection at the cost 

of increased training computation. Jia Chaoy et al. [25] innovatively replaced 

VGG with lightweight EfficientNetv2, integrating feature fusion networks and 

ECA attention mechanisms to strengthen multi-scale feature integration while 

reducing parameters. Regarding single-stage methods, Adibhatla [26] adopted 

YOLOv2 for speed improvement but sacrificed precision. Liao X et al. [27] 

substituted YOLOv4's backbone with MobileNetV3, achieving 40% parameter 

reduction while meeting real-time requirements. Subsequent work by Adibhatla's 

team [28] incorporated CSPNet and PANet into YOLOv5, further optimizing the 

precision-speed balance. 

Comparative analysis reveals YOLO series' superior balance between 

detection accuracy and speed, particularly suitable for edge computing devices. 

However, existing algorithms still exhibit room for improvement in precision and 

efficiency for PCB micro-defect detection. The subsequent sections of this paper 

will focus on targeted optimizations of the YOLOv5 model to enhance its 

comprehensive performance in PCB defect detection. 

3. SGB-YOLOv5 Network Design Methodology 

3.1 Small Object Detection Head (SOD) 

The YOLOv5 model initializes nine anchor boxes corresponding to three 

feature maps of different scales: 80×80, 40×40, and 20×20, with each grid cell in 

these feature maps utilizing three anchors for prediction. Since the detection 

performance for micro-targets is closely related to the network's receptive fields, in 

the original YOLOv5 head architecture, the 80×80 feature map with the smallest 

receptive field excels in detecting small targets, while the 20×20 feature map with 

the largest receptive field prioritizes large object recognition. Inspired by the 

methodology in [29], this study replaces the 20×20 deep-layer feature map with a 

160×160 shallow-layer feature map, thereby reducing the receptive field to enhance 

detection capability for PCB micro-defects. 

In earlier YOLOv3/YOLOv4 implementations, anchor box initialization 

relied on k-means clustering applied to the COCO dataset followed by genetic 
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algorithm optimization. However, the standard k-means algorithm's random 

initialization of cluster centers may lead to local optima, whereas the k-means++ 

algorithm mitigates this issue through optimized initial centroid selection. Given 

that the default anchor box dimensions may not align with specific defect datasets, 

this study employs k-means++ clustering to recalibrate anchor boxes based on 

defect characteristics, generating more adaptive parameters for enhanced detection 

performance. 

Algorithm          K-means++ Cluster  

Input： 

X = {x1, x2,···, xn}, K = 6, C = {c1, c2, c3, c4, c5, c6} 

X: input dataset, K: number of clusters, C: initially selected cluster center  

Ouput: 

cluster_centers Centroids after reclustering 

1:  while X ≠ empty do 

2:  count = 0   

3:  for xi in X do 

4:      for ci in C do 

5:          D(xi) = min(distance(xi, ci)) 

6:          count += 1 

7:          end for 

8:      end for     

9:  while count = 6 

10:     return cluster_centers = Kmeans(X,6) 

11:    end while 

12: end while  

3.2 Grouped Convolutional Inversion Blocks (GCI) 

Depending on the different ways of convolving the input features, there are 

commonly used standard convolution, grouped convolution, depth convolution, 

point-by-point convolution and depth separable convolution. The network structure 

we designed here mainly uses group convolution to extract features from the input 

feature maps. The difference between group convolution and standard convolution 

is that it first groups the different feature maps of the input layer, and then uses 

different convolution kernels to convolve the feature maps of each group, which 

reduces the number of parameters in the convolution and the amount of 

computation, thus improving the training speed of the network. The process of 

standard convolution and grouped convolution is shown in Fig.2 below. 
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Fig. 2. Standard convolution (a) and grouped convolution (b) 

 

Assuming the size of the input feature map is C×H×W, the size of the output 

feature map is N H W   , the size of the convolution kernel in both standard 

convolution and grouped convolution is K×K. If the input feature map is divided 

into G groups, the number of input feature maps in each group is C/G, the number 

of output feature maps in each group is N/G, and the size of each convolution kernel 

is C/G×K×K. By calculating the number of parameters onvCP  and computation onvCF  

for standard convolutional parametric quantities and grouped convolutional 

parameters roupGP  and computation roupGF : 
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From Eq. (1) to Eq. (4), the grouped convolution accounts for the parametric 

ratio PH  and the computational ratio FH  of the standard convolution, respectively: 
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From Eqs. (5) and (6), it can be seen that the convolution computation of 

the feature map using grouped convolution is 1/G of the standard convolution both 

in terms of the number of network parameters and computation, which makes the 

network model more lightweight and reduces the need for hard computational 

performance. 
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In conventional approaches, features extracted by the backbone network are 

typically processed through 1×1 convolutional kernels for channel dimension 

reduction before entering the feature fusion network, a method that inevitably leads 

to feature information loss. To address this limitation, we propose a Grouped 

Convolutional Inversion (GCI) block. This module employs grouped convolution 

to process backbone-derived features without dimensionality reduction: 1) The 

input feature map is partitioned into channel groups, with each group undergoing 

convolution operations while preserving tensor dimensions. 2) A weight-sharing 

mechanism enables implicit diffusion of channel-specific pixel information into 

adjacent spatial regions. This design maintains full channel dimensionality while 

enhancing feature representation through spatial interactions, effectively mitigating 

information loss and expanding receptive field coverage to significantly improve 

micro-target detection. The output feature map retains identical channel dimensions 

as the input, with its architecture illustrated in Fig.3 and mathematical formulation 

expressed as: 

knjmi
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++= 
       （7） 

Where   is the convolution kernel of the GCI pair fit block, denoted as 
GKKWHR  , where H and W denote the height and width of the feature mapping, 

respectively, K is the convolution kernel size, and G denotes the number of groups 

of grouped convolutions. X denotes the input feature tensor of different groups. 
 

 
Fig. 3. Structure of the grouped convolutional pairing block (GCI) 

3.3 Bidirectional Multiscale Feature Pyramid Structure (BMFPN) 

YOLOv5 employs a PANet-based multi-scale feature fusion pyramid 

architecture (illustrated in Fig.4), which combines top-down and bottom-up path 

aggregation strategies (i.e., FPN+PAN integration) to facilitate feature interactions. 

While designed to enhance the synergy between spatial details from shallow 
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features and semantic abstractions from deep features, this approach suffers from 

inefficient feature propagation and computational redundancy in practice. 

Specifically: 

Shallow features (e.g., 80×80 resolution) retain rich spatial localization 

details but lack semantic abstraction. 

Deep features (e.g., 20×20 resolution) encapsulate high-level semantics but 

exhibit reduced spatial resolution. 

Although PANet theoretically enhances multi-scale detection by integrating 

FPN (top-down semantic propagation) and PAN (bottom-up positional encoding), 

it presents critical limitations: 

(i) FPN Pathway Deficiency: Upsampling deep features to shallow layers 

causes significant loss of high-frequency details, degrading small-target feature 

representation. 

(ii) PAN Pathway Inadequacy: When propagating shallow features to deep 

layers, channel dimension compression in the pyramid structure leads to insufficient 

cross-level interactions and fails to prioritize feature importance adaptively. 

To address these issues, the weighted Bidirectional Feature Pyramid 

Network (BiFPN) introduces two key innovations: 

(i) Bidirectional Cross-Scale Connections: Cyclic top↔bottom feature 

propagation enhances multi-scale feature capture without computational overhead 

escalation. 

(ii) Learnable Weighted Fusion: A dynamic weighting mechanism 

optimizes fusion weights across feature levels during training, achieving superior 

multi-modal feature integration. 

As shown in Fig.4, the BiFPN architecture effectively mitigates information 

decay and redundancy inherent in traditional pyramid structures, significantly 

improving detection accuracy for PCB micro-defects. 

BiFPN structural feature fusion is computed as follows, here the P6 output 

is used as an example: 
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Inspired by the idea of BiFPN feature pyramid structure, this paper proposes 

a bi-directional multi-scale feature pyramid network structure (BMFPN), which 

firstly fuses the feature maps extracted from different scales in the backbone 

network to realize the full utilization of the features, and then fuses the feature maps 

extracted from the same sizes in the backbone network through the weighted fusion 

of the top-down path propagation network to enhance the ability of the network to 

learn more features of different scales and achieve better detection results. The 
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structure of the Bidirectional Multiscale Feature Pyramid Network (BMFPN) is 

shown in Fig.5 below. 
 

            
Fig. 4. Structure of PANet (left) and BiFPN (right) 

                                          

 

 
Fig. 5. The structure of the Bidirectional Multiscale Feature Pyramid Network 

 

As can be seen from Fig. 5, the network structure retains the bidirectional 

feature transfer of the BiFPM network while passing the feature maps inP4 extracted 

from the backbone network as input nodes into the feature fusion network and 

fusing feature maps of different sizes by up-sampling. In addition, the bidirectional 

multi-scale feature pyramid structure (BMFPN) adopts a two- and three-scale 

feature-weighted fusion approach, and for the 160*160 detection head, the features 

extracted by the backbone network are directly fused with the feature maps obtained 

by upsampling, which are finally used as the output features of the 160*160 scale 

anchor frame. As for the 80*80 and 40*40 scale anchor frames, a three-scale 

weighted fusion is used, i.e., it contains three components: the feature map extracted 

from the backbone, and the feature map obtained from the neck via top-down path 

and bottom-up path. 

4. Experimental Environment Configuration and Simulation 

4.1 Experimental Environment 
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The experimental environment used is shown in Table 1 below. 
 

Table 1 

Experimental environment configuration 

Operating System Window11 

CPU AMD Ryzen 7 7840H 3.80GHz 

GPU NVIDIA GeForce RTX4060 Laptop 

 Memory 8GB 

CUDA Versions and Acceleration Libraries CUDA11.8+cudnn8.9.7 
Deep Learning Framework Pycharm 

4.2 Dataset Preparation 

The dataset [30] used in this experiment is the publicly available PCB defect 

dataset from the Intelligent Robotics Laboratory of Peking University. It includes 

six types of defects: open_circuit, short, mouse_bite, missing_hole, 

spurious_copper, and spur, with a total of 1,386 images. For this study, I selected 

693 images as the benchmark dataset and used the remaining 693 samples for 

testing. In order to improve the generalization ability of the model and to prevent 

premature model fitting during training, the original dataset was augmented by 

employing data enhancement techniques (panning, rotating, cropping, mirroring, 

adding noise, and adjusting the brightness of the image, final dataset was 

augmented to 3500 samples and randomly divided into training and validation sets 

in the ratio of 9:1. The number of various types of defects in the augmented dataset 

is shown in Table 2 below. 
Table 2 

Number of defects in each category before and after dataset enhancement 

 Defect type Number of defects by 

category(before) 

Number of defects by 

category(after) 

Open_circuit 116 580 

short 116 580 

Mouse_bite 115 580 

Missing_hole 115 605 

Spurious_copper 116 580 

spur 115 575 

    total 693 3500 

4.3 Evaluation Indicators 

Precision rate (P): refers to the proportion of the number of samples 

predicted to be positive to the total number of actual positive samples when the 

actual samples are positive, and its mathematical expression is: 
        TP

P
TP FP

=
+

                                                  (10)
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Recall (R): refers to the proportion of all positive sample species that are 

predicted to be positive, and its mathematical expression is: 
              

R
TP

TP FN
=

+
                                                 (11)

 

Where TP denotes the number of positive samples correctly detected, FP denotes 

the number of negative samples correctly detected as positive samples, and FN 

denotes the number of negative samples incorrectly detected as positive samples. 

Average precision (AP): refers to the average precision, expressed by the 

area enclosed by the two indicators of accuracy and recall, its mathematical 

expression is: 
  1

0
( )dAP P R R=                                                (12)

 

Intersection and integration ratio (IOU): refers to the degree of overlap 

between the predicted frame and the real frame by calculating, the larger the value 

represents a better localization of the network to the target, its mathematical 

expression is: 

PD GT
IOU

PD GT


=


                                             (13)

 

Where PD denotes the prediction anchor and GT denotes the true anchor. 

Mean Average Precision (mAP): refers to the summed average of the 

precision of each class of defects, its mathematical expression is: 

1mAP

n

i

AP

n

==
                                                 (14)

 

Where i denotes the average accuracy value of a particular class of defects, and in 

the dataset used in this experiment there are 6 classes of defects, so n is equal to 6. 

4.4 Ablation Experiments 

To validate the effectiveness of the improvement methods proposed in 

Section 1, this study conducted a series of comparative experiments based on the 

original YOLOv5s model (Baseline) under consistent training environments and 

parameters. Nine modified models were sequentially constructed: Model1 added a 

160×160 shallow detection head to Baseline. Model2 optimized anchor clustering 

via k-means++. Model3 incorporated the Grouped Convolutional Inversion (GCI) 

block. Model4 integrated the weighted Bidirectional Multi-scale Feature Pyramid 

(BiFPN). Models5-7 combined two improvement strategies each. Model8 fused 

three optimizations (k-means++, GCI, and BiFPN). And Model9 (SGB-YOLOv5s) 

synthesized all enhancements. Experimental results (detailed in Table 3) 

demonstrated progressive improvements in per-class Average Precision (AP), mean 

Average Precision at 50% IoU (mAP@50), model size, and parameter count. 
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Notably, the comprehensively optimized Model9 achieved significant mAP@50 

gains over Baseline while retaining lightweight characteristics, confirming the 

synergistic efficacy of multi-strategy integration. 
Table 3  

Ablation experiments 

Model 

AP/% 

mAP@

50/% 

Size 

/Mb 

Para

meter

s/M 
Open_

circuit 
short 

Mous

e_bite 

Mis

sing

_hol

e 

Spuri

ous_c

opper 

spur 

Basicline 98.13 99.49 99.24 99.5 99.45 95.9 98.26 26.8 7.03 

Model1 99.49 99.49 99.23 99.1 99.5 97.79 99.1 26.78 7.02 

Model2 99.45 99.49 99.05 99.5 99.5 97.93 99.16 26.84 7.03 

Model3 99.17 99.49 99.06 99.5 99.5 96.4 98.85 28.4 7.45 

Model4 99.21 99.5 99.43 99.5 99.48 95.9 98.84 27.09 7.09 

Model5 99.45 99.5 99.21 99.5 99.5 97.96 99.19 28.4 7.45 

Model6 99.46 99.5 99.36 99.5 99.5 97.84 99.19 27.09 7.1 

Model7 98.92 99.5 99.26 99.5 99.5 96.54 98.87 28.78 7.54 

Model8 99.61 99.67 98.97 99.6 99.67 98.01 99.2 28.78 7.54 

Model9 99.49 99.5 99.3 99.5 100 99.03 99.39 28.6 7.5 

 

Experimental results demonstrate significant performance improvements 

across all enhancement strategies. Model1, which replaced the 20×20 detection 

head with a 160×160 shallow head, increased AP values for open-circuit, excess 

copper, and burr defects, elevating the overall mAP@50 from 98.26% to 99.1%, 

validating the efficacy of shallow features for micro-defect detection. Model2, 

employing k-means++ for anchor optimization, improved AP for all defect types 

except rodent bites, with a 0.92% mAP@50 gain, confirming that adaptive anchor 

parameters better align with PCB defect characteristics. 

Model3's integration of the Grouped Convolutional Inversion (GCI) block 

enhanced AP for all defects except short circuits, achieving a 0.49% mAP@50 

increase, highlighting its capability to preserve channel-wise information. Model4's 

adoption of BiFPN boosted open-circuit AP from 98.13% to 99.21% with only 1.08% 

and 0.85% increases in model size and parameters, respectively, underscoring its 

efficient feature fusion. 

Model5's combined k-means++ and GCI strategy elevated open-circuit and 

burr AP to 99.45% and 97.96%, surpassing the standalone k-means++ model by 

0.16% and 0.06% for rodent bites and burrs, demonstrating synergistic optimization. 

Model6 maintained short-circuit AP at 99.5% while improving other defects, 

particularly open-circuit, rodent bites, and burrs. 

Though Model7's fusion of GCI and BiFPN slightly reduced open-circuit 

AP, it enhanced other defect categories. Model8's comprehensive integration of 

three strategies achieved a 99.2% mAP@50 (up from 98.26%) with 7.39% and 7.25% 
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increases in model size and parameters, revealing global optimization potential. 

Ultimately, Model9 (SGB-YOLOv5s) attained 100% AP for excess copper defects 

and a 1.15% mAP@50 improvement (99.39%) with only 1.8MB and 0.47M 

increases in model size and parameters, achieving optimal precision-lightweight 

balance. 

4.5 Comparative Experiments 

To comprehensively evaluate the performance advantages of the proposed 

SGB-YOLOv5 network, comparative experiments were conducted against 

mainstream detection models (YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv5s, 

YOLOv7-tiny, YOLOv8n, and YOLO11) using the publicly available PCB defect 

dataset from Peking University’s Intelligent Robotics Laboratory. As detailed in 

Table 4, model performance was assessed through five metrics: Precision (P), 

Recall (R), mean Average Precision (mAP@50), parameter count (Parameters), and 

inference speed (Frames Per Second, FPS). Comparative curves of mAP@50 and 

mAP@50:95 across models (Fig.6-7) visually demonstrate multi-scale detection 

capability differences. Experimental results confirm that SGB-YOLOv5 achieves 

superior precision-efficiency balance compared to state-of-the-art models. 

Table 4  
Comparative experiments 

Model P/% R/% mAP@50/% mAP@50:95/% Parameters/M FPS 

YOLOv3 96.7 91.6 94.7 53.7 8.68 158.5 

YOLOv3-tiny 97.5 91.4 95.1 53.5 8.68 158.7 

YOLOv5s 98.2 97.3 98.26 70.98 7.03 73 

YOLOv7-tiny 94.7 85.3 89.9 46.8 6.03 49.02 

YOLOv8n 96.7 88.4 93.7 59.1 3.0 101 

YOLO11 95.3 88.6 93.1 58.7 2.58 101 

SGB-YOLOv5s 99.4 98.73 99.39 76.85 7.49 66.7 

 

Experimental results (Table 4) reveal that while YOLOv3 and YOLOv3-

tiny achieve optimal inference speed (FPS), their core precision metrics—including 

accuracy (P), recall (R), and mAP@50—remain suboptimal. Although YOLOv7-

tiny exhibits low parameter counts, its mAP@50 (89.9%) and mAP@50:95 (46.8%) 

are notably inferior, coupled with the lowest recall rate among all models. 

YOLOv8n demonstrates advantages in lightweight design and speed but leaves 

room for precision improvement. YOLO11, despite having the fewest parameters, 

underperforms significantly compared to YOLOv5s in both accuracy and recall, 

justifying our selection of YOLOv5s as the baseline. In contrast, SGB-YOLOv5s 

achieves optimal values across all four key metrics (P, R, mAP@50, and 

mAP@50:95). Although its FPS does not peak, it sufficiently meets real-time 

detection requirements. Crucially, this model comprehensively surpasses the 
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original YOLOv5s with negligible parameter increases, offering an efficient 

solution for edge device deployment. 

As illustrated in Fig.6-7, mAP curves further validate these findings: 

YOLOv7-tiny exhibits severe overfitting with the weakest detection performance; 

YOLOv3 and YOLOv3-tiny show overlapping curves indicating comparable 

performance; YOLOv5s demonstrates superior precision and smoother 

convergence compared to the former three; YOLOv8n and YOLO11 achieve 

similar accuracy levels but lag behind YOLOv5s. The enhanced SGB-YOLOv5s 

attains peak values in both mAP@50 and mAP@50:95 metrics, with accelerated 

convergence and significant precision advantages, fully validating the efficacy of 

our algorithmic improvements. 

     
Fig. 6. Curves mAP@50 different models         Fig. 7. Curves of different model mAP@50:95 

4.6 Detection Effect Test 

To validate the detection performance of YOLOv5s and SGB-YOLOv5s, 

Fig.8 demonstrates the comparative testing results of both models on six types of 

defects in the test dataset: open_circuit, short, mouse_bite, missing_hole, 

spurious_copper, and spur. The first column displays ground truth annotations, the 

second column shows detection results from YOLOv5s, and the third column 

illustrates outputs from SGB-YOLOv5s. Experimental observations reveal that 

while YOLOv5s achieves defect localization, its confidence scores are notably 

lower than those of the enhanced model. Specifically, all defect types demonstrated 

varying degrees of improvement in detection performance when using SGB-

YOLOv5s, among which mouse_bite defects showed the most significant 

enhancement. Furthermore, while the baseline YOLOv5s model exhibited both 

missed detections and false positives for spur defects, the improved model achieved 

accurate and error-free detection. 
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Fig.8. Detection effect of YOLOv5s and SGB-YOLOv5s 

5. Conclusion 

This paper proposes a PCB defect detection algorithm based on the SGB-

YOLOv5s model. The algorithm first designs a 160×160-scale detection head and 

employs the k-means++ clustering algorithm to better adapt to the feature size 

distribution of PCB defects. Additionally, between the backbone network and the neck 

feature fusion network, grouped convolution cross-block modules replace 

conventional 1×1 convolutions. This approach preserves feature channel dimensions 

while enabling effective feature transmission, with ablation studies demonstrating its 

ability to prevent feature loss and enhance detection accuracy without increasing 

network parameters. Furthermore, a weighted bidirectional multi-scale feature 

pyramid network (BMFPN) is implemented to achieve simultaneous fusion of multi-

scale features while improving computational efficiency. Experimental results show 

that SGB-YOLOv5s achieves a state-of-the-art mAP@50 of 99.39%, surpassing 

existing mainstream models in detection accuracy. This breakthrough successfully 

resolves high-precision detection challenges and provides a novel solution for 

practical PCB defect detection in industrial production. 
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However, real-world application scenarios present challenges such as complex 

backgrounds and environmental noise that may compromise detection performance. 

To address these issues, the study employs advanced data augmentation techniques to 

simulate authentic PCB defect images captured in practical environments, thereby 

enhancing model robustness. While the current implementation achieves a detection 

speed of 66.7 FPS - sufficient for real-time requirements - future research will focus 

on optimizing network architecture to simultaneously improve inference speed and 

maintain high accuracy, ultimately delivering a comprehensive solution that balances 

precision and efficiency for industrial deployment. 
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