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A NOVEL STUDY ON FUZZY CONGRUENCES ON n-ARY

SEMIGROUPS

Xiaowu Zhou1, Dajing Xiang2, Jianming Zhan3

In this paper, we introduce the concept of fuzzy congruences on n-ary semi-

groups and describe quotient n-ary semigroups by fuzzy congruences. Some isomorphism

theorems about n-ary semigroups are established. Moreover, we discuss a special kind of

n-ary semigroups. We also establish relationships between normal fuzzy ideals and fuzzy

congruences. In particular, we prove that there exists a preserving inclusion injective

mapping from the set of all normal fuzzy ideals of the special n-ary semigroups to the set

of all fuzzy congruences in an n-ary semigroup with one zero. Finally, we obtain that

there is a one-to-one correspondence between the set of all invariant fuzzy congruences

on an n-ary semigroup and the set of all invariant fuzzy congruences on a quotient n-ary

semigroup.
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1. Introduction

The theory of fuzzy sets was first developed by Zadeh [27] and has been applied

to many branches in mathematics and other applied areas. Later, the concept of fuzzy

subgroups was introduced by Rosenfeld [23]. This work was the first fuzzification of alge-

braic structures and thus opened a new direction, new exploration, new path of thinking

to mathematicians, engineers, computer scientists, and many other researchers. In order

to study quotient algebraic structures, we naturally need to consider fuzzy congruence re-

lations of algebraic structures. At present, this work is mainly concentrated on the groups

and semigroups. We know that there exists a one-to-one correspondence between the set of

all congruences on a group and the set of all normal subgroups of a group. In [20], Kuroki

proved that the set of all fuzzy congruences and the set of all fuzzy ideals of a group can be

depicted with each other. Similar to the work, there is a lot of work but different emphasis,

for example, Dutta and Biswas have discussed the relationships between fuzzy k-ideals and

fuzzy congruences in [16]. In 1997, Kim and Bae [18] also proved that the set of all fuzzy
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congruences with respect to usually intersection and union is a modular lattice. The other

important results about fuzzy congruences can be found in [21, 24, 25, 26].

The generalization of algebraic structures was in active research for a long time, it

was first initiated by Kasner [17] in 1904, but the important study of n-ary semigroups and

n-ary groups was done by Dudek. For more details, the reader is referred to [7, 8, 9, 11, 13,

14, 15]. In addition, a new class of mathematical structures called (m,n)-semirings (which

generalize the usual semirings) was discussed by [1, 2, 5, 6]. Up till now, the theory of n-ary

systems have many applications, for example, in the theory of automata. We know that

n-ary semigroups have been applied in the theory of fuzzy sets and rough sets (see [3, 4]).

The first fuzzification of an n-ary system was introduced by Dudek [10]. Moreover, as a

generalization of Rosenfeld’s fuzzy groups, Davvaz and Dudek [4] discussed further fuzzy

n-ary groups, and investigated their related properties. The notion of intuitionistic fuzzy

sets, as a generalization of the notion of fuzzy sets, was introduced by Dudek [12] in n-ary

systems. In particular, n-ary hyper algebras were investigated by many researchers, for

examples, see [28].

The purpose of this paper is to introduce fuzzy congruences on an n-ary semigroup,

and establish isomorphism theorems about n-ary semigroups in terms of fuzzy congruences.

Furthermore, we discuss a special kind of n-ary semigroups with one zero, and give a char-

acterization between normal fuzzy ideals and fuzzy congruences. Moreover, we prove that

in an n-ary semigroup with one zero, there exists a preserving inclusion injective mapping

from the set of all normal fuzzy ideals of the special n-ary semigroups to the set of all fuzzy

congruences.

2. Preliminaries

A non-empty set S together with one n-ary operation f : Sn → S, where n ≥ 2, is

called an n-ary groupoid and is denoted by (S, f). According to the general convention used

in the theory of n-ary groupoids, the sequence of elements xi, xi+1, . . . , xj is denoted by xji .

In the case j < i, it is the empty symbol. If xi+1 = xi+2 = . . . = xi+t = x, then we write
(t)
x

instead of xi+t
i+1. In this convention,

f(x1, x2, . . . , xn) = f(xn1 ),

and

f(x1, . . . , xi, x, . . . , x︸ ︷︷ ︸
t

, xi+t+1, . . . , xn) = f(xi1,
(t)
x , xni+t+1).

An n-ary groupoid (S, f) is called an (i, j)-associative if

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

hold for all x1, x2, . . . , x2n−1 ∈ S. If this identity holds for all 1 ≤ i ≤ j ≤ n, then we say

that the operation f is associative, and (S, f) is called an n-ary semigroup. Throughout this

paper, unless otherwise mentioned, (S, f) will denote an n-ary semigroup.

Definition 2.1. [20] A fuzzy set µ of R is called a A function α from S × S to the unit

interval [0,1] is called a fuzzy relation on S. Let α and β be two fuzzy relations on S. Then
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the product α ◦ β of α and β is defined by

(α ◦ β)(x, y) =
∨
z∈S

[α(x, z) ∧ β(z, y)]

for all (x, y) ∈ S × S.

Definition 2.2. [18] A fuzzy relation α of S is called a fuzzy equivalence relation if it

satisfies the following conditions:

(i) α(x, x) = 1 for all x ∈ S (fuzzy reflexive).

(ii) α(x, y) = α(y, x) for all x, y ∈ S (fuzzy symmetric).

(iii) α(x, y) ≥
∨
z∈S

[α(x, z) ∧ α(z, y)] for all x, y, z ∈ S (fuzzy transitive).

In particular, the identity relation on S is defined by

IdS(x, y) =

{
1 if x = y,

0 otherwise,

for all (x, y) ∈ S × S.

Definition 2.3. [10] A fuzzy set µ on an n-ary semigroup (S, f) is called a fuzzy k-ideal if

µ(f(xn1 )) ≥ µ(xk)

holds for all x1, x2, . . . , xn ∈ S. If µ is a fuzzy k-ideal for every k = 1, 2, . . . , n, then it is

called a fuzzy ideal. Clearly, if µ satisfies µ(f(xn1 )) ≥ µ(x1) ∨ µ(x2) ∨ . . . ∨ µ(xn), then it is

a fuzzy ideal of (S, f).

Remark 2.1. A fuzzy ideal µ of (S, f) is said to be normal if there exists x ∈ S such that

µ(x) = 1.

3. Quotient n-ary semigroups via fuzzy congruences

In this section, we introduce fuzzy congruences on an n-ary semigroup, and establish

isomorphism theorems about n-ary semigroups via fuzzy congruences.

Definition 3.1. Let α be a fuzzy equivalence relation of (S, f). α is called a fuzzy congruence

of (S, f) if it satisfies:

α(f(xn1 ), f(y
n
1 )) ≥ α(x1, y1) ∧ α(x2, y2) ∧ . . . ∧ α(xn, yn)

for all 1 ≤ i ≤ n and x1, x2, . . . , xn, y1, y2, . . . , yn ∈ S.

We denote the set of all fuzzy congruences of (S, f) by FC(S, f).

Example 3.1. Consider the set S = {−i, 0, i} with the 3-ary operation f as the usual

multiplication of complex numbers. Then (S, f) is a 3-ary semigroup. The fuzzy relation α

on (S, f) defined by

α(x, y) =


1 if x = y,

0.5 if x ̸= y and both x, y are imaginary numbers,

0 otherwise.

is a fuzzy congruence on (S, f).
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Let α be a fuzzy relation of (S, f). For each λ ∈ [0, 1], we put Sα(λ) = {(a, b)|(a, b) ∈
S × S, α(a, b) ≥ λ}. This set is called λ-level set of α.

Theorem 3.1. α is a fuzzy congruence of (S, f) if and only if for each λ ∈ [0, 1], Sα(λ) is

a congruence of (S, f).

Proof. It is clear that Sα(λ) is an equivalence relation. Since α is a fuzzy congruence of

(S, f), let (x1, y1), (x2, y2), . . . , (xn, yn) ∈ Sα(λ). Then we have

α(f(xn1 ), f(y
n
1 )) ≥ α(x1, y1) ∧ α(x2, y2) ∧ . . . ∧ α(xn, yn) ≥ λ,

which implies that (f(xn1 ), f(y
n
1 )) ∈ Sα(λ). Hence Sα(λ) is a congruence of (S, f).

Conversely, for each λ ∈ [0, 1], since Sα(λ) is a congruence of (S, f), for any x ∈
S, α(x, x) ≥ λ. It implies that α(x, x) = 1, so α is a fuzzy reflexive relation. For all x, y ∈ S,

if α(x, y) ̸= α(y, x), let α(x, y) = λ1, α(y, x) = λ2. If λ1 > λ2, then (y, x) /∈ Sα(λ1),

but (x, y) ∈ Sα(λ1), since Sα(λ1) is a congruence of (S, f), contradiction. So α(x, y) =

α(y, x). When λ1 < λ2, the proof is similar. Hence α is fuzzy symmetric relation. For

any x, y, z ∈ S, let α(x, z) = t1, α(z, y) = t2. If t1 ≤ t2, then (x, z), (z, y) ∈ Sα(t1), so

(x, y) ∈ Sα(t1), α(x, y) ≥ t1 =
∨
z∈S

[α(x, z)∧α(z, y)]. When t1 ≥ t2, the proof is similar. This

means α is a fuzzy transitive relation. Thus α is a fuzzy equivalence relation of (S, f).

Since Sα(λ) is a congruence of (S, f), for any x1, x2, . . . , xn, y1, y2, . . . , yn ∈ S, let

α(x1, y1) = a1, α(x2, y2) = a2, . . . , α(xn, yn) = an, put a0 = a1∧a2 . . .∧an. Then α(xi, yi) ≥
a0, where 1 ≤ i ≤ n, so (xi, yi) ∈ Sα(a0), which implies (f(xn1 ), f(y

n
1 )) ∈ Sα(a0). Hence

α(f(xn1 ), f(y
n
1 )) ≥ a0 = α(x1, y1) ∧ α(x2, y2) ∧ . . . ∧ α(xn, yn). This means α is a fuzzy

congruence of (S, f). This completes the proof. �

Let α be a fuzzy congruence of an n-ary semigroup (S, f). For any x, y ∈ S, we define

a binary relation ∼ on S by

x ∼ y if and only if α(x, y) = 1.

Corollary 3.1. ∼ is a congruence of (S, f).

Let αx = {y ∈ S|y ∼ x}. Then αx is the congruence class containing x and (S, f)/α =

{αx|x ∈ S} is the set of all congruence classes of (S, f) for any x ∈ S.

Remark 3.1. From the define above, we can obtain that αx = αy if and only if α(x, y) = 1.

Theorem 3.2. If α is a fuzzy congruence of an n-ary semigroup (S, f), then ((S, f)/α, F )

is an n-ary semigroup under the n-ary operation defined by

F (αx1 , αx1 , . . . , αxn) = αf(xn
1 )

for all x1, x2, . . . , xn ∈ S.

Proof. We shall first show that the given operation is well defined. Let x1, x2, . . . , xn,

y1, y2, . . . , yn ∈ S be such that αx1 = αy1 , αx2 = αy2 , . . . , αxn = αyn . We need to show that

F (αx1 , αx1 , . . . , αxn) = F (αy1 , αy1 , . . . , αyn).
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In fact, since α is a fuzzy congruence of (S, f), it follows from Remark 3.1 that

α(x1, y1) = α(x2, y2) = . . . = α(xn, yn) = 1.

So

α(f(xn1 ), f(y
n
1 )) ≥ α(x1, y1) ∧ α(x2, y2) ∧ . . . ∧ α(xn, yn) = 1.

Thus α(f(xn1 ), f(y
n
1 )) = 1, which implies αf(xn

1 )
= αf(yn

1 ). This means F (αx1 , αx2 , . . . ,

αxn) = F (αy1 , αy1 , . . . , αyn). Hence F is well defined. (S, f)/α is closed under the operation

F and F is (i, j)-associative are obvious, we omit their proof. �

Theorem 3.3. Let α and β be two fuzzy congruences of an n-ary semigroup (S, f) with

α ⊆ β. Then the fuzzy relation β/α of ((S, f)/α, F ), defined by (β/α)(αx, αy) = β(x, y) is

a fuzzy congruence of ((S, f)/α, F ) and ((S, f)/α, F )/(β/α)
∼= (S, f)/β.

Proof. First we show β/α is well defined. In fact, if αx = αx′ and αy = αy′ , then α(x, x′) =

α(x, x′) = 1. Since α ⊆ β, so β(x, x′) = β(y, y′) = 1.

Again, β is a fuzzy congruence of (S, f), then

β(x, y) ≥
∨
z∈S

[β(x, z) ∧ β(z, y)]

≥ β(x, y′) ∧ β(y′, y)
= β(x, y′)

≥
∨

z′∈S

[β(x, z′) ∧ β(z′, y′)]

≥ β(x, x′) ∧ β(x′, y′)
= β(x′, y′),

and thus β(x, y) ≥ β(x′, y′). Similarly, we can prove that β(x′, y′) ≥ β(x, y). Therefore,

β(x, y) = β(x′, y′). This means β/α is well defined.

Obviously, β/α is a fuzzy equivalence relation of ((S, f)/α, F ). Let ∀x1, x2, . . . ,
xn, y1, y2, . . . , yn ∈ S. Then, since β is a fuzzy congruence of (S, f), we have

(β/α)(F (αx1 , αx2 , . . . , αxn), F (αy1 , αy2 , . . . , αyn))

= (β/α)(αf(xn
1 )
, αf(yn

1 ))

= β(f(xn1 ), f(y
n
1 ))

≥ β(x1, y1) ∧ . . . ∧ β(xn, yn)
= (β/α)(αx1 , αy1) ∧ . . . ∧ (β/α)(αxn , αyn).

Hence β/α is a fuzzy congruence of ((S, f)/α, F ).

By Theorem 3.2, we know ((S, f)/α, F )/(β/α) and (S, f)/β are n-ary semigroups.

Define a mapping

h : ((S, f)/α, F )/(β/α) → (S, f)/β,

by h((β/α)αx) = βx for all x ∈ S. If (β/α)αx = (β/α)αy , then (β/α)(αx, αy) = β(x, y) = 1,

so βx = βy. Hence h is well-defined.
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Let F ∗ and F
′
be two n-ary operations of ((S, f)/α, F )/(β/α) and (S, f)/β, respec-

tively. Then we have

h(F ∗((β/α)αx1
, (β/α)αx2

, . . . , (β/α)αxn
))

= h((β/α)F (αx1 ,αx2 ,...,αxn ))

= h((β/α)αf(xn
1 )
)

= βf(xn
1 )

= F
′
(βx1 , βx2 , . . . , βxn)

= F
′
((β/α)αx1

, (β/α)αx2
, . . . , (β/α)αxn

).

This means h is a homomorphism. If βx = βy, then β(x, y) = (β/α)(αx, αy) = 1. It thus

follows that (β/α)αx = (β/α)αy , and h is injective.

Furthermore, for any βx ∈ (S, f)/β, there exists α = β such that h((β/α)βx) =

h((β/α)αx) = βx. Hence h is surjective. This completes the proof. �

Let (S, f) and (H, g) be two n-ary semigroups, φ a homomorphism of S to H. If α is

a fuzzy relation on (S, f) and α′ is a fuzzy relation on (H, g), then the inverse image φ−1(α′)

of α′ is the fuzzy relation on (S, f) defined by

φ−1(α′)(x, y) = α′(φ(x), φ(y))

for all x, y ∈ S.

The image φ(α) of α is the fuzzy relation on (H, g) defined by

φ(α)(x, y) =


∨

(xi,yi)∈φ−1(x,y)

α(xi, yi) if φ−1(x, y) ̸= ∅,

0 otherwise.

for all x, y ∈ H,xi, yi ∈ S and 1 ≤ i ≤ n.

The following basic assertions hold:

(i) For any α ∈ FC(S, f), α ⊆ φ−1(φ(α)). If φ is injective, then α = φ−1(φ(α)).

(ii) For any β ∈ FC(H, g), φ(φ−1(β)) ⊆ β. If φ is surjective , then φ(φ−1(β)) = β.

Proposition 3.1. Let (S, f) and (H, g) be two n-ary semigroups, φ a homomorphism from

(S, f) into (H, g). If α′ is a fuzzy congruence on (H, g), then φ−1(α′) is a fuzzy congruence

on (S, f).

Proof. Let x1, x2, . . . , xn, y1, y2, . . . , yn ∈ S, then we have

φ−1(α′)(f(xn1 ), f(y
n
1 ))

= α′(φ(f(xn1 )), φ(f(y
n
1 )))

= α′(g(φ(y1), φ(y2), . . . , φ(yn)), g(φ(y1), φ(y2), . . . , φ(yn)))

≥ α′(φ(x1, y1)) ∧ α′(φ(x2, y2)) ∧ . . . ∧ α′(φ(xn, yn))

= φ−1(α′)(x1, y1) ∧ φ−1(α′)(x2, y2) ∧ . . . ∧ φ−1(α′)(xn, yn).

Hence φ−1(α′) is a fuzzy congruence on (S, f). �

Proposition 3.2. Let (S, f) and (H, g) be two n-ary semigroups, φ an epimorphism from

(S, f) into (H, g). If α is a fuzzy congruence on (S, f), then φ(α) is a fuzzy congruence on

(H, g).
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Proof. Let a1, a2, . . . , an, b1, b2, . . . , bn ∈ H. Since φ is an epimorphism, there exist x1, x2, . . . , xn,

y1, y2, . . . , yn ∈ S such that φ(x1) = a1, φ(x2) = a2, . . . , φ(xn) = an, φ(y1) = b1, φ(y2) =

b2, . . . , φ(yn) = bn. So

φ(f(xn1 )) = g(φ(x1), φ(x2), . . . , φ(xn)) = g(an1 ),

and

φ(f(yn1 )) = g(φ(y1), φ(y2), . . . , φ(yn)) = g(bn1 ).

Hence {(xi, yi) ∈ S × S(i = 1, 2, . . . , n)|(xi, yi) ∈ φ−1(g(an1 ), g(b
n
1 )} ⊇ {(f(xn1 ), f(yn1 ))

∈ S × S|(x1, y1) ∈ φ−1(a1, b1), (x2, y2) ∈ φ−1(a2, b2), . . . , (xn, yn) ∈ φ−1(an, bn)}. Then we

have

φ(α)(g(an1 ), g(b
n
1 ))

=
∨

(xi,yi)∈φ−1(g(an
1 ),g(b

n
1 ))

α(xi, yi)

≥
∨

(x1,y1)∈φ−1(a1,b1),...,(xn,yn)∈φ−1(an,bn)

α(f(xn1 ), f(y
n
1 ))

≥
∨

(x1,y1)∈φ−1(a1,b1),...,(xn,yn)∈φ−1(an,bn)

α(x1, y1) ∧ . . . ∧ α(xn, yn)

=
∨

(x1,y1)∈φ−1(a1,b1)

α(x1, y1) ∧ . . . ∧
∨

(xn,yn)∈φ−1(an,bn)

α(xn, yn)

= φ(α)(a1, b1) ∧ . . . ∧ φ(α)(an, bn).

Hence φ(α) is a fuzzy congruence on (H, g). This completes the proof. �

Theorem 3.4. Let (S, f) and (H, g) be two n-ary semigroups, φ an isomorphism of (S, f)

into (H, g). If α is a fuzzy congruence on (S, f), then (S, f)/α ∼= (H, g)/φ(α).

Proof. By Theorem 3.2 and Proposition 3.2, (S, f)/α and (H, g)/φ(α) are n-ary semigroups.

Define a mapping θ : (S, f)/α → (H, g)/φ(α) by θ(αx) = φ(α)φ(x) for all x ∈ S. We first

show that θ is well defined. In fact, let x, x′ ∈ S. If αx = αx′ , then α(x, x′) = 1, and we

have

φ(α)(φ(x), φ(x′)) =
∨

(x,x′)∈φ−1(φ(x),φ(x′))

α(x, x′) = 1,

which implies that φ(α)φ(x) = φ(α)φ(x′). Hence θ is well defined.

Moreover, θ is also a homomorphism. In fact, let x1, x2, . . . , xn ∈ S, T and T ′ be two

n-ary operations of n-ary semigroup (S, f)/α and (H, g)/φ(α), respectively. Then we have

θ(T (αx1 , αx2 , . . . , αxn)) = θ(αf(xn
1 )
)

= φ(α)φ(f(xn
1 ))

= φ(α)g(φ(x1),φ(x2),...,φ(xn))

= T ′(φ(α)φ(x1), φ(α)φ(x2), . . . , φ(α)φ(xn)).

This means θ is a homomorphism.

Since φ is surjective, for any φ(α)y ∈ (H, g)/φ(α), y ∈ H, there exists x ∈ S such

that φ(x) = y. So θ(αx) = φ(α)φ(x) = φ(α)y, which implies that θ is surjective. Again, φ

is injective, so α = φ−1(φ(α)). For any x, x′ ∈ S, if φ(α)φ(x) = φ(α)φ(x′), then we have

α(x, x′) = φ−1(φ(α))(x, x′) = φ(α)(φ(x), φ(x′)) = 1, which implies that αx = α′
x. This

means θ is injective. Thus θ is a isomorphism and (S, f)/α ∼= (H, g)/φ(α). �
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Theorem 3.5. Let (S, f) and (H, g) be two n-ary semigroups, φ an epimorphism of (S, f)

into (H, g). If α′ is a fuzzy congruence on (H, g), then (S, f)/φ−1(α′) ∼= (H, g)/α.

Proof. The proof is similar to that of Theorem 3.4, and we omit it. �

4. The relationships between fuzzy ideals and fuzzy congruences

In this section, we give the concept of an n-ary semigroup with one zero and investigate

the characterizations of normal fuzzy ideals and fuzzy congruences on a special kind of n-ary

semigroup. Moreover, some conclusions are given based on the concept of an invariant fuzzy

congruence about another fuzzy congruence on an n-ary semigroup.

Definition 4.1. An n-ary semigroup (S, f) has zero element 0 if it satisfies:

f(xi−1
1 , 0, xni+1) = 0

for all x1, x2, . . . , xn ∈ S and 1 6 i 6 n.

Example 4.1. [6] Let N be the set of all natural numbers and f an n-ary operation (n > 2)

defined on N by the formula f(xn1 ) = x1 · x2 . . . xn. Then it is not difficult to see that (S, f)

is an n-ary semigroup with zero element 0.

Example 4.2. Let S =

{(
0 0

0 0

)
,

(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
, where

the 3-ary operation f is the usual matrix multiplication. Then (S, f) is a 3-ary semigroup

with zero element. Clearly,

(
0 0

0 0

)
is the zero element of (S, f).

Theorem 4.1. Let α be a fuzzy congruence on an n-ary semigroup (S, f) with zero element

0 and µα be the fuzzy set of S defined by

µα(x) = α(x, 0),

for all x ∈ S. Then µα is a normal fuzzy ideal of (S, f).

Proof. It is straighforward. �

Theorem 4.2. Let µ be a fuzzy ideal of (S, f). Then the fuzzy relation αµ on (S, f) defined

by

αµ(x, y) = (µ(x) ∧ µ(y)) ∨ IdS(x, y),

for all x, y ∈ S is a fuzzy congruence on (S, f).

Proof. It is clear that αµ is fuzzy reflexive and fuzzy symmetric. Now we show that αµ is

fuzzy transitive. In fact, if x = y, then (αµ ◦ αµ)(x, y) =
∨
z∈S

αµ(x, z) = 1 = αµ(x, y). Let
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x ̸= y. Then we have

(αµ ◦ αµ)(x, y)

= (
∨

z∈S−{x,y}
(αµ(x, z) ∧ αµ(z, y))) ∨ (αµ(x, x) ∧ αµ(x, y)) ∨ (αµ(x, y) ∧ αµ(y, y))

= αµ(x, y) ∨ (
∨

z∈S−{x,y}
µ(x) ∧ µ(z) ∧ µ(y))

≤ αµ(x, y) ∨ (
∨

z∈S−{x,y}
µ(x) ∧ µ(y))

= αµ(x, y) ∨ ((µ(x) ∧ µ(y)) ∨ IdS(x, y))
= αµ(x, y).

Thus αµ is fuzzy transitive. Hence αµ is a fuzzy equivalence relation on (S, f).

For all x1, x2, . . . , xn, y1, y2, . . . , yn ∈ S, if f(xn1 ) = f(yn1 ), then αµ(f(x
n
1 ), f(y

n
1 ))

= 1 ≥ αµ(x1, y1) ∧ αµ(x2, y2) ∧ . . . ∧ αµ(xn, yn), and if f(xn1 ) ̸= f(yn1 ) then at most n − 1

equations hold as follows:

x1 = y1, x2 = y2, . . . , xn = yn.

Since µ is a fuzzy ideal of (S, f), when there exist i (0 ≤ i ≤ n− 1) equations hold in above,

we have

αµ(f(x
n
1 ), f(y

n
1 ))

= (µ(f(xn1 )) ∧ µ(f(yn1 ))) ∨ IdS(f(xn1 ), f(yn1 ))
= µ(f(xn1 )) ∧ µ(f(yn1 ))
≥ (µ(x1) ∨ µ(x2) ∨ . . . ∨ µ(xn)) ∨ (µ(y1) ∨ µ(y2) ∨ . . . ∨ µ(yn))
≥ (µ(x1) ∧ µ(y1)) ∨ (µ(x2) ∧ µ(y2)) ∨ . . . ∨ (µ(xn) ∧ µ(yn))
= µ(x1) ∨ µ(x2) ∨ . . . ∨ µ(xi) ∨ (µ(xi+1) ∧ µ(yi+1)) ∨ . . . ∨ (µ(xn) ∧ µ(yn))
≥ (µ(xi+1) ∧ µ(yi+1)) ∨ . . . ∨ (µ(xn) ∧ µ(yn))
≥ (µ(xi+1) ∧ µ(yi+1)) ∧ . . . ∧ (µ(xn) ∧ µ(yn))
= 1 ∧ . . . ∧ 1︸ ︷︷ ︸

i

∧(µ(xi+1) ∧ µ(yi+1)) ∧ . . . ∧ (µ(xn) ∧ µ(yn))

= αµ(x1, y1) ∧ . . . ∧ αµ(xi, yi) ∧ αµ(xi+1, yi+1) ∧ . . . ∧ αµ(xn, yn).

Therefore, αµ is a fuzzy congruence on (S, f). This completes the proof. �

Proposition 4.1. If µ is a normal fuzzy ideal of (S, f) in the above theorem, then αµ(x, 0) =

µ(x) for all x ∈ S. Moreover, αµ is the smallest fuzzy congruence.

Proof. Since (S, f) is an n-ary semigroup with zero element 0 and µ is a normal fuzzy ideal

of (S, f), we have µ(0) = 1 and µ(0) ≥ µ(x) for all x ∈ S. If x = 0, then αµ(x, 0) =

αµ(0, 0) = 1 = µ(0) = µ(x), and if x ̸= 0, then αµ(x, 0) = (µ(x) ∧ µ(0)) ∨ IdS(x, 0) = µ(x).

Let β be a fuzzy congruence on (S, f) such that β(x, 0) = µ(x). Then β(x, y) ≥
(β ◦ β)(x, y) =

∨
x∈S

(β(x, z) ∧ β(z, y)) ≥ β(x, 0) ∧ β(0, y) = µ(x) ∧ µ(y). If x = y, β(x, y) =

β(x, x) = 1 = αµ(x, x) = αµ(x, y), and x ̸= y, β(x, y) ≥ µ(x) ∧ µ(y) = (µ(x) ∧ µ(y)) ∨
IdS(x, y) = αµ(x, y). So β(x, y) ≥ αµ(x, y) for all (x, y) ∈ S × S. This completes the

proof. �
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Theorem 4.3. Let (S, f) be an n-ary semigroup with zero element 0. Then there exists a

preserving inclusion injective mapping from the set of all normal fuzzy ideals of (S, f) to the

set of all fuzzy congruences on (S, f).

Proof. Let FC(S, f) be the set of all fuzzy congruences on (S, f) and NFI(S, f) the set of all

normal fuzzy ideals of (S, f). We define a mapping δ : FC(S, f) → NFI(S, f) and a mapping

η : NFI(S, f) → FC(S, f) by δ(α) = µα and η(µ) = αµ, respectively, for α ∈ FC(S, f)

and µ ∈ NFI(S, f) (µα and αµ are defined above). Since (δ ◦ η)(µ) = δ(αµ) = µαµ and

µαµ(x) = αµ(x, 0) = µ(x) for all x ∈ S. Hence (δ ◦ η)(µ) = µ = idNFI(S,f)(µ) for all µ ∈
NFI(S, f). So δ ◦ η = idNFI(S,f), which implies that η is injective. Let µ1, µ2 ∈ NFI(S, f)

be such that µ1 ⊆ µ2. Then

αµ1(x, y) = (µ1(x) ∧ µ1(y)) ∨ IdS(x, y)
≤ (µ2(x) ∧ µ2(y)) ∨ IdS(x, y)
= αµ2(x, y)

for all (x, y) ∈ S × S. Thus αµ1 ⊆ αµ2 . This completes the proof. �

Definition 4.2. Let α be a fuzzy congruence on (S, f). A fuzzy congruence β on (S, f) is

said to be α-invariant if α(x, y) = α(a, b) implies that β(x, y) = β(a, b) for all (x, y), (a, b) ∈
S × S.

Example 4.3. Let (S, f) be the n-ary semigroup in Example 4.1. The fuzzy congruence α

on (S, f) defined by

α(x, y) =


1 if x = y,

0.5 if x ̸= y and both x, y are even or both x, y are odd,

0 otherwise.

Define a fuzzy set µ of (S, f) by

µ(x) =

{
s if x is an even number,

t otherwise.

where 0 ≤ t < s ≤ 1. Then µ is a fuzzy ideal of (S, f). Define β is a fuzzy relation of (S, f)

by

β(x, y) = (µ(x) ∧ µ(y)) ∨ IdS(x, y).

By Theorem 4.2, then β is a fuzzy congruence on (S, f). It is easy to see that β is said to

be α-invariant on (S, f).

Theorem 4.4. Let µ be a fuzzy ideal of (S, f) and αµ the fuzzy congruence on (S, f) induced

by µ. Then there exists a one-to-one correspondence between the set FCαµ(S, f) of all αµ-

invariant fuzzy congruences on (S, f) and the set

FCαµ/αµ
((S, f)/αµ, F ) of all αµ/αµ-invariant fuzzy congruences on ((S, f)/αµ, F ).

Proof. Let β be an αµ-invariant fuzzy congruence on (S, f) and (x, y), (a, b) ∈ S × S. If

αµ(x, y) = αµ(a, b), then β(x, y) = β(a, b). By Theorem 3.5, β/αµ and αµ/αµ are fuzzy

congruences on ((S, f)/αµ, F ), and when (αµ/αµ)((αµ)x, (αµ)y) = (αµ/αµ)((αµ)a, (αµ)b) we
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have (β/αµ)((αµ)x, (αµ)y) = (β/αµ)((αµ)a, (αµ)b). This means β/αµ is an αµ/αµ-invariant

fuzzy congruence on ((S, f)/αµ, F ).

Now we define a map ψ : FCαµ
(S, f) → FCαµ/αµ

((S, f)/αµ, F ) by ψ(β) = β/αµ.

Obviously, ψ is well-defined. Let β1, β2 be αµ-invariant fuzzy congruences on (S, f) such

that β1 ̸= β2. Then there exists (x, y) ∈ S × S such that β1(x, y) ̸= β2(x, y). So

(β1/αµ)((αµ)x, (αµ)y) = β1(x, y) ̸= β2(x, y) = (β2/αµ)((αµ)x, (αµ)y). Therefore ψ is in-

jective.

Let β
′
be an αµ/αµ-invariant fuzzy congruence on ((S, f)/αµ, F ). We define a fuzzy

relation β∗ on (S, f) as follows:

β∗(x, y) = β
′
((αµ)x, (αµ)y).

It is easy to verify that β∗ is a fuzzy equivalence relation.

Again, for any x1, x2, . . . , xn, y1, y2, . . . , yn ∈ S, we have

β∗(f(xn1 ), f(y
n
1 ))

= β
′
((αµ)f(xn

1 )
, (αµ)f(yn

1 )))

= β
′
(F ((αµ)x1 , (αµ)x2 , . . . , (αµ)xn), F ((αµ)y1 , (αµ)y2 , . . . , (αµ)yn))

≥ β
′
((αµ)x1 , (αµ)y1) ∧ β

′
((αµ)x2 , (αµ)y2) ∧ . . . ∧ β

′
((αµ)xn , (αµ)yn)

= β∗(x1, y1) ∧ β∗(x2, y2) ∧ . . . ∧ β∗(xn, yn).

Therefore, β∗ is a fuzzy congruence on (S, f).

Finally, αµ(x, y) = αµ(a, b) implies that (αµ/αµ)((αµ)x, (αµ)y) = (αµ/αµ)

((αµ)a, (αµ)b). This implies that β
′
((αµ)x, (αµ)y) = β

′
((αµ)a, (αµ)b), so we have β∗(x, y) =

β∗(a, b). Hence β∗ is αµ-invariant, and we have (β∗/αµ)((αµ)x, (αµ)y) = β∗(x, y) = β
′
((αµ)x,

(αµ)y) for all ((αµ)x, (αµ)y) ∈ S/αµ × S/αµ. Thus, for any β
′ ∈ FCαµ/αµ

((S, f)/αµ, F ),

there always exists β∗ ∈ FCαµ(S, f) such that ψ(β∗) = β∗/αµ = β
′
. Hence ψ is surjective.

This completes the proof. �

5. Conclusion

It is well known that congruences (fuzzy congruences) always play an important role

in the study of algebraic structures. In this paper we introduced the concept of fuzzy

congruences in n-ary semigroups, and investigated its related properties. Furthermore, we

discussed the quotient n-ary semigroups in terms of fuzzy congruences, and established

isomorphism theorems about n-ary semigroups. In particular, we proved that there exists a

preserving inclusion injective mapping from the set of all normal fuzzy ideals of the special

n-ary semigroups to the set of all fuzzy congruences.

In the future study of n-ary semigroups, we can apply fuzzy congruences of other

n-ary algebras, such as, n-ary groups, and (m,n)-ary semirings, and so on. We hope this

theory can be served as a foundation of some applied fields, such as decision making, data

analysis, and forecasting.
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