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ENHANCING E-HEALTH CYBERSECURITY AND
RESILIENCE: SHIFTING FROM MONOLITHIC TO
MICROSERVICES ARCHITECTURE
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This study provides an innovative architectural model for e-Health systems
that aims to improve cyber resilience while maintaining high availability under
fluctuating traffic loads. We examined typical cybersecurity incidents in the field of
e-Health, their correlations with architectural defects, and frequent design patterns
in currently operational systems. A testing approach based on our research finds
those weaknesses and proposes viable fixes. In this paper, a comprehensive support
strategy for transitioning from conventional monolithic architectures to
microservices is presented. This change makes use of cloud computing's vertical and
horizontal scalability to maximize resource utilization while ensuring system
reliability. We also discuss deployment ideas for the new microservices, focusing on
operational resilience and cybersecurity in e-Health environments.
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1. Introduction

Nowadays, e-Health software systems are becoming more frequent in our
lives. We use these systems whether we are simple patients, doctors, or
collaborators with a medical institution. By automating various flows and
procedures, these systems improve medical safety, reduce human error, and save
money.

Given their rapid adoption, e-health systems require robust cybersecurity
to protect against DDoS and ransomware attacks. These incidents can disrupt
healthcare, compromise patient care, and compromise data privacy. To address
these issues, we propose that e-Health systems evolve from monolithic to
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microservices architectures. This architectural transformation isolates breaches to
particular services and improves scalability to handle sudden demand spikes,
which occur frequently during health crises like the COVID-19 pandemic. Our
article will explain in detail how microservices can improve healthcare IT
infrastructure cybersecurity and operational resilience.

In the past, e-Health software had a slow adoption rate because of strict
requirements and legal regulations that required extensive research and testing
before it could be made available. In 2018, the proportion of patients who used
medical software services was nearly zero [1]. According to Business Research
Company's 2024 forecast [2], the medical software market is expected to grow at
a rate of 14,6% per year until 2028.

The COVID-19 pandemic accelerated the adoption of these systems by
limiting contact between people and forcing both patients and medical units to
adopt new e-Health systems for patient care. Because of COVID-19, the number
of patients who began using medical software services increased to 13% of all
patients [3]. Unfortunately, this increase in adoption highlighted the limitations of
e-Health systems, as many of them became overwhelmed by the volume of traffic
they had to handle or were unable to accommodate new features.

To determine the traffic variation for e-Health systems, a traffic analysis
was conducted using CO APCD public data from April 2018 to March 2024. The
results are shown in Fig. 1 and Fig. 2.
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Fig. 1. Application usage between 01.11.2018 and 01.10.2023, based on the number of users/day

As described in Fig. 1, before COVID-19, the e-Health system had a small
number of users per day (less than 20,000), but after the pandemic, the number
increased to 121,000 users per day.

After all of the restrictions were lifted, the number of users decreased
slightly, by approx. 9% per month. This decrease was caused by urban people in
general, while in rural areas, usage did not change significantly between 2021 and
2023, as can be distinguished in Fig. 2.
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Fig. 2. Application usage between 01.11.2018 and 01.10.2023, divided by area type.

The same trend is confirmed by KFF and Epic Research's [4] analysis of
the share of outpatient visits by telehealth by area type, which is presented in
Fig. 3.

Share of outpatient visits by telehealth, by area type

14%

12%

10%

8%

6%

4%

2%

0%
27.10.2018 04.02.2019 15.05.2019 23.08.2019 01.12.2019 10.03.2020 18.06.2020 26.09.2020 04.01.2021 14.04.2021

Share rural ———Share urban

Fig. 3. KFF and Epic Research analysis of share of outpatient visits by telehealth by area type

The current challenge in medical software systems is how to mitigate
cybersecurity threats and risks, and also how to handle the performance issues
caused by the significantly increased workload as a consequence of their rapid
adoption.

This article propose a new microservice e-Health system to effectively
manage fluctuations in traffic and reduce costs by incorporating both vertical and
horizontal scaling methods.

2. Related Work

One of the global impacts of the coronavirus was in the healthcare
industry. COVID-19 caused overcrowding in the hospitals, which makes it
impossible for patients and doctors to meet in person for a consultation. e-Health
systems, in addition to the roles for which they were developed, also took on a
new role as a mediator in order to respond to this situation. Additionally, new
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features were either developed or used more frequently in order to meet this
demand: contact tracing, telehealth (online consultation with a doctor), automated
diagnosis, forecasting of material resource requirements, and individual medical
record about the COVID-19 illness.

The NIST cybersecurity framework is one of the lightweight models for
addressing new threats and risks present in e-Health systems. The NIST
cybersecurity framework (CSF) consists of the following stages: identify, protect,
detect, respond, and recover the system.

The most common COVID-19-related attacks on e-Health systems are
ZOOM bombing, COVID-19 phishing attacks, malware, and network availability

[5].

In this paper, we discuss network availability issues in e-Health systems.
In order to do so, we extract a common architectural model based on a study that
was carried out on medical units. This study identifies the most commonly used
e-Health software systems, as well as the key features required. The study
included 45 hospitals and medical clinics in Bucharest, in the public and private
sectors.

The main features requested by industry from an e-Health system are:
electronic health record, medical diagnosis, e-prescribing, telemedicine, medical
database, medical imaging; medical laboratory, and clinic management.

All of these features enable effective collaboration among patients,
doctors, and clinics, making any disease easier to control or cure.

Based on the architecture of e-Health software systems, 17 out of 45
entities use only local software systems, while 28 use web applications. The most
common architecture followed the model-view-controller monolith pattern
(MVC).

In software engineering, a monolithic application refers to an application
that is designed as a single service [6]. This approach generates some advantages
in terms of cost reduction [7]: easy to deploy, easy to debug, faster end-to-end
testing, increased performance, and one code-base.

Because of all those advantages that generate a rapid development and
testing, the monolithic architecture is present in a lot of e-Health software
systems.

To create a common overview of the analyzed e-Health software systems,
we identify the core and optional modules that can be combined to create a system
that includes all of the previously described features.

The monolithic e-Health architecture pattern that contains all the modules
in order to support the core and optional features is described in Fig. 6.
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Fig. 6. Monolithic e-Health architecture software pattern

3. Monolithic e-Health architecture software performance

To identify the main issues in the system, the following types of
performance tests were carried out: stress testing, endurance testing, and spike
testing.

Stress testing is a performance test that provides an overview of system
capacity limits and determines the architecture's robustness [8].

The endurance test is used to determine how long the system can operate
under continuous load [9]. In general, memory usage is monitored in order to
detect memory leaks.

Spike testing is performed to identify the system's behavior when the
number of users or their actions unexpectedly increases, in order to determine
what actions are required to handle dramatic load changes.

In e-Health software, the main concerns about the number of users come
from the patient role. Because of this issue, the designed scenarios should be
based on the main action that patients can perform. The testing scenarios are
described in table 1.

Table 1
Defined test scenarios
Test nr. 1 2 3
Goal Retrieve appointment Schedule telemedicine Retrieve laboratory
results appointment result
Involved Firewall, Web Firewall, Web application, Firewall, Web
components application, FTP server, | SQL server, Streaming application, SQL
SQL server server server, FTP server,
Laboratory system
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Apache JMeter was used to perform automated testing. Apache JMeter is a
widely used open-source framework designed for conducting performance testing
[1]. The instances of JMeter was hosted on Azure by using Azure Cloud Service.

To determine the maximum number of threads supported by JMeter in
Azure Cloud Service, a progressive increase in the number of threads was
performed from 100 to 2000, with 10 threads added each step.

The upper limit for JMeter determined during the test was 1000 threads
per instance; after this limit, JMeter's performance was degraded. The results of
the stress testing are presented in Table 2.

Table 2
Stress testing results
Number of Test 1 Test 2 Test 3
threads
(users)
Error (%) | Success (%) | Error (%) | Success (%) | Error (%) | Success (%)

150.000 0.00 100 0.00 100 0.00 100
160.000 0.00 100 13 98.7 0.2 99.8
170.000 0.4 99.6 4.7 95.3 1.2 98.8
200.000 14.57 85.43 235 76.5 45.2 54.8
250.000 35.67 64.33 48.16 51.84 72.8 27.2

The error % in table 2 denotes the proportion of requests with errors
among the total number of requests made by JMeter during the test. We consider a
request to have an error status if it failed or returned an error code (HTTP Status
Codes class 400 or 500).

The success% represents the percentage of successful requests among all
requests made by JMeter during the test execution. We consider a request to be
successful if its HTTP Status Codes class is 200 or 300.

The number of users was limited during the tests to 250.000 due to the
cost of resources required to perform the stress test, but, as shown in table 2, the
system performance was damaged very strongly after the number of 170.000.

4. Ensuring monolithic e-Health system stability

To guarantee the e-Health system's availability and prevent system failure,
a series of actions can be implemented at a reduced cost in accordance with the
results of the testing scenario.

How the main concerns about the number of users is derived from the
patient role, it is possible to restrict the access for that category of users based on
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a queue system, in order to limit the active user to a maximum number of 150.000
or lower, depending on how many doctors should be accommodated within the
system. The average waiting time in the queue was 19 minutes. The time was
determined by averaging the queue's waiting times over a seven-day period.

To make that distinction, the system can use different endpoints to enable
doctors to use the system. That endpoint can be restricted by role or IP address to
ensure that it is only accessible from hospitals and medical clinics. The Spring
Security module was used to enforce the restrictions.

For monolithic architectures, the only available scaling is vertical, which is
limited by hardware constraints.

5. Proposed microservices cloud architecture for e-Health systems

In order to effectively manage load differences and maintain a lower
infrastructure cost, the primary characteristic of the new architecture is its vertical
and horizontal scalability [10].

The proposed system architecture is based on microservices, which allow
the original monolithic application to be split into multiple independent services
capable of performing work independently. This independence enables the booth
scaling system to be implemented. We will be able to initiate new workers for
each service in accordance with the system load. Additionally, we will be able to
enhance the computational power of current workers.

The splitting of the microservices was done based on the functionality of
the system to be able to provide the features to users independently of each other,
so that if a set of microservices no longer works properly, the system can manage
the rest of the features independently.

In order to accomplish this, we divide the services into Level 1 and Level
2 services. Level 1 services are mapped to various system features in order to
provide system functionality. They have a caching and optimization of the request
mechanism in place, and they are also capable of storing data in the SQL module.

The level 2 services are the ones that provide support for the level 1
services and are capable of integrating with various subsystems that are not
scalable, such as external providers or outdated applications (e.g., laboratory
systems).

Messaging and queues are used to facilitate communication between
services. All of this logic is abstracted in the Message broker.

This separation of services between Layer 1 and Layer 2 is also necessary
to facilitate the seamless transition of the application from a monolithic
architecture to a decoupled architecture. The main goal of this progressive
migration is to use the power of microservices even if the original architecture has
not been fully migrated.
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The transition from a monolithic to a microservice architecture
presented in Fig. 7.
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the new API gateway module ensures seamless connectivity with these services.

Fig. 7. e-Health system architecture transition.

In order to optimize performance, a caching system was implemented.
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Fig. 8 presents the entire set of microservices integrated into the new
architecture. The microservices architecture that results is composed of 16
services, which are categorized into Layer 1 and Layer 2 levels.

6. Microservices e-Health systems deployment

Based on the analysis made by Tabish Mufti, Pooja Mittal and Bulbul
Gupta in the paper “A Review on Amazon Web Service (AWS), Microsoft Azure
& Google Cloud Platform (GCP) Services” [11], Microsoft Azure was chosen as
the cloud provider due to lower service costs when compared to AWS and GCP,
as well as the availability of additional options such as machine learning, analytics
services, and Al support.

The main options for deploying microservices in Microsoft Azure are
Cloud Services and Azure Web Apps. To determine which solution was used, the
effective cost for 24 hours was used. The cost of booth solutions is shown in table
3 and table 4, and it was calculated using West Europe region datacenters with an
Azure Hybrid Benefit Windows license and a one-year savings plan.

Table 3
Deployment Scenario cost for Azure App Service

Microservice Instance Tier Tier | Total

nr. 24h 24h

cost Cost

%) $)
Doctor data service 2 S1: 1 Cores, 1.75 GB RAM, 50 GB 2.40 4.8
Patient data service 2 S1: 1 Cores, 1.75 GB RAM, 50 GB 2.40 4.8
Medication service 2 S1: 1 Cores, 1.75 GB RAM, 50 GB 2.40 4.8
Analysis service 2 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 9.6
Result interpreter service 2 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 9.6
Portable devices service 2 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 19.2
Telemedicine service 3 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 14.4
Files service 2 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 19.2
Medical imaging service 2 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 19.2
Laboratory system service 1 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 9.60
File management service 1 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 4.80
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Al result interpreter service 1 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 4.80
Notification service 1 S1:1 Cores, 1.75 GB RAM, 50 GB 2.40 2.40
Streaming service 2 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 9.6
Static resources service 1 S2: 2 Cores, 3.5 GB RAM, 50 GB 4.80 4.80
User management service 1 S3: 4 Cores, 7 GB RAM, 50 GB 9.60 9.60
Table 4
Deployment Scenario cost for Azure Cloud Service
Microservice Instance Tier Tier | Total
nr. 24h 24h
cost Cost
(%) %)
Doctor data service 2 D3: 4 vCPUs, 14 GB RAM, 200 | 14.23 | 28.46
Patient data service GB
Medication service 2 D4: 8 vCPUs, 28 GB RAM, 400 | 28.49 | 56.98
Analysis service GB
Medication service
Result interpreter service
Al result interpreter service
Medical imaging service
Portable devices service 2 D3: 4 vCPUs, 14 GB RAM, 200 | 14.23 | 28.46
Notification service GB
Telemedicine service 3 D13: 8 vCPUs, 56 GB RAM, 400 | 29.81 | 89.43
Streaming service GB
User management service 1 D4: 8 vCPUs, 28 GB RAM, 400 | 28.49 | 28.49

Static resources service
File management service
Laboratory system service
Files service

GB

According to tables 3 and 4, the estimated cost of Azure Cloud Service
deployment is $231.82, while Azure App Service deployment is estimated at
$151.2. However, the decision to deploy the microservices into one of these
solutions should also consider the computational power required to handle the

same number of requests.
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The number of instances and their capabilities were selected based on the
temporal and spatial complexity of microservices, with the goal of ensuring an
average time of less than 0.1 ms for messages in the message broker.

7. Microservices e-Health systems performance

In order to measure the performance differences between the original
architecture and the microservices architecture, the exact same set of tests
(described in Table 1) was executed. However, the tests were executed on both the
Azure Cloud Service and Azure App Service deployment scenarios.

How the original architecture was able to handle the tests for 170,000
users, now the test scenarios begin at 200.000 and are run in Azure Cloud to
provide adequate power.

Table 5
The result of stress testing using Azure App Service with automatic horizontal scaling.
Number of Test 1 Test 2 Test 3

threads

(users) Error (%) | Success (%) | Error (%) | Success (%) | Error (%) | Success (%)
200.000 0.00 100 0.00 100 0.00 100
250.000 0.2 99.8 0.1 99.9 0.00 100
300.000 0.7 99.3 0.4 99.6 0.3 99.7
350.000 1.25 98.75 1.45 98.55 1.2 98.8
400.000 1.3 98.7 1.7 98.3 2 28.0

Table 6
The result of stress testing using Azure Cloud Service with horizontal scale mechanism.
Number of Test 1 Test 2 Test 3

threads

(users) Error (%) | Success (%) | Error (%) | Success (%) | Error (%) | Success (%)
200.000 0.00 100 0.00 100 0.00 100
250.000 0.00 100 0.00 100 0.00 100
300.000 0.9 99.1 0.5 99.5 0.6 99.4
350.000 11 98.9 1.3 98.7 15 98.5
400.000 1.0 99.0 1.25 98.75 2.1 97.9
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According to the stress tests, presented in table 5 and table 6, the system's
performance has substantially improved. However, the addition of new machines
to the system, which is caused by horizontal scaling, results in some failed
requests.

8. Conclusions

The e-Health software system market is a dynamic market that is
constantly evolving in response to technological advancements and the
introduction of new devices. .

The current software generally uses a monolithic architecture design,
which is enforced by the presence of legacy technologies and standards, due to the
fact that e-Health software systems have been used in a relatively narrow and
closed market for long time.

Unfortunately, the monolithic architecture can no longer cope with market
demands and fluctuations in order to meet actual cyber resilience requirements
and medical projects exceed the entry-level constraints.

In order to mitigate the risk that impacts network availability and
guarantee the high availability of e-Health software systems, this paper suggests
the implementation of cloud computing and microservices as a solution. The main
goal of the transition from monolithic architecture to microservices architecture in
e-Health software systems is to establish a new layer between legacy software and
the new expectations and behaviors of users. Additionally, it intends to provide
support and scaling to accommaodate a high volume of concurrent requests.

This requirement was highlighted and enforced during the COVID-19
cyber resilience in e-Health system. During the pandemic period, e-Health
systems had to deal with major changes in user behavior, which highlighted the
need for decoupling performance between different software modules.

To make that performance decoupling possible, this paper proposes a
transition to microservices that allow vertical and horizontal scaling. In order to
minimize hardware overhead, the proposal is to utilize cloud solutions to host all
components of the e-Health system.

The performance of a microservices e-Health system hosted in the cloud
remains the same regardless of the type of PASS used, as demonstrated in this
paper. The solution of Azure Cloud Services offers greater control, while the
solution of Azure VMs or Azure App Service offers greater abstraction.

The transition from a monolithic to a microservices architecture enhances
e-health cybersecurity. Single points of failure can make a monolithic system
vulnerable to DDoS attacks, which overwhelm it with traffic. The microservices
architecture distributes load across smaller, scalable services. A monolithic
system cannot absorb and mitigate increased traffic like this distribution.
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Additionally, zero-day exploits target unknown software vulnerabilities. A
single vulnerability in a monolithic system has the potential to compromise the
entire system. The exploit does not spread across microservices because it only
affects the compromised service. Each microservice can be isolated, patched, and
redeployed independently, improving system security.

Monolithic architectures make security updates difficult and risky,
requiring downtime. Service-by-service updates are easier with microservices.
This speeds patch implementation and reduces downtime, improving system
security.

Furthermore, the microservices architecture isolates databases and other
resources by separating functions into services. This isolation helps to limit data
breaches to a single service rather than the whole system. Unlike monolithic
systems, microservices can use security protocols that are appropriate for their
needs. This flexibility maximizes security based on service sensitivity and needs.

Moving from monolithic to microservices architecture in e-health systems
improves resilience in several ways. Microservices reduce system downtime
because minor failures do not impact the entire system. Only the broken
microservice needs to be patched; the rest is operational. This minimizes
downtime, which is critical for 24/7 healthcare services. Moreover, microservices
scale up or down independently based on demand, improving traffic spike
response. Microservices can handle high user loads, such as during a health crisis,
by adding resources to busy services without affecting less busy ones.

Because microservices are separate, updates and bug fixes can be applied
to individual services without crashing the system. This lets security patches and
new features be released quickly and securely, keeping the system secure. In
addition, microservices architecture separates services, so a security breach in one
doesn't affect others. Containment reduces data breaches.

Each microservice can have customized security measures. This enables
more precise security tailored to each service's data or transactions.

Thus, the proposed microservices architecture improves e-health systems'
cyber-resilience by addressing these vulnerabilities, making them better prepared
for current and emerging cybersecurity threats. Microservices architecture also
makes e-health systems more flexible, reliable, and secure, which is crucial for
meeting healthcare technology's growing demands. In healthcare, system
availability and data integrity are crucial.
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