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FIXED POINT RESULTS FOR POINTWISE CHATTERJEA TYPE
MAPPINGS WITH RESPECT TO A «-DISTANCE IN CONE METRIC
SPACES ENDOWED WITH A GRAPH

Kamal Fallahi', Adrian Petrugel?, Ghasem Soleimani Rad?®

In this paper we study the existence of the fized points for pointwise Chat-
terjea type mappings with respect to a c-distance in cone metric spaces endowed with a
graph. Our results are generalizations of some fized point theorems given in terms of a
c-distance from cone metric spaces equipped with a partial order to cone metric spaces
endowed with a graph. The main improvements of our results refer to the fact that we
do not need to suppose the continuity of the mapping nor the normality of the cone.
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1. Introduction and preliminaries

Ordered normed spaces and cones have many applications in applied mathematics.
Hence, fixed point theory in K-metric and K-normed spaces was developed in the mid-20th
century. In 2007, Huang and Zhang [6], using the concept of cone metric space (i.e., by
replacing, in the definition of the metric, the set of real numbers by a cone in an ordered
Banach space, see also [14]) proved some fixed point theorems for contraction type mappings
on complete cone metric spaces (see also [8] and the references cited therein).

Let E be a real Banach space with the zero element . A proper nonempty and closed
subset P of E is called a cone if P+ P C P, \P C P for A > 0 and PN (—P) = {#}. Given
a cone P C E, we define a partial ordering < with respect to P by

r<yifandonlyify —z € P.

We shall write * < y if x < y and = # y. Moreover, we denote * < y if and only if
y — x € int P where int P is the interior of P.

If int P # (), then the cone P is called solid. The cone P is named normal if there is
a number k > 0 such that for all z,y € E, § < x < y implies that ||z|| < k||y||. The least
positive number satisfying the above is called the normal constant of P.

Let P C E be a cone, < a partial ordering with respect to P and X a nonempty set.
Suppose that the mapping d : X x X — E satisfies:
(d1) 6 = d(z,y) for all z,y € X and d(z,y) = 0 if and only if x = y;
(d2) d(z,y) = d(y,z) for all z,y € X;
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(d3) d(z,2) 2 d(x,y) +d(y, z) for all z,y,z € X.

Then d is called a cone metric [6] or K-metric [14] on X and (X, d) is called a cone
metric space [6] or K-metric space [14].

For notions such as convergent and Cauchy sequences, completeness, continuity and
etc. in cone metric spaces, we refer to [6, 8. We shall also make use of the following
properties for all u,v,w,c € E when the cone P may be non-normal.

(p1) If u 2 v and v € w, then v < w.

(p2) If @ = u < ¢ for each ¢ € intP, then u = 0.

(p3) If u < Au where u € P and 0 < A < 1, then u = 6.

(ps) Let z, —» 6 in E, 0 < x,, and 0 < ¢. Then there exists positive integer ngy such that
., < ¢ for each n > ng.

In 1996, Kada et al. [9] defined the concept of w-distance in metric spaces. Further,
Cho et al. [5] defined the concept of c-distance in cone metric spaces and obtained some
fixed point results (see also [12, 13] and the references cited therein).

Definition 1.1 ([5, 13]). Let (X,d) be a cone metric space. A function q: X x X — E is
called a c-distance on X if the following are satisfied:
(q1) 0 < q(z,y) for all z,y € X;
(22) a(z,2) 2 q(z,y) +q(y,2) for all z,y,z € X;
(g3) for alln > 1 and x € X, if q(x,yn) = u for some u = u,, then q(z,y) = u whenever
{yn} is a sequence in X converging to a point y € X;
(qa) for all c € E with 0 < ¢, there exists e € E with 0 < e such that q(z,z) < e and
q(z,y) < e imply d(x,y) < c.

Each w-distance in a metric space (in the sense of Kada et al. [9]) is a c-distance in
the cone metric space (X,d) (in the sense of Cho et al. [5]) with £ = R and P = [0, 0).
Moreover, we have three important results

e Each cone metric d on X with a normal cone is a c-distance ¢ on X.
e For a c-distance ¢, g(x,y) = 0 is not necessarily equivalent to x = y for all z,y € X.
e For a c-distance ¢, q(z,y) = ¢(y,z) does not necessarily hold for all z,y € X.

Lemma 1.1 ([5, 13]). Let (X,d) be a cone metric space, q be a c-distance on X, let {x,}
be a sequence in X and let {u,} be a sequence in P converging to 0. If q(x,,xm) < u, for
m > n, then {z,} is a Cauchy sequence in X.

The most important graph theory approach to metric fixed point theory intro-
duced so far is attributed to Jachymski [7]. In this approach, the underlying metric space
is equipped with a directed graph and the Banach contraction is formulated in a graph lan-
guage. Subsequently, Beg et al. [1] and Nicolae et al. [11] extended some results in [7] for
the case of set-valued mappings. In 2012, Bojor [2] followed Jachymski’s idea for Kannan
contractions using a new assumption called the weak T-connectedness of the graph.

We next review some basic notions of graph theory in relation to a cone metric space
that we need in the sequel. For more details on the theory of graphs, see [3, 7].

Consider a directed graph G with V(G) = X such that the set E(G) consisting of
the edges of G contains all loops (that is, A(X) C E(G), where A(X) := {(z,z) € X x X :
x € X}) and suppose that G has no parallel edges. Then G can be represented by the
ordered pair (V(G), E(G)). If a cone metric space (X, d) is endowed with the graph G, then
we denote it by (X, d,G). Notice also that cone metric space may be also endowed with
the graphs G~! and 57 where the former is the conversion of G which is obtained from
G by reversing the directions of the edges, and the latter is an undirected graph obtained
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from G by ignoring the directions of the edges. In other words, V(G~!) = V(G) = X,
B(G™) ={(z,9) : (y,2) € E(G)} and E(G) = E(G) U E(G™).

If z and y are two vertices in a graph G, then a path in G from x to y is a finite
sequence ()Y, consisting of N + 1 vertices of G such that zg = z, x5 =y, and (z;_1, ;)
is an edge of G for i = 1,--- ,N and N € N. A graph G is said to be connected if there
exists a path in G between every two vertices of G.

The main purpose of this paper is to give fixed point results for a new type of gen-
eralized contraction of Chatterjea type with respect to a c-distance in cone metric spaces
endowed with a graph. Our results are generalizations of some fixed point theorems given in
terms of a c-distance from cone metric spaces equipped with a partial order to cone metric
spaces endowed with a graph. The main improvements of our results refer to the fact that
we do not need to suppose the continuity of the mapping nor the normality of the cone. For
related results see [2], [4], [7], [10], etc.

2. Main results

Following Jachymski [7, Definition 2.4], we define the concept of orbitally G-continuous
for self-map T on cone metric spaces.

Definition 2.1. Let (X, d,G) be a cone metric space endowed with a graph G. A mapping
T: X — X is called orbitally G-continuous on X if for all z,y € X and all sequences {b,}
of positive integers with (T* x, Tt»+12) € E(G) for all n > 1, the convergence TP x — y
implies T(T* x) — Ty.

Trivially, a continuous mapping on a cone metric space is orbitally G-continuous for
all graphs G but the converse is not generally true. The next example shows that a graph
plays an effective role to imply a weaker type of continuity.

Example 2.1. Let Y =R and P = {x € Y : © > 0}. Let X = [0,4+00) and define a
mapping d : X x X =Y by d(z,y) = |x —y| for all z,y € X. Then (X,d) is a cone
metric space. Define the mapping T : X — X by T(0) = 1 and T(x) = 5 for allz € X
with x # 0. Obviously, T is not continuous at x = 0, and in particular, on the whole X.
Now assume that X is endowed with a graph G = (V(G), E(G)), where V(G) = X and
E(GQ) = {(z,z) : € X}; that is, E(G) contains nothing but all loops. If z,y € X and
{b,} is a sequence of positive integers with (T°»z, T’+1x) € E(G) for all n > 1 such that
TPz — vy, then {T’x} is necessarily a constant sequence. Thus, T’»z =y for alln > 1
and so T(T* x) — Ty. Hence T is orbitally G-continuous on X.

In this section, let (X, d) be a cone metric space associated with a c-distance ¢ and
endowed with a directed graph G with V(G) = X and A(X) C E(G). Throughout this
section, we denote

Xr={reX: (z,Tz) < E(G)}.

Our main result is the following theorem for mappings satisfying Chatterjea type

conditions with respect to a given c-distance in a complete cone metric space.

Theorem 2.1. Let (X,d) be a complete cone metric space associated with a c-distance q
and endowed with a graph G and T : X — X be a orbitally G-continuous mapping on X.
Suppose that there exist mappings o, B,y : X — [0,1) such that the following conditions
hold:
tl) a(Tz) < a(z), B(Tz) < B(z), v(Tz) < y(x) and (a+ 28+ 27)(z) < 1 for all z € X;
t2) T preserves the edges of G; that is, (z,y) € E(G) implies (Tx,Ty) € E(G) for all
T,y € X;
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t3) for all z,y € X with (x,y) € E(G),
q(Tz,Ty) = a(z)q(z,y) + B(z)q(z, Ty) + v(z)a(y, Tz),
q(Ty, Tz) = a(z)q(y, =) + B(x)q(Ty, ) + v(2)e(Tz, y).
If X7 # 0, then T has a fized point on X. Moreover, if Tv = v, then q(v,v) = 6.
Proof. Let xg € Xp. If Txyg = x0, then xg is a fixed point of T" and the proof is finished.
Now, suppose that T'xg # x. Since T preserves the edges of G and (zg, T'zo) € E(G), then
it follows that by induction (x,,z,+1) € E(G), where x,, = Tx,—1 = T"x¢ for all n € N.
Now, set = x,, and y = z,_; in (t3). Since (z,—1,2,) € E(G), we have
q(@nt1,2n) = q(Txn, Trn_1)
= a(@n)q(@n, Ta-1) + B(Tn) (@, Tn) +Y(@n)q(Tn-1, Tnt1)
= a(T2n-1)q(Tn, Tn-1) + B(TTn-1)[a(@n, Tnt1) + ¢(Tpt1, )]
+Y(T2n-1)[@(@n—1,2n) + (@, Tnt1)] (1)
= (@n-1)q(xn, Tn-1) + (B + V) (@n-1)q(Tn, Tns1)
+ B(@n—1)q(Tnt1,0) + ¥(@n-1)q(¥n-1,n)

j Oé($0)Q($na xn—l) + (/8 + 7) (370)(](1‘7“ xn-i—l) + ﬁ(‘rO)q(xn—i-l) an)
+y(20)q(Tn—1,2n).
Similarly, set z = x,, and y = x,—; in (t3). Since (z,—1,2,) € E(G), we have
(I(xn; xn+1) = a(.’ﬂo)(](l’n,h xn) + B(xO)Q(wn7 xn+1) (2)
+ (B + ) (@0)e(Tnt1,Tn) +¥(20)q(Tn, Tn-1).
Adding up (1) and (2). Then
4(Tng1, ) + q(Tn, Tng1) = (@ +3)(@0)[q(@n, Tn-1) + ¢(Tn—1,2n)]
+ (2ﬁ + 7)(370)[Q($n+1; xn) + Q(ﬂﬁm $n+1)]-
Set un, = q(Tpt1,2n) + q(Tn, Tpy1). We get that
un = (o +7)(zo)un—1 + (28 + 7)(xo)un.

(@ +7)(0)

1— (28 +7)(zo)
procedure, we get u,, < A"ug for all n € N. Hence,

A(Tn, Tny1) = un 2 A [q(@1, 0) + q(20, 21)]. (3)
Now, let m > n. It follows from (3) and A € [0, 1) that

Thus, we have u,, < Au,_1, where A = < 1 by (t2). By repeating the

(I(-Tn, xm) = Q(xna anrl) + Q(xn+17 xn+2) + (I(xmfly xm)
< (A" -+ XY [g(n, 0) + g0, 1)
n
<
“1-A
Since %[q(xhxo) + ¢(xo,z1)] converges to 0, Lemma 1.1 implies that {z,} is a Cauchy
sequence in X. Since X is complete, there exists a point Z € X such that z,, = T"zg — T

[q(z1,70) + q(z0,21)]-

as n — 0o.
We next show that T is a fixed point for T. To this end, note first that since T
preserves the edges of G, it follows by induction that T"xzg € Xp for all n > 0. Thus,
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(T"xo, T" 1 2y) € E(G) for all n > 0. Now, since T is orbitally G-continuous on X, thus
Ty = T(T"xg) — TT as n — oo. Because the limit of a convergent sequence is unique,
we get TZ = . Now, suppose that Tv = v. Then, from (t3), we have
Q(vv ’U) = Q(Tva T’U)
= a(v)q(v,v) + B(v)q(v, Tv) +v(v)q(v, Tv)
= (a+ B+7)(v)a(v,v).
which implies that g(v,v) = 6 by (t2) and (ps). This completes the proof. a

In particular, if the Chatterjea type assumptions are no longer pointwise (i.e., the
mappings a, 3,7 are constant), we get the following consequence of Theorem 2.1.

Corollary 2.1. Let (X,d) be a complete cone metric space associated with a c-distance q
and endowed with a graph G and T : X — X be a orbitally G-continuous mapping on X.
Suppose that there exist a, 8,y € [0,1) such that the following conditions hold:
tl) a+28+2y<1;
t2) T preserves the edges of G; that is, (x,y) € E(G) implies (Tx,Ty) € E(G) for all
T,y € X;
t3) for all z,y € X with (x,y) € E(G),

q(Tz, Ty) =X aq(z,y) + Ba(z,Ty) + vq(y, Tz),
q(Ty,Tz) = aq(y, ) + Bq(Ty, x) + vq(Tz,y).
If Xp # 0, then T has a fized point on X. Moreover, if Tv = v, then q(v,v) = 6.

Several consequences of our main result follow now for particular choices of the graph.

For example, if we consider (X, d) endowed with the complete graph G whose vertex
set coincides with X (that is, V(Gy) = X and E(Gp) = X x X), then we get the following
corollary.

Corollary 2.2. Let (X,d) be a complete cone metric space associated with a c-distance
q and T : X — X be a orbitally Go-continuous mapping on X. Suppose that there exist
mappings a, B,y : X — [0,1) such that the following conditions hold:
tl) o(Tz) < afz), B(Tx) < B(x), v(Tz) < y(x) and (a+ 26 +2y)(x) <1 for allz € X;
t2) for allx,y € X,

q(Tz, Ty) 2 a(x)q(x,y) + B(z)g(z, Ty) +v(x)q(y, Tx),
q(Ty, Tz) X a(2)q(y, ) + B(z)q(Ty, z) + v(2)q(Tz,y).
Then T has a fized point on X. Moreover, if Tv = v, then q(v,v) = 0.

Suppose now that (X, C)is a poset. Consider on the poset X the graph Gy given by
V(G1) = X and E(G1) = {(z,y) € X x X :  C y}. Since C is reflexive, it follows that
both E(G1) contain all loops. If we set G = G in Theorem 2.1, then the following version
of our fixed point theorem in complete cone metric spaces associated with a c-distance ¢ and
endowed with a partial order is obtained.

Corollary 2.3. (X,C) be a poset and d be cone metric on X such that (X,d) is a complete
cone metric space associated with a c-distance ¢ and T : X — X be a nondecreasing and
orbitally G1-continuous mapping on X. Suppose that there exist mappings «, 3,7 : X —
[0,1) such that the following conditions hold:

tl) a(Tz) < a(z), B(Tz) < B(z), v(Tz) < y(x) and (a+ 28+ 27)(z) < 1 for all x € X;
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t2) for all x,y € X with xz C y,

q(Tx, Ty) = a(x)q(x,y) + B(x)q(x, Ty) +v(x)q(y, Tx)
q(Ty, Tz) = a(z)q(y, ) + B(x)q(Ty, x) + v(x)q(Tz, y).

Then T has a fized point on X if there exists xg € X such that xg C Txg. Moreover, if
Tv = v, then q(v,v) = 6.

For our next consequence, suppose again that (X, C) is a poset. Consider on the poset
X the graph G defined by V(G3) = X and E(Gz) = {(z,y) e X x X 12 Cy V y Cz}.
Then, an ordered pair (z,y) € X x X is an edge of G5 if and only if z and y are comparable
elements of (X,C). If we set G = G2 in Theorem 2.1, then we obtain another fixed point
theorem in complete cone metric spaces associated with a c-distance ¢ and endowed with a
partial order.

Corollary 2.4. (X,C) be a poset and d be cone metric on X such that (X,d) is a complete
cone metric space associated with a c-distance ¢ and T : X — X be a mapping which
maps comparable elements of X onto comparable elements. Also let T be orbitally Go-
continuous on X. Suppose that there exist mappings o, ,v : X — [0,1) such that the
following conditions hold:
t1) o(Tz) < afzx), B(Tx) < B(x), v(Tz) < y(x) and (a+ 26 +2y)(x) <1 for allz € X;
t2) for all x,y € X such that x and y are comparable,

q(Tz, Ty) = a(z)q(z,y) + B(x)q(z, Ty) + v(x)q(y, Tx),
q(Ty, Tx) = a(x)q(y, x) + B(x)q(Ty, z) +v(x)q(Tx,y).

Then T has a fixed point on X if there exists xg € X such that zo and T'xy are comparable.
Moreover, if Tv = v, then q(v,v) = 6.

Let e € int P is a fixed. Recall that two elements z,y € X are said to be e-close if
d(z,y) = e. Define the e-graph G3 by V(G3) = X and E(G3) = {(z,y) € X x X : d(z,y) =
e}. We see that E(G3) contains all loops. Finally, if we set G = G5 in Theorem 2.1, then
we get the following consequence of our fixed point theorem in complete cone metric spaces
associated with a c-distance gq.

Corollary 2.5. Let (X,d) be a complete cone metric space associated with a c-distance q,
ecint Pand T : X — X be a mapping which maps e-close elements of X onto e-close
elements. Also let T be orbitally Gs-continuous on X. Suppose that there exist mappings
a,B,v: X —[0,1) such that the following conditions hold:

tl) o(Tz) < a(x), 8(Tx) < B(z), v(Tx) < v(z) and (a+ 28 + 27)(x) <1 for allx € X;
t2) for all x,y € X such that x and y are e-close elements,

q(Tz, Ty) = a(z)q(z,y) + B(z)q(z, Ty) + v(x)q(y, T),

q(Ty,Tx) = a(2)q(y, 2) + B(x)q(Ty, x) +v(x)q(Tz,y).

Then T has a fized point on X if there exists oy € X such that xo and Txy are e-close
elements. Moreover, if Tv = v, then q(v,v) = 0.

The following example shows the usefulness of our main results.

Example 2.2. Let E = C}[0,1] with the norm ¢l = ||¢llec + |¢'|co, X = [0,1] and
consider the non-normal cone P = {p € E : ¢(t) > 0 on[0,1]}. Also, let a mapping
d: XxX =Y introduced by d(x,y) = |z —y|-@(t) for allz,y € X, where p(t) =2 € PC E
with t € [0,1]. Then (X, d) is a cone metric space with non-normal solid cone. Take mapping
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q: X x X — E defined by q(x,y)(t) =y - 2" for all z,y € X, where t € [0,1]. Then q is a
c-distance. Consider the mapping T : X — X by T(3) = 15 and T(x) = %3 forallz e X
with x # % Obviously, T is not continuous at r = %, and in particular, on the whole X.
Now assume that X is endowed with a graph G = (V(G), E(G)), where V(G) = X and
E(G) = {(z,x) : © € X}, that is, E(G) contains nothing but all loops. Observe that for
all x,y € X such that (x,y) € E(G), we get x = y. If v,y € X and {b,} is a sequence of
positive integers with (T’ z, T’+1x) € E(Q) for alln > 1 such that T’z — y, then {T® z}
is necessarily a constant sequence. Thus, T’z =y for alln > 1 and so T(T* z) — Ty.
Hence, T is orbitally G-continuous on X . Take mappings o(x) = %, B(x) =3 andy(z) =0
for all x € X. Observe that:

1) ifx # 3, then a(Ta) = (%) = 45 < 5 = afz) and if w = §, then a(T}) = o5 <
g 0‘(;)

2) if @ # 3 then B(Tw) = (%) = § < § = Bla) and if & = 3, we have B(T'3) = 5 <
L= 8);

3) S(Tx) < y(z) forallz € X;

4) ofx)+ B(x) + 7()22—1- <1 forallz € X;
5) let x € X with (z,x) € E(G ) If x # %, then

q(Tx, T)(t) = z 2" < alw)q(, 2)(t) + B(x)g(x, Tx)(t) + y(2)q(z, Tx)(t)

and if x = %, then

1.1 1 1, 11 1.1 1 1.1 1

A(T5. T = 12 -2 < a(3)a(5 )0 +8()al5 T3 +1()al5. TH(O):

Similarly, for other relation, one can apply above approach with substitute first com-
ponent with second component.
6) Since (0,70) = (0,0) € E(G), so X1 # 0.
Thus, all the conditions of Theorem 2.1 are satisfied. Clearly, T has a fixed point x =0 €
[0,1] and ¢(0,0) = 0.
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