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POSITIVE SOLUTIONS FOR SINGULAR FDES

Yuji Liu1

In this article, we establish the existence of at least three positive solu-
tions to a boundary-value problem of the nonlinear singular fractional differential
equation. Our analysis rely on the well known fixed point theorem in the cone.

Keywords: Unbounded positive solution; fractional differential equation; fixed-
point theorem.

1. Introduction

Fractional differential equations have many applications in modeling of phys-
ical and chemical processes and in engineering. In its turn, mathematical aspects of
studies on fractional differential equations were discussed by many authors, see the
text books [4,7,9], the survey paper [2], the papers [1,5,8,10,13] and the references
therein.

The use of cone theoretic techniques in the study of the existence of solutions
to boundary value problems has a rich and diverse history. Recently, E. R. Kauf-
mann and E. Mboumi in [11] studied the following boundary value problem for the
fractional differential equation

{
Dα

0+u(t) + a(t)f(u(t)) = 0, 0 < t < 1, 1 < α < 2,
u(0) = 0, u′(1) = 0 ,

(1)

by using the Leggett-Williams fixed point theorem and the Krasnoselskii fixed point
theorem under the assumptions:

(A1) f : [0,+∞) → [0,∞) is continuous;
(A2) a ∈ L∞[0, 1];
(A3) there exists a constant m > 0 such that a(t) ≥ m a.e. t ∈ [0, 1].
The authors in [11] proved that BVP(1) has at least one or three positive

solutions. We note that the Green’s function ( or the Kernel see [11]) of the following
homogeneous BVP

{
Dα

0+u(t) = 0, 0 < t < 1, 1 < α < 2,
u(0) = 0, u′(1) = 0 ,

(2)

is as follows:

G(t, s) =
1

Γ(α)

{
tα−1(1− s)α−2 − (t− s)α−1, t ≥ s,
tα−1(1− s)α−2, t ≤ s.
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Let β ∈ (0, 1). G satisfies the conditions that

βsG(s, s) ≤ G(t, s) for all t ∈ [β, 1], s ∈ [0, 1], G(t, s) ≤ G(s, s) for all t, s ∈ [0, 1].
(3)

One sees that (3) plays an important role in the proof of the theorems in references
[10,11].

In this paper, we discuss the existence of three unbounded positive solutions
to the boundary value problem of the nonlinear fractional differential equation of
the form 




Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0,∞), 1 < α < 2,

limt→0 t2−αu(t) = 0,
Dα−1

0 u(1) = 0 ,
(4)

where Dα
0+ (Dα for short) is the Riemann-Liouville fractional derivative of order α,

and f : (0, 1] × [0,∞) → [0,∞) is a Caratheodory function, i.e., f(·, x) ∈ L1(0, 1]
for each x ∈ [0,∞) and f(t, ·) is continuous for almost all t ∈ (0, 1], furthermore, f
satisfies that for each r > 0 there exists φr ∈ L1[0, 1] such that |f(t, tα−2x)| ≤ φr(t)
holds for all t ∈ (0, 1] and x ∈ [−r, r]. We obtain the existence results for two and
three unbounded positive solutions of BVP(4) by using the fixed point theorems in
a cones. An example is presented to illustrate the main result. This example can
not be covered by the theorems in references [10,11].

A difference to [11] is that f may be singular at zero and the positive solutions
of BVP(4) may be unbounded ones since limt→0 t2−αx(t) = 0 for solution x of
BVP(4).

2. Preliminary results

For the convenience of the reader, we present here the necessary definitions
from fixed point theory and fractional calculus theory. These definitions and prop-
erties can be found in the literatures [3,4,6,7,9].

Definition 2.1. Let X be a real Banach space. The nonempty convex closed
subset P of X is called a cone in X if ax ∈ P for all x ∈ P and a ≥ 0, x ∈ X and
−x ∈ X imply x = 0.

Definition 2.2. A map ψ : P → [0, +∞) is a nonnegative continuous concave
or convex functional map provided ψ is nonnegative, continuous and satisfies

ψ(tx + (1− t)y) ≥ tψ(x) + (1− t)ψ(y),

or
ψ(tx + (1− t)y) ≤ tψ(x) + (1− t)ψ(y),

for all x, y ∈ P and t ∈ [0, 1].
Definition 2.3. An operator T : X → X is completely continuous if it is

continuous and maps bounded sets into pre-compact sets.
Suppose that ψ is a nonnegative functional on a cone P of the real Banach

space X. We define the following sets by

Pr = {y ∈ P : ||y|| < r},
P (ψ; a, b) = {y ∈ P : a ≤ ψ(y), ||y|| < b},
P (ψ, d) := {x ∈ P : ψ(x) < d}.



Positive solutions for singular FDEs 91

Lemma 2.1[6]. Suppose that T : P c → P c is a completely continuous
operator and ψ a nonnegative continuous concave functional on P such that ψ(y) ≤
||y|| for all y ∈ P c. Furthermore, suppose that there exist 0 < a < b < d ≤ c such
that

(E1) {y ∈ P (ψ; b, d)|ψ(y) > b} 6= ∅ and ψ(Ty) > b for y ∈ P (ψ; b, d);
(E2) ||Ty|| < a for ||y|| ≤ a;
(E3) ψ(Ty) > b for y ∈ P (ψ; b, c) with ||Ty|| > d.
Then T has at least three fixed points y1, y2 and y3 such that ||y1|| < a,

b < ψ(y2) and ||y3|| > a with ψ(y3) < b.
Lemma 2.2[3]. Suppose that P is a cone in the real Banach space X, φ, γ :

P → [0,∞) are two continuous increasing functionals, θ : P → [0,∞) is a continuous
functional and there exist positive numbers M and c such that

(i) T : P (γ, c) → P is completely continuous;
(ii) θ(0) = 0 and γ(x) ≤ θ(x) ≤ φ(x), ||x|| ≤ Mγ(x) for all x ∈ P (γ, c);
(iii) there exist constants 0 < a < b < c such that θ(λx) ≤ λθ(x) for all

λ ∈ [0, 1] and x ∈ ∂P (θ, b);
(iv) γ(Tx) > c for all x ∈ ∂P (γ, c); θ(Tx) < b for all x ∈ ∂P (θ, b); P (φ, a) 6= ∅

and φ(Tx) > a for all x ∈ ∂P (φ, a);
then T has two fixed points x1, x2 in P (γ, c) such that

φ(x1) > a, θ(x1) < b < θ(x2), γ(x2 < c.

Lemma 2.3[3]. Suppose that P is a cone in a real Banach space X, φ, γ :
P → [0,∞) are two continuous increasing functionals, θ : P → [0,∞) is a continuous
functional and there exist positive numbers M, c > 0 such that (i), (ii) and (iii) in
Lemma 2.4 hold and

(iv) γ(Tx) < c for all x ∈ ∂P (γ, c); θ(Tx) > b for all x ∈ ∂P (θ, b); P (φ, a) 6= ∅
and φ(Tx) < a for all x ∈ ∂P (φ, a);

then T has two fixed points x1, x2 in P (γ, c) such that

φ(x1) > a, θ(x1) < b < θ(x2), γ(x2 < c.

Definition 2.4[1]. The Riemann-Liouville fractional integral of order α > 0
of a function f : (0,∞) → R is given by

Iα
0+f(t) =

1
Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

provided that the right-hand side exists.
Definition 2.5[1]. The Riemann-Liouville fractional derivative of order

α > 0 of a continuous function f : (0,∞) → R is given by

Dα
0+f(t) =

1
Γ(n− α)

dn+1

dtn+1

∫ t

0

f(s)
(t− s)α−n+1

ds,

where n − 1 < α ≤ n, provided that the right-hand side is point-wise defined on
(0,∞).

Lemma 2.4[1]. Let n− 1 < α ≤ n, u ∈ C0(0, 1)
⋂

L1(0, 1). Then

Iα
0+Dα

0+u(t) = u(t) + C1t
α−1 + C2t

α−2 + · · ·+ Cntα−n,

where Ci ∈ R, i = 1, 2, . . . n.
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Lemma 2.5[1]. The relations Iα
0+Iβ

0+ϕ = Iα+β
0+ ϕ, Dα

0+Iα
0+ = ϕ are valid in

following case: Reβ > 0, Re(α + β) > 0, ϕ ∈ L1(0, 1).
Lemma 2.6. Suppose that 1 < α < 2. Given h ∈ C(0, 1]. Then the unique

solution of 



Dαu(t) + h(t) = 0, 0 < t < 1,
limt→0 t2−αu(t) = 0,
Dα−1u(1) = 0 ,

(5)

is

u(t) =
∫ 1

0
G(t, s)h(s)ds, (6)

where

G(t, s) =

{
− (t−s)α−1

Γ(α) + tα−1

Γ(α) , s ≤ t,
tα−1

Γ(α) , t ≤ s.
(7)

Proof. We may apply Lemma 2.4 to reduce BVP(5) to an equivalent integral
equation

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds + c1t

α−1 + c2t
α−2

for some ci ∈ R, i = 1, 2. We get

t2−αu(t) = −t2−α

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds + c1t + c2

and

Dα−1u(t) = −
∫ t

0
h(s)ds + c1Γ(α).

From the boundary conditions in (5), since lims→0 Γ(s) = ∞, we get

c2 = 0,

−
∫ 1

0
h(s)ds + c1Γ(α) = 0.

It follows that

c1 =
1

Γ(α)

∫ 1

0
h(s)ds,

and
c2 = 0.

Therefore, the unique solution of BVP(5) is

u(t) = −
∫ t

0

(t− s)α−1

Γ(α)
h(s)ds +

tα−1

Γ(α)

∫ 1

0
h(s)ds =

∫ 1

0
G(t, s)h(s)ds.

Here G is defined by (7). Reciprocally, let u satisfy (6). Then

lim
t→0

t2−αu(t) = 0, Dα−1u(1) = 0 .

Furthermore, we have Dαu(t) = −h(t). The proof is complete.

Lemma 2.7. Suppose that 1 < α < 2 and β ∈ (0, 1). Then G(t, s) satisfies
the following properties:

(i) G(t, s) ≥ 0 for all t, s ∈ [0, 1];
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(ii) G(t, s) ≤ G(s, s) for all t, s ∈ [0, 1];
(iii) mint∈[β,1] G(t, s) ≥ βG(s, s) for all s ∈ [0, 1].
Proof. One sees from (7) that G(t, s) ≥ 0 for all t, s ∈ [0, 1].
It is easy to see that G(t, s) ≤ G(s, s) for t ≤ s. When t ≥ s, since

[tα−1 − (t− s)α−1]′ = (α− 1)tα−2

[
1−

(
1− s

t

)α−2
]
≤ 0

Then G(t, s) ≤ G(s, s) for t ≥ s. Hence G(t, s) ≤ G(s, s) for all t, s ∈ [0, 1].
Let F (s) = 1 − (1 − s)α−1 − βsα−1. It is easy to see that F (0) = 0 and

F (1) = 1− β > 0. Since

F ′(s) = (α− 1)sα−2

[(
1
s
− 1

)α−2

− β

]




≥ 0, s ∈
(

0, 1

β
1

α−2 +1

]
,

≤ 0, s ∈
[

1

β
1

α−2 +1
, 1

]
,

we get that 1− (1− s)α−1 ≥ βsα−1.
For 1 ≥ t ≥ s, we have

G(t, s) ≥ G(1, s) = −(1− s)α−1

Γ(α)
+

1
Γ(α)

≥ β
sα−1

Γ(α)

For β ≤ t ≤ s, we have

G(t, s) ≥ G(β, s) =
βα−1

Γ(α)
≥ β

sα−1

Γ(α)

mint∈[β,1] G(t, s) ≥ βG(s, s) for all s ∈ [0, 1]. The proof is completed.

For our construction, we let X = C(0, 1] and ‖u‖ = supt∈(0,1] t
2−α|u(t)| which

is a Banach space. We seek solutions of (4) that lie in the cone

P =
{

u ∈ X : u(t) ≥ 0, 0 < t ≤ 1, min
t∈[η,1]

u(t) ≥ βα||u||
}

.

Define the operator T : P → X, by

Tu(t) =
∫ 1

0
G(t, s)f(s, u(s))ds .

One sees from Lemma 2.7 that

||Tu|| = max
t∈(0,1]

t2−α(Tu)(t) ≤
∫ 1

0
G(s, s)f(s, u(s))ds

and

min
t∈[η,1]

t2−α(Tu)(t) = min
t∈[η,1]

β2−β

∫ 1

0
G(t, s)f(s, u(s))ds ≥ βα

∫ 1

0
G(s, s)f(s, u(s))ds.

Hence
min

t∈[η,1]
t2−α(Tu)(t) ≥ βα||u||.

It follows that Tu ∈ P . Then T : P → P is well defined.
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Lemma 2.8. Suppose that f(t, x) is continuous on (0, 1] × R and satisfies
that for each r > 0 there exists φr ∈ L1(0, 1] such that |f(t, tα−2x)| ≤ φr(t) for all
t ∈ (0, 1] and |x| ≤ r. Then T is completely continuous.

Proof. We divide the proof into three steps.
Step 1. T is continuous.
Let {yn} be a sequence such that yn → y in X. Let

r = max

{
sup

t∈(0,1]
t2−αyn(t), sup

t∈(0,1]
t2−αy(t)

}
.

Then for t ∈ (0, 1], we have

t2−α|(Tyn)(t)− (Ty)(t)|

=
∣∣∣∣
∫ 1

0
t2−αG(t, s)f(s, yn(s))ds−

∫ 1

0
t2−αG(t, s)f(s, y(s))ds

∣∣∣∣

≤
∫ 1

0
t2−αG(t, s)|f(s, yn(s))− f(s, y(s))|ds

≤ 1
Γ(α)

∫ 1

0
|f(s, sα−222−αyn(s))− f(s, sα−222−αy(s))|ds

≤ 2
1

Γ(α)

∫ 1

0
φr(s)ds.

Since f(t, sα−2x) is continuous in x, we have ||Tyn − Ty|| → 0 as n →∞.
Step 2. T maps bounded sets into bounded sets in X.
It suffices to show that for each l > 0, there exists a positive number L > 0

such that for each x ∈ M = {y ∈ X : ||y|| ≤ l}, we have ||Ty|| ≤ L. By the definition
of T , we get

t2−α|(Ty)(t)| =
∫ 1

0
t2−αG(t, s)f(s, y(s))ds

≤ 1
Γ(α)

∫ 1

0
f(s, sα−222−αy(s))ds

≤ 1
Γ(α)

∫ 1

0
φl(s)ds.

It follows that ||Ty|| ≤ 1
Γ(α)

∫ 1

0
φl(s)ds for each y ∈ {y ∈ X : ||y|| ≤ l}. So T maps

bounded sets into bounded sets in X.
Step 3. T maps bounded sets into equicontinuous sets in X.
Let y ∈ M = {y ∈ X : ||y|| ≤ l} be defined in Step 2.
Firstly, we prove that {Ty : y ∈ M} is equicontinuous on each compact sub-

interval [t1, t2] of (0, 1], where t1, t2 ∈ (0, 1] with t1 < t2. We have

|t2−α
1 (Ty)(t1)− t2−α

2 (Ty)(t2)|

=
∣∣∣∣
∫ 1

0
t2−α
1 G(t1, s)f(s, y(s))ds−

∫ 1

0
t2−α
2 G(t2, s)f(s, y(s))ds

∣∣∣∣
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≤
∫ 1

0
|t2−α

1 G(t1, s)− t2−α
2 G(t2, s)|f(s, sα−2s2−αy(s))ds

≤
∫ t1

0

[∣∣∣∣
t2−α
1 (t1 − s)α−1 − t2−α

2 (t2 − s)α−1

Γ(α)

∣∣∣∣ +
|t1 − t2|
Γ(α)

]
f(s, sα−2s2−αy(s))ds

+
∫ t2

t1

|t2−α
1 G(t1, s)− t2−α

2 G(t2, s)|f(s, sα−2s2−αy(s))ds

+
∫ 1

t2

∣∣∣∣t2−α
1

tα−1
1

Γ(α)
− t2−α

2

tα−1
2

Γ(α)

∣∣∣∣ f(s, sα−2s2−αy(s))ds

≤
∫ 1

0

[∣∣∣∣
t2−α
1 (t1 − s)α−1 − t2−α

2 (t2 − s)α−1

Γ(α)

∣∣∣∣ +
|t1 − t2|
Γ(α)

]
φl(s)ds

+
2

Γ(α)

∫ t2

t1

φl(s)ds +
|t1 − t2|
Γ(α)

∫ 1

0
φl(s)ds.

G(t, s) =

{
− (t−s)α−1

Γ(α) + tα−1

Γ(α) , s ≤ t,
tα−1

Γ(α) , t ≤ s.

As t1 → t2, the right-hand side of the above inequality tends to zero. Therefore,
{Ty : y ∈ M} is equicontinuous on each compact sub-interval of (0, 1].

Secondly, we prove that {Ty : y ∈ M} is equicontinuous at zero point. Since
∫ 1

0
t2−αG(t, s)f(s, y(s))ds ≤ 1

Γ(α)

∫ 1

0
φl(s)ds,

we get

lim
t→0

t2−α(Ty)(t) =
∫ 1

0
t2−αG(t, s)f(s, y(s))ds = 0

uniformly. Then for each ε > 0, there exists δ > 0 such that

|t2−α
1 (Ty)(t1)− t2−α

2 (Ty)(t2)| < ε.

holds for each 0 < t1, t2 < δ. Hence {Ty : y ∈ M} is equicontinuous at zero point.
From above discussion, T is completely continuous. The proof is complete.

3. Main Results

In this section, we prove the main results. Let

M =
1

Γ(α)
,

and

W =
β3(1− βα)
αWΓ(α)

.

Theorem 3.1. Suppose that f : (0, 1] × [0,∞) → [0,∞) is continuous and
satisfies that for each r > 0 there exists φr ∈ L1(0, 1] such that |f(t, tα−2x)| ≤ φr(t)
for all t ∈ (0, 1] and |x| ≤ r and there exist constants e1, e2 and c such that

0 < e1 < e2 <
e2

βα
< c, Wc > Me2,

that satisfy
(D1) f(t, tα−2u) ≤ c

M for t ∈ (0, 1], u ∈ [0, c];
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(D2) f(t, tα−2u) ≤ e1
M for t ∈ (0, 1] and u ∈ [0, e1];

(D3) f(t, tα−2u) ≥ e2
W for t ∈ [η, 1] and u ∈

[
e2,

e2
βα

]
;

then BVP(4) has at least three positive solutions x1, x2 and x3 satisfying

sup
t∈(0,1]

t2−αx1(t) < e1, min
t∈[η,1]

t2−αx2(t) > e2 (8)

and
sup

t∈(0,1]
t2−αx3(t) > e1, min

t∈[η,1]
t2−αx3(t) < e2. (9)

Proof. Define the functional ψ by

ψ(x) = min
t∈[η,1]

t2−αx(t) for x ∈ P.

It is easy to see that ψ is a nonnegative convex continuous functional on the cone
P and ψ(y) ≤ ||y|| for all y ∈ P . It follows from Lemma 2.8 that TP ⊆ P and
T : P → P is completely continuous.

To Lemma 2.1, choose

d =
e2

βα
, b = e2, a = e1.

Then 0 < a < b < d < c. We divide the remainder of the proof into four steps.
Step 1. Prove that T (Pc) ⊂ Pc.
For x ∈ Pc, one has ||x|| ≤ c. Then

0 ≤ t2−αx(t) ≤ c, t ∈ (0, 1].

It follows from (D1) that

f(t, x(t)) = f(t, tα−2t2−αx(t)) ≤ c

M
, t ∈ (0, 1].

Then Tx ∈ P implies that

||Tx|| = sup
t∈(0,1]

t2−α(Tx)(t)

= sup
t∈(0,1]

∫ 1

0
t2−αG(t, s)f(s, x(s))ds

≤ sup
t∈(0,1]

∫ 1

0
t2−αG(t, s)

c

M
ds

≤ 1
Γ(α)

c

M
= c.

Then Tx ∈ Pc, Hence T (Pc) ⊆ Pc. This completes the proof of Step 1.
Step 2. Prove that

{y ∈ P (ψ; b, d)|ψ(y) > b} = {y ∈ P (ψ; e2, e2/βα)|ψ(y) > e2} 6= ∅
and ψ(Ty) > b = e2 for y ∈ P (ψ; e2, e2/βα).

It is easy to see that {x ∈ P (ψ, e2, e2/βα), ψ(x) > e2} 6= ∅. For x ∈
P (ψ, e2, e2/βα), then ψ(x) ≥ e2 and ||x|| ≤ e2/βα. Then

min
t∈[η,1]

t2−αx(t) ≥ e2, sup
t∈(0,1]

x(t) ≤ e2/βα.
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Hence
e2 ≤ t2−αx(t) ≤ e2

βα
, t ∈ [η, 1].

Hence (D3) implies that

f(t, x(t)) = f(t, tα−2t2−αx(t) ≥ e2

W
, t ∈ [η, 1].

Since Ty ∈ P , we get ψ(Ty) = mint∈[η,1] t
2−α(Ty)(t) ≥ βα supt→(0,1] t

2−α(Tx)(t).
We get

ψ(Tx) ≥ βα sup
t→(0,1]

∫ 1

0
t2−αG(t, s)f(s, x(s))ds

> βα sup
t→(0,1]

∫ 1

β
t2−αG(t, s)f(s, x(s))ds

≥ β3 sup
t→(0,1]

∫ 1

β
G(s, s)f(s, x(s))ds

≥ β3

∫ 1

β

sα−1

Γ(α)
e2

W
ds

≥ e2.

Thus ψ(Tx) > e2 for all x ∈ P (ψ; e2, e2/βα). This completes the proof of Step 2.
Step 3. Prove that ||Ty|| < a = e1 for y ∈ P with ||y|| ≤ a.
For x ∈ Pe1 , we have

sup
t∈(0,1]

t2−αx(t) ≤ e1 = a.

It follows from (D2) and Tx ∈ P that

f(t, x(t)) = f(t, tα−2t2−αx(t)) ≤ e1

M
, t ∈ (0, 1].

The proof is similar to that of Step 1. Then ||Ty|| < e1 for ||y|| ≤ e1. This completes
that proof of Step 3.

Step 4. Prove that ψ(Ty) > b for y ∈ P (ψ; b, c) with ||Ty|| > d.
For x ∈ P (ψ; b, c) = P (ψ, e2, c) and ||Tx|| > d = e2

βα , then

min
t∈[η,1]

t2−αx(t) ≥ e2, sup
t∈(0,1]

t2−α(Tx)(t) ≥ e2

βα
and ||x|| = sup

t∈(0,1]
t2−αx(t) ≤ c.

Hence we have from Tx ∈ P that

ψ(Tx) = min
t∈[η,1]

t2−α(Tx)(t)

= βα sup
t∈(0,1]

t2−α(Tx)(t)

> βα e2

βα

= b.

Thus ψ(Tx) > b for all x ∈ P (ψ; b, c) with ||Tx|| > d. This completes the proof of
Step 4.
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From above steps, (E1), (E2) and (E3) of Lemma 2.1 are satisfied. Then, by
Lemma 2.1, T has three fixed points x1, x2 and x3 ∈ Pc such that

||x1|| < a, ψ(x2) > b, ||x3|| ≥ a, ψ(x3) ≤ b,

i.e., x1, x2 and x3 satisfy (8) and (9). Hence BVP(4) has at least three positive
solutions that may be unbounded positive solutions since limt→0 t2−αx(t) = 0. The
proof is complete.

Theorem 3.2. Let W = β3(1−βα)
αWΓ(α) and M = 1

Γ(α) . Suppose that f : (0, 1] ×
[0,∞) → [0,∞) is continuous and satisfies that for each r > 0 there exists φr ∈
L1(0, 1] such that |f(t, tα−2x)| ≤ φr(t) for all t ∈ (0, 1] and |x| ≤ r, and there exist
positive numbers a < b < c such that Wb > Ma, and

(E1) f(t, tα−2u) ≥ c
W for t ∈ [η, 1], u ∈ [c, c/βα];

(E2) f(t, tα−2u) ≤ b
M for t ∈ (0, 1] and u ∈ [0, b];

(E3) f(t, tα−2u) ≥ a
W for t ∈ [η, 1] and u ∈ [βαa, a].

Then BVP(4) has at least two positive solutions x1 and x2 satisfying

sup
t∈(0,1]

tα−2x1(t) > a, sup
t∈(0,1]

tα−2x1(t) < b, sup
t∈(0,1]

tα−2x2(t) > b, min
t∈[η,1]

tα−2x2(t) < c.

(10)
Proof. Define the nonnegative, increasing and continuous functionals γ, θ, φ :

P → [0∞) by

γ(x) = min
t∈[η,1]

tα−2x(t), x ∈ P,

θ(x) = sup
t∈(0,1]

tα−2x(t), x ∈ P,

φ(x) = sup
t∈(0,1]

tα−2x(t), x ∈ P.

It is easy to see that θ(0) = 0 and

γ(x) ≤ θ(x) ≤ φ(x), x ∈ P

and for x ∈ P we have γ(x) ≥ βα||x||, θ(νx) ≤ νθ(x) for all ν ∈ [0, 1] and x ∈ P .
From Lemma 2.8, we have TP ⊂ P and T is completely continuous. Hence (i)-(iii)
in Lemma 2.2 hold. To obtain two positive solutions of BVP(4), it suffices to show
that the condition (iv) in Lemma 2.2 holds.

First, we verify that

γ(Tx) > c for alll x ∈ ∂P (γ, c). (11)

Since x ∈ ∂P (γ, c), we get mint∈[η,1] t
2−αx(t) = c. Then ||x|| ≤ 1

βα γ(x) ≤ c
βα . Then

c ≤ t2−αx(t) ≤ c
βα for all t ∈ [η, 1]. Hence (E1) implies

f(t, x(t)) = f(t, tαt2−αx(t)) ≥ c

W
, t ∈ [η, 1] .

So we get from Tx ∈ P that

γ(Tx) = min
t∈[η,1]

t2−α(Tx)(t) ≥ βα sup
t∈(0,1]

t2−α(Tx)(t).
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We find

γ(Tx)(t) ≥ βα

∫ 1

0
t2−αG(t, s)f(s, x(s))ds

> β2

∫ 1

β
β

sα−1

Γ(α)
f(s, x(s))ds

≥ β3

∫ 1

β

sα−1

Γ(α)
c

W
ds

≥ c.

Secondly, we prove that

θ(Tx) < b for all x ∈ ∂P (θ, b). (12)

Since θ(x) = b, we get supt∈(0,1] t
2−αx(t) = b. Then

t2−αx(t) ≤ b for all t ∈ (0, 1].

Hence (E2) implies

f(t, x(t)) = f(t, tα−2t2−αx(t)) ≤ b

M
, t ∈ (0, 1].

So the definition of T imply

θ(Tx) = sup
t∈(0,1]

t2−α(Tx)(t)

< sup
t∈(0,1]

∫ 1

0
t2−αG(t, s)f(s, x(s))ds

≤ 1
Γ(α)

b

M

= b.

Finally, we prove that

P (φ, a) 6= ∅, φ(Tx) > a for all x ∈ ∂P (φ, a). (13)

It is easy to see that P (φ, a) 6= ∅. For x ∈ ∂P (φ, a), we have supt∈(0,1] t
2−αx(t) = a.

Then
βαa ≤ t2−αx(t) ≤ a for all t ∈ [η, 1] .

Then (E3) implies

f(t, x(t)) = f(t, 2α−2t2−αx(t)) ≥ a

W
, t ∈ [η, 1] .

Similarly to the first step, we can prove that α(Tx) > a. It follows from above
discussion that all conditions in Lemma 2.2 are satisfied. Then T has two fixed
points x1, x2 in P . So BVP(4) has two positive solutions x1 and x2 satisfying (10).
The proof is complete.

Theorem 3.3. Let W,M be defined in Theorem 3.2. Suppose that f :
(0, 1] × [0,∞) → [0,∞) is continuous and satisfies that for each r > 0 there exists
φr ∈ L1(0, 1] such that |f(t, tα−2x)| ≤ φr(t) for all t ∈ (0, 1] and |x| ≤ r, and there
exist positive numbers a < βαb < b < c such that Wc > Mb, and

(E4) f(t, tα−2u) ≤ c
M for t ∈ (0, 1], u ∈ [0, c/βα];
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(E5) f(t, tα−2u) ≥ b
W for t ∈ [η, 1] and u ∈ [βαb, b];

(E6) f(t, tα−2u) ≤ a
M for t ∈ (0, 1] and u ∈ [0, a].

Then BVP(4) has at least two positive solutions x1 and x2 satisfying

sup
t∈(0,1]

tα−2x1(t) > a, sup
t∈(0,1]

tα−2x1(t) < b, sup
t∈(0,1]

tα−2x2(t) > b, min
t∈[η,1]

tα−2x2(t) < c.

(14)
Proof. Let the nonnegative, increasing and continuous functionals γ, θ, φ :

P → [0,∞) be defined in the proof of Theorem 3.2. The remainder of the proof is
similar to that of the proof of Theorem 3.2 and is omitted.
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