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POSITIVE SOLUTIONS FOR SINGULAR FDES

Yuji Liut

In this article, we establish the existence of at least three positive solu-
tions to a boundary-value problem of the nonlinear singular fractional differential
equation. Our analysis rely on the well known fixed point theorem in the cone.

Keywords: Unbounded positive solution; fractional differential equation; fixed-
point theorem.

1. Introduction

Fractional differential equations have many applications in modeling of phys-
ical and chemical processes and in engineering. In its turn, mathematical aspects of
studies on fractional differential equations were discussed by many authors, see the
text books [4,7,9], the survey paper [2], the papers [1,5,8,10,13] and the references
therein.

The use of cone theoretic techniques in the study of the existence of solutions
to boundary value problems has a rich and diverse history. Recently, E. R. Kauf-
mann and E. Mboumi in [11] studied the following boundary value problem for the
fractional differential equation

{ Dyu(t) +a(t)f(u(t) =0, 0<t<1l,1<a<2, (1)
u(0) =0,4/(1) =0,

by using the Leggett-Williams fixed point theorem and the Krasnoselskii fixed point
theorem under the assumptions:

(A1) f:[0,400) — [0,00) is continuous;

(A2) ae L™[0,1];

(A3) there exists a constant m > 0 such that a(t) > m a.e. t € [0,1].

The authors in [11] proved that BVP(1) has at least one or three positive
solutions. We note that the Green’s function ( or the Kernel see [11]) of the following
homogeneous BVP

Dgu(t) =0, 0<t<l,1<a<2, )
u(0) = 0,4/(1) =0,

is as follows:

1 7 1 —8)¥ 2 — (t—s)* Lt > s,
N1 —s)* 2t <s.
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Let 8 € (0,1). G satisfies the conditions that

BsG(s,s) < G(t,s) for all t € [B,1],s € [0,1], G(t,s) < G(s,s) for all t,s € [0,1].
(3)
One sees that (3) plays an important role in the proof of the theorems in references
[10,11].
In this paper, we discuss the existence of three unbounded positive solutions
to the boundary value problem of the nonlinear fractional differential equation of
the form

Dgu(t) + f(t,u(t)) = te(0,00),l<a<?2,
limg o t>~%u(t) = 0, (4)
Dy~ (1) =0,

where D, (D® for short) is the Riemann-Liouville fractional derivative of order «,
and f : (0,1] x [0,00) — [0,00) is a Caratheodory function, i.e., f(-,x) € L*(0,1]
for each = € [0,00) and f(t,-) is continuous for almost all ¢ € (0, 1], furthermore, f
satisfies that for each r > 0 there exists ¢, € L'[0, 1] such that |f(¢,t*2z)| < ¢,.(t)
holds for all ¢ € (0,1] and = € [—r,r]. We obtain the existence results for two and
three unbounded positive solutions of BVP(4) by using the fixed point theorems in
a cones. An example is presented to illustrate the main result. This example can
not be covered by the theorems in references [10,11].

A difference to [11] is that f may be singular at zero and the positive solutions
of BVP(4) may be unbounded ones since lim;_.ot>~%z(t) = 0 for solution x of
BVP(4).

2. Preliminary results

For the convenience of the reader, we present here the necessary definitions
from fixed point theory and fractional calculus theory. These definitions and prop-
erties can be found in the literatures [3,4,6,7,9].

Definition 2.1. Let X be a real Banach space. The nonempty convex closed
subset P of X is called a cone in X if ax € P for allz € Pand a > 0, z € X and
—z € X imply z = 0.

Definition 2.2. A map ¢ : P — [0, 400) is a nonnegative continuous concave
or convex functional map provided 1 is nonnegative, continuous and satisfies

Ytz + (1 —t)y) = td(z) + (1 = )Y (y),
or
Ytz + (1 —t)y) < td(z) + (1 = )Y (y),
for all ,y € P and t € [0, 1].
Definition 2.3. An operator T : X — X is completely continuous if it is
continuous and maps bounded sets into pre-compact sets.

Suppose that v is a nonnegative functional on a cone P of the real Banach
space X. We define the following sets by

Br={yeP: |yl <7},
P(ia,0) ={y € P: a<v(y), |yl <b},
P(y,d) :=={z € P:y(z) < d}.
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Lemma 2.1[6]. Suppose that T': P, — P, is a completely continuous
operator and v a nonnegative continuous concave functional on P such that ¢ (y) <
||y|| for all y € P.. Furthermore, suppose that there exist 0 < a < b < d < ¢ such
that

(E1) {y € P(¥;b,d)[¢(y) > b} # 0 and ¢(T'y) > b for y € P(¢;d,d);

(E2) ||Tyl| < a for |yl| < a;

(E3) ¥(Ty) > b for y € P(¢;b,c) with ||Ty|| > d.

Then T has at least three fixed points y;, y2 and y3 such that ||y1]| < a,
b < Y(y2) and ||ys|| > a with ¥(y3) < b.

Lemma 2.2[3]. Suppose that P is a cone in the real Banach space X, ¢, :
P — [0, 00) are two continuous increasing functionals, § : P — [0, c0) is a continuous
functional and there exist positive numbers M and c¢ such that

(i) T :P(v,c) — P is completely continuous;

(i) 0(0) =0 and y(z) < 0(z) < ¢(z), ||z[| < My() for all z € P(y,c);

(iii) there exist constants 0 < a < b < ¢ such that (\x) < A(x) for all
A €[0,1] and x € OP(0,b);

(iv) v(Tz) > cforallz € P(~,c); 0(Tx) < bforallxz € OP(0,b); P(p,a) # 0
and ¢(Tx) > a for all x € OP(¢,a);

then T" has two fixed points x1,x2 in P(7,¢) such that

o(z1) > a, 0(z1) <b<O(x2), v(z2 <ec.

Lemma 2.3[3]. Suppose that P is a cone in a real Banach space X, ¢, :
P — [0, 00) are two continuous increasing functionals, § : P — [0, c0) is a continuous
functional and there exist positive numbers M, ¢ > 0 such that (i), (ii) and (iii) in
Lemma 2.4 hold and

(iv) 7v(Tz) < cforallz € OP(y,c); 0(Tx) > bforallx € IP(0,b); P(¢,a) # 0
and ¢(Tx) < a for all x € OP(¢,a);

then T has two fixed points z1,x2 in P(7,c) such that

d(z1) > a, O(z1) <b<O(x2), v(ze <ec.

Definition 2.4[1]. The Riemann-Liouville fractional integral of order a > 0
of a function f : (0,00) — R is given by

18, f(t) = F(la) /O (t— )2 f(s)ds,

provided that the right-hand side exists.
Definition 2.5[1].  The Riemann-Liouville fractional derivative of order
a > 0 of a continuous function f : (0,00) — R is given by

a 1 artt ot f(s)
Dy f(t) = T(n — a) dtntl /0 (t — S)a—n-‘rlds’

where n — 1 < a < n, provided that the right-hand side is point-wise defined on
(0,00).
Lemma 2.4[1]. Letn—1<a <mn,ue C%0,1)L*(0,1). Then

I8, Dy u(t) = u(t) + Crt* 4+ Cot* 2 4+ 4 Cpt ™™™,
where C; € R, 1=1,2,...n.
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Lemma 2.5[1]. The relations I§ Iy, ¢ = 15 ¢, D§ I, = ¢ are valid in

following case: Ref3 > 0, Re(a+ 3) >0, ¢ € L1(0,1).
Lemma 2.6. Suppose that 1 < a < 2. Given h € C(0,1]. Then the unique
solution of

D%u(t) + h(t) =0,0 <t <1,
limy_ t2~%u(t) = 0, (5)
D y(1) =0,
is .
u(t) = [ G(t,s)h(s)ds, (6)
0
where (tosyet )
_ ({t=s)*™ [l <t
Glt,s) =1 ~ Tl e PEh (7)
@, t S S.

Proof. We may apply Lemma 2.4 to reduce BVP(5) to an equivalent integral
equation

u(t) = — /Ot @;((g;[_lh(s)ds + et 4 et 2

for some ¢; € R,i =1,2. We get
t (t _ S)Oc—l
t270u(t) = —tQO‘/ ~—h(s)ds+ cit + c2
0 ['(a)

and .
D lu(t) = —/ h(s)ds 4+ c1T' ().
0
From the boundary conditions in (5), since lims_,oI'(s) = oo, we get

62:07

- / " h(s)ds + erT(@) = 0.
0

It follows that

and
Cy = 0.

Therefore, the unique solution of BVP(5) is

t (t _ S)a—l ta—l 1 1

u(t) = — —————h(s)ds + /hsds-/Gt,shsds.
0 == [ g —hes+ fos [ hsas = [ Gesns)
Here G is defined by (7). Reciprocally, let u satisfy (6). Then
lim 2~ u(t) = 0, D lu(1) = 0.

Furthermore, we have D*u(t) = —h(t). The proof is complete.

Lemma 2.7. Suppose that 1 < a <2 and g € (0,1). Then G(t,s) satisfies
the following properties:
(i) G(t,s) >0 forallt,se[0,1];
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(il) G(t,s) < G(s,s) for all t,s € [0,1];

(iii) mingeg 1) G(t,5) > BG(s,s) for all s € [0, 1].

Proof. One sees from (7) that G(t,s) > 0 for all ¢,s € [0, 1].

It is easy to see that G(t,s) < G(s,s) for t <s. When ¢ > s, since

a—1 a—17/ __ a—2 s\ 2
[t —(t—9)"" =(a—1)t 1- 1—; <0
Then G(t,s) < G(s,s) for t > s. Hence G(t,s) < G(s,s) for all ¢,s € [0, 1].
Let F(s) = 1 — (1 —s)* ! — Bs* L. It is easy to see that F(0) = 0 and

F(1)=1- /> 0. Since

a2 ZO,S€<0, . ,

5 S 0) S e 11 )1 9
I@ﬁ+1
we get that 1 — (1 — )@~ 1 > s,
For 1 >t > s, we have
(1—s)t 1 o1

G(t,s) > G(1,s8) = — >
For 0 <t < s, we have

ﬁa 1 a—l

G(t,s) = G(B,s) =

> ﬁ
I(a) = T(@)
mingez1 G(t,5) > BG(s, s) for all s € [0,1]. The proof is completed.

For our construction, we let X = C(0,1] and [[ul| = supye(q1) t*~*|u(t)| which

is a Banach space. We seek solutions of (4) that lie in the cone

p— {ue Xiult) 20,0 < <1, min a(t) > ﬁO‘HuH}.
€n7

Define the operator T': P — X, by

1
— [ Glt.s)f(s.ule)ds.
0
One sees from Lemma 2.7 that

|| Tul| = rr%gui]tQ U (Tu)( / G(s,s)f(s,u(s))ds

and

1 1
min t27%(Tu)(t) = min §°~ ’3/ G(t,s)f(s,u(s))ds Zﬁo‘/o G(s,s)f(s,u(s))ds.

tE[’U,l] te[nvl]

Hence

min t2_a(Tu)(t) > 6% |ul].
te(n,1]

It follows that Tuw € P. Then T : P — P is well defined.
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Lemma 2.8. Suppose that f(t,z) is continuous on (0,1] x R and satisfies
that for each 7 > 0 there exists ¢, € L(0, 1] such that |f(¢,t* 2z)| < ¢,(t) for all
t € (0,1] and |z| < r. Then T is completely continuous.

Proof. We divide the proof into three steps.

Step 1. T is continuous.

Let {y,} be a sequence such that y, — y in X. Let

r=max<{ sup t> %, (t), sup t>"y(t) .
te(0,1] te(0,1]
Then for ¢t € (0, 1], we have
2 (Tya) (1) — (Ty)()]

1 1
/ 20G(t, 5) f(5, yn(5))ds — / P0G, 5) f(5,y(s))ds

0 0

IN

1
/0 Gt )| (5,yn()) — F(5,y(s))ds

1 ! a— —a a— —a
< o /0 (5, 52722270y, (s)) — (5,5 222 %y (s))|ds

1 1
< 21@/0 or(s)ds.

Since f(t,s* 2x) is continuous in x, we have ||Ty, — Ty|| — 0 as n — oo.

Step 2. T maps bounded sets into bounded sets in X.

It suffices to show that for each I > 0, there exists a positive number L > 0
such that for eachz € M = {y € X : ||y|| <1}, we have ||T'y|| < L. By the definition
of T', we get

1
EUTO] = [ PG fs(s)ds

0

1 ! a—262—«
< F(/o f(s,s 292 y(s))ds

a)

1 1
< 1“(04)/0 Pu(s)ds.

1 1
It follows that ||Ty|| < F()/ ¢i(s)ds for each y € {y € X : ||y|| <1}. So T maps
@) Jo

bounded sets into bounded sets in X.

Step 3. T maps bounded sets into equicontinuous sets in X.

Let ye M ={y € X : ||ly|| <1} be defined in Step 2.

Firstly, we prove that {T'y : y € M} is equicontinuous on each compact sub-
interval [t1,t2] of (0,1], where t1,t2 € (0,1] with ¢; < t2. We have

B (Ty)(t) = 157 (Ty) (t2))]

1 1
| Gt r(sutois - /O 270G 13, 5) f (5, y(5))ds

0
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1
< / 270G (11, 8) — £27Gt2, 5)| (5, 825> y(s))ds
0

< /|

to
- / 67 0G(t1, s) — t5“Glta, 5)| f(s,5° s> “y(s))ds
t1

4 /t:
1
/]
pros [Cotas + 1B [

P(a) t1
B ) S el
G(t,s):{ M) T @ 550

%t —5)* =1ty — 5)* !
[(a)

t1 — o]
I(a)

] f(s,547 2527 %(s))ds

t?il _ 2—at371 f(S SanSZfay(S))dS
Lla) 2 T(a)]"

Gt —8)* T =13ty — 5)* !
I'(a)

2—«
tl

|t1 — to
['(a)

IN

] i1(s)ds

[
W, tS S.

As t1 — to, the right-hand side of the above inequality tends to zero. Therefore,
{Ty :y € M} is equicontinuous on each compact sub-interval of (0, 1].
Secondly, we prove that {T'y : y € M} is equicontinuous at zero point. Since

1 1
| e s < mos [ oo

0
we get

1
lig £ (Ty)(0) = [ #7669 (s, (s))ds =0
- 0
uniformly. Then for each € > 0, there exists § > 0 such that
7(Ty) (1) — 157 (Ty)(t2)] < e.

holds for each 0 < t1,ty < 0. Hence {T'y : y € M} is equicontinuous at zero point.
From above discussion, T is completely continuous. The proof is complete.

3. Main Results

In this section, we prove the main results. Let
1
M=—
()’
and 5
1 _ (6%
D)
aWT ()
Theorem 3.1. Suppose that f : (0,1] x [0,00) — [0,00) is continuous and
satisfies that for each r > 0 there exists ¢, € L'(0,1] such that |f(¢,t*2z)| < ¢,.(t)
for all t € (0,1] and |z| < r and there exist constants ej, ea and ¢ such that

e
O<el<eg<ﬂ—i<c, We > Mes,

that satisfy
(D1) f(t,t*2u) < & for t € (0,1], u € [0,¢];
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(D2) f(t,t*2u) < $ for ¢t € (0,1] and u € [0, e1];
(D3) f(t,tO‘iZu) > €W2 for t € [77, 1] and u € [62, g%};
then BVP(4) has at least three positive solutions x1, zo and x3 satisfying

sup t27 % (t) < ey, min 2 Yy(t) > en (8)
te(0,1] t€(n,1]
and
sup t27%3(t) > ey, min 27 %x3(t) < es. 9)
te(0,1] t€[n,1]

Proof. Define the functional 1 by

Y(z) = min t*7%(t) for z € P.
ten,1]

It is easy to see that 1 is a nonnegative convex continuous functional on the cone
P and 9¥(y) < ||ly|| for all y € P. It follows from Lemma 2.8 that TP C P and
T : P — P is completely continuous.

To Lemma 2.1, choose

e
dzﬁ—i, b=es, a=ej.
Then 0 < a <b < d < c. Wedivide the remainder of the proof into four steps.
Step 1. Prove that T'(P.) C P..

For z € P., one has ||z|| < c¢. Then
0<t*x(t) <e¢ te(0,1].
It follows from (D1) that
fltx()) = f(t, 027 a(t)) <
Then T'x € P implies that
Tz = sup t*7(Tx)(t)

te(0,1]

1
= sup / t27G(t, s) f (s, x(s))ds

te(0,1] JO

C

—.,t € (0,1].
M’G(’]

IN

1
c
sup / 272G (t, s)—ds
0 ( M

te(0,1]
1 ¢

T(a) M
= ¢
Then T € P., Hence T(P.) C P.. This completes the proof of Step 1.
Step 2. Prove that

{y € P(¢;0,d)[0(y) > b} = {y € P(v;ea,e2/BY)Y(y) > e} # 0
and P (Ty) > b= ey for y € P(¢;e2,e2/5%).
It is easy to see that {z € P(v,es,ea/B%),¢%(x) > ea} # 0. For z €
P(1,e2,e2/%), then ¥(z) > eg and ||z|| < e2/[. Then

min 27%(t) > es, sup x(t) < ey/B°.
t€[n,1] te(0,1]
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Hence .
o < 12 (t) < 6% t e n,1].
Hence (D3) implies that
F(ta(t) = f(6,10707a(0) = ot € o, 1)

Since Ty € P, we get ¢(Ty) = mingep, 1) t*~*(Ty)(t) > SUDP¢_, (0,1] t2=(Tx)(t).
We get

1
B sup / t27G(t, 8) f (s, 2(s))ds

t—(0,1] JO

1
> (% sup /ﬁtQaG(t,s)f(s,a:(s))ds

t—(0,1]

(Tx)

v

v

1
3 su G(s,s)f(s,x(s))ds
5 s [ Gl )10, 2(0)

t—(0,1]
1 a—1
s €9
63/ —ds
> es.
Thus (T'z) > eq for all x € P(1; e2,e2/4%). This completes the proof of Step 2.

Step 3. Prove that ||Ty|| < a = e; for y € P with ||y|| < a.
For z € P,,, we have

v

sup 27 %x(t) < e; = a.
te(0,1]

It follows from (D2) and Tz € P that
f(t () = f(t, 02722 a(t)) < - t € (0,1]

The proof is similar to that of Step 1. Then ||Ty|| < e; for ||y|| < e;. This completes
that proof of Step 3.

Step 4. Prove that ¢)(T'y) > b for y € P(1;b,c) with ||Ty|| > d.

For z € P(4;b,¢) = P(¢, e2,¢) and |[Tx|| > d = 5%, then

min t27%z(t) > ey, sup t27%(Tx)(t) > % and ||z|| = sup t27%x(t) < c.
t€[n,1] te(0,1] B te(0,1]
Hence we have from Tx € P that

_ : 2—«
v(T2) = min P=(Ta)()

= B sup 27(Ta)(t)
te(0,1]

&
> g2

ﬁa
= b

Thus ¢(Tx) > b for all x € P(¢;b,c) with ||[Tz|| > d. This completes the proof of
Step 4.
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From above steps, (E1), (E2) and (E3) of Lemma 2.1 are satisfied. Then, by
Lemma 2.1, T has three fixed points z1, 9 and x3 € P, such that

|z1]] < a, P(z2) > b, |Jws]| = a, ¥(x3) <,

ie., x1, vo and w3 satisfy (8) and (9). Hence BVP(4) has at least three positive
solutions that may be unbounded positive solutions since lim;_ot?~%z(t) = 0. The
proof is complete.

Theorem 3.2. Let W = ﬁ;‘(;l:(ﬁcz) and M = ﬁ Suppose that f : (0,1] x
[0,00) — [0,00) is continuous and satisfies that for each r > 0 there exists ¢, €
L1(0,1] such that |f(t,t* 2x)| < ¢,.(¢) for all t € (0,1] and |z| < r, and there exist
positive numbers a < b < ¢ such that Wb > Ma, and

(E1) f(t,t9 %) > w for t € [n, 1], u € [c,¢/B%];

(E2) f(t,t*2u) < & for t € (0,1] and u € [0,b];

(E3) f(t,t"?u) > & for t € [n,1] and u € [3%a, a].

Then BVP(4) has at least two positive solutions x; and x9 satisfying

sup t* 2x1(t) > a, sup t* 2xi(t) <b, sup t* 2xa(t) >b, min t* %aq(t) < c.
te(0,1] te(0,1] te(0,1] te[n,1]
(10)
Proof. Define the nonnegative, increasing and continuous functionals v, 6, ¢ :
P — [0c0) by

y(z) = min t* 2z(t), € P,
t€[n,1]

0(x) = sup t* 2x(t), v € P,
t€(0,1]

p(z) = sup t*%x(t), v € P.
te(0,1]

It is easy to see that 6(0) = 0 and
v(x) <(x) < ¢(x), x€P

and for x € P we have v(z) > 8%|z||, 0(va) < vf(z) for all v € [0,1] and = € P.
From Lemma 2.8, we have TP C P and T is completely continuous. Hence (i)-(iii)
in Lemma 2.2 hold. To obtain two positive solutions of BVP(4), it suffices to show
that the condition (iv) in Lemma 2.2 holds.

First, we verify that

v(Tx) > c for alll x € P(v,c). (11)
Since z € P (v, ¢), we get minyep, 1712~ “x(t) = c¢. Then ||z]| < B%V(a:) < z&- Then
c<t?2g(t) < 7= for all ¢ € [n,1]. Hence (E1) implies

C

J ( ) ( )) J ( ? ( )) — 1177
So we get from Tx € P that

v(Tx) = min t27%(Tz)(t) > 3% sup t2~*(Tz)(t).
teln,1] te(0,1]

tenl].
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We find
1
v(Tx)(t) > ﬁo‘/o tZ*aG(t,s)f(s,a:(s))ds

1 Sa—l
> 0 [ gy s s

a—1

1
3 s c
= /ﬁ I'(«) st

> c.

Secondly, we prove that
O(Tx) < b for all z € OP(0,b). (12)
Since (z) = b, we get sup;e (o] t2=%x(t) = b. Then
272 (t) < b for all t € (0,1].
Hence (E2) implies

Flt,a(0) = F(1, 19722 (0) < 2t (0,1]
So the definition of T imply
O(Tz) = sup t2~%(Tx)(t)
t€(0,1]
1
< sup / t27OG(t, 8) f (s, 2(s))ds
te(0,1] JO
L b
o) M
= b

Finally, we prove that
P(¢,a) #0, ¢(Tz) > a for all z € OP(¢,a). (13)
It is easy to see that P(¢,a) # (. For x € 0P (¢, a), we have sup;c (g 1] t27%(t) = a.
Then
% < t>7x(t) < aforallt € [n,1].
Then (E3) implies

F(t,x(t)) = F(t, 20722 (1)) > %,t e n,1].

Similarly to the first step, we can prove that o(Tx) > a. It follows from above
discussion that all conditions in Lemma 2.2 are satisfied. Then T has two fixed
points z1,x2 in P. So BVP(4) has two positive solutions z; and x2 satisfying (10).
The proof is complete.

Theorem 3.3. Let W, M be defined in Theorem 3.2. Suppose that f :
(0,1] x [0,00) — [0,00) is continuous and satisfies that for each r > 0 there exists
¢ € LY(0,1] such that |f(t,t*22)| < ¢,.(t) for all t € (0,1] and |z| < 7, and there
exist positive numbers a < %D < b < ¢ such that We¢ > Mb, and

(E4) f(t, 1% %u) < +7 for t € (0,1], uw € [0,¢/B3°];
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(E5) f(t,t92u) > % for t € [n,1] and u € [3*), b];
(E6) f(t,t*2u) < % for t € (0,1] and u € [0,a].
Then BVP(4) has at least two positive solutions x; and x9 satisfying
sup t*7 2z (t) > a, sup t*2x(t) <b, sup t* 2xo(t) >b, min t* 2x5(t) < c.
te(0,1] te(0,1] te(0,1] te[n,1]
(14)
Proof. Let the nonnegative, increasing and continuous functionals ~, 8, ¢ :
P — [0,00) be defined in the proof of Theorem 3.2. The remainder of the proof is
similar to that of the proof of Theorem 3.2 and is omitted.
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