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COMMON FIXED POINT RESULTS FOR CYCLIC OPERATORS ON
COMPLETE METRIC SPACES

B. Khani Robati!, M. Bahrami Pour?, Cristiana Ionescu®

We introduce common fized point results for cyclic operators satisfying certain
nonlinear contraction with a control function, on complete metric space. Examples to
illustrate the results are given. This study should be thought as a natural continuation
of the research of Karapinar et al. [A common fixed point theorem for cyclic operators
on partial metric spaces, Filomat, 26(2012), No. 2, 407-414.]
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1. Introduction

Fixed point theory is one of the most interesting area of research in nonlinear analysis.
Fixed point theorems give conditions under which we can find a solution of equations,
involving certain classes of operators. That is why they found applications in Economics,
Theoretical Physics, Engineering. The celebrated Contraction Principle of Banach [6] is
extended by scientists such as: Kannan [15], Reich [30], Chatterjea [9] and many others.

Recently, the scientists studied this subject and proved fixed point theorems in ordered
metric spaces [3, 4, 10, 13, 33, 37|, partial metric spaces [2, 14, 16, 26, 28, 32, 38|, convex
metric spaces [27], cone metric spaces [23], G-metric spaces [5, 8, 12, 34], quasi-partial metric
spaces [36], b-metric spaces [35]. Results on either approximate fixed points or variational
inequalities in their relation with the fixed point problem are established [24, 25, 39, 40].

An interesting topic in fixed point theory is the cyclic representation. In 2003, Kirk
et al. [22] introduced the following notion of cyclic representation.

Definition 1.1. Let X be a nonempty set, m € N and T: X — X a mapping. Then
X = U?il A; is called a cyclic representation of X with respect to T if

(1) A;,i=1,...,m are nonempty subsets of X;

(2) T(A1) C Az, T(A2) C As, ..., T(Am-1) C A, T(An) C Ay

Meantime, other authors obtained results in fixed point theory for cyclic operators;
please, see Agarwal et al. [1] for fixed point theorems involving mappings which satisfy
cyclical generalized contractive conditions in complete partial metric spaces, Pacurar and
Rus [29] for fixed point theory for cyclic p-contractions, Karapinar [17] for a fixed point
theory for cyclic weak ¢-contractions, Chandok and Postolache [7] for a fixed point theorem
for weakly Chatterjea-type cyclic contractions. For more results on this topic, the reader
can see Karapinar et al. [19], [20].

As a generalization of the previous notion, Karapinar et al. [21] introduced the
following notion of cyclic representation for two self mappings 7, 5: X — X.
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Definition 1.2. Let X be a nonempty set, m € N and 7,5: X — X be two mappings.
Then X = |J;~, A; is called a cyclic representation of X with respect to (T, S) if

(1) A;,i=1,...,m are nonempty subsets of X;

(2) T(A1) C S(Az), T(A2) C S(43), ..., T(Apm—1) C S(An), and T(A,,) C S(4;).

For common fixed point results for pairs of cyclic operators, we refer the reader to
Karapinar et al. [18], [21], Shatanawi and Postolache [31].

It is the aim of this paper to introduce common fixed point results for cyclic operators
satisfying certain nonlinear contraction with a control function, on complete metric space.
Examples to illustrate the results are given.

2. Main result

In this section we will establish some common fixed point theorems concerning certain
contractive type mappings.

Let F' denote the class of all functions ¢: [0,00) — [0, c0) nondecreasing and contin-
uous satisfying ¢(t) > 0 for t > 0 and ¢(0) = 0 and let ' be the subset of F contains the
function ¢ such that ¢(t) < t, for each t > 0.

Theorem 2.1. Let (X,d) be a complete metric space, m be a positive integer, Ay, ..., An
nonempty subsets of X and X =J;*; A;. Let T,S: X — X be two mappings such that
(1) X =Ui~, A; is cyclic representation of X with respect to (T, S).
(2) d(Tx,Ty) < p(M(z,y)), for any x € A;, y € A1, i =1,...,m, where

M(x,y) = max {d(Sx, Sy),d(Sz, Tx),d(Sy, Ty), %[d(Sm, Ty) + d(Sy, TJ;)]},

Api1 =41, p € F, and each S(A;) is closed.
(3) Mapping S is one to one.
Then there exists z € (i~, A; such that Tz = Sz.

Proof. Let x; € Aj, we choose a point xo in As such that Tx; = Sxzs. For this point xo
there exists a point x3 in A3 such that Txs = Sx3, and so on. Hence we obtain a sequence
{z,} such that Tx,, = Sz,q1, forn=1,2,....

If there exists ng € N such that Sz,, = Sx,,41, then Sz, 11 = Tx,, = Sz,, and
therefore x,, is the coincidence point of T" and S.

Suppose we have Sz, 11 # Sz, for alln =0,1,2,....

Since X = [J;~, A; and T(A;) C S(Aj41), for any n > 0, there exists an index
in € {1,...,m} such that z,,_1 € 4; and x,, € 4; 1.

By the assumption of the theorem we have:

d(Sxp, Stpni1) = dTxp—1,Tx,) < o(M(xp_1,2n))
o(max {d(Szn_1,52y), d(Stn—1,TTp_1),d(Szp, TTy),

1
5 (d(s-rn—lyTxn) + d(S-rnaTxn—l)) })

= cp(max{d(S’xn,l,Swn)7d(5:vn,5'xn+1),
%d(an,l, Sscn+1)}). (1)
Using the triangle inequality, we obtain
d(Sxp_1,8%n11) < d(STp_1,STy) + d(Szp, STpi1).
Hence, relation (1) becomes
d(Szy, Stny1) < p(max{d(Sxn_1,5%,),d(STyn, STni1)}),

and there are two cases to be studied.
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CASE I. M(2p—1, %) = d(STp, STpi1).
This relation leads us to the conclusion that
d(Sl’n, an+1) < Sp(d(anv an+1))7
which contradicts the fact that ¢ > ¢(t), for all £ > 0.

Cask II. M(zp—1,2,) = d(Sxp_1,S%y)
In this case, we have

d(Sxp, Stpy1) < @(d(Sxp_1,S%,))
= @(d(Txn—% Tl‘n—l))
< QDQ(M(xn—Zaxn—l)) = (,02(d(51‘n_2,533n_1)).

This implies that d(Sz,, ST,y1) < @ 1(d(Sx1, Sx2)). Letting n — oo, and using
the properties of function ¢, we get

lim d(Sz,,Sxp41) = 0.

n—oo

We prove that {Sz,} is Cauchy sequence.

First, we show that for every ¢ > 0, there exists n € N such that, if p,q > n with
p—q =1 (mod m), then d(Sz,, Sx,) < e.

Suppose that our claim does not hold.

Therefore there exists € > 0 such that for any n € N we can find p,, > g, > n with
Pn — ¢n = 1(mod m) satisfying d(Sz,, , Szp,) > €.

Let n > 2m. For g, > n we can choose p,, such that p, is the smallest integer greater
than ¢, satisfying p,, — ¢, = 1(mod m) and d(Sz,,, Sz,,) > €. Hence d(Sxzq, , Sp,—m) < €.
Using this fact we have

e < d(Szq,,Sp,)
m
< d(Szg,, STp,—m) + Z d(Sxp,—i, STp,—it1)

i=1
<e+ Y d(Szp, i Sxp,—it1)-
i=1
Now, taking the limit for n — oo in the last inequality, and having in mind that
lim;, oo d(Sp, STpi1) = 0, we obtain
lim d(Szq,,Sz,,) =e¢. (2)

n—oo

Using the triangular inequality, we have

d(Szg,,Szp,)

d(Szq,, Sxq,+1) + d(S2q, 41, Sp,+1) + d(STp, 11, STp,)

d(Sxzq, ,Sxq, 1) + d(Sxq,+1,5,,) + d(Szq,, Szp,)

d(Szp, , Sxp, 1) + d(Szp, 41, ST)p,) (3)
2d(Sxzy, ,Stq,+1) + d(Szy, , Sxp, ) +2d(Szp, , STp, 41)

Taking the limit for n — oo in (3), and having in mind that lim, o d(SZ,, STpi1) =0
and (2), we get

3

+ INIA A

lim d(Sz Sz =ec.
n—o0 ( qn+1; pn+1)

Since x4, and z,, lie in different adjacently labeled sets A; and A;;; for certain
1 < ¢ < m, using property (2) of the theorem, we have

d(Szg,+1,87p,11)) = d(Tz,,,Tzp,) < (M(2q,,7p,))- (4)

There are several cases to be studied.
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CasE I. M(zg,,xp,) = d(Szg,,Szp, ).
In this situation, relation (1) becomes
d(SxQn+l7 Sl‘pn"rl)) S (p<d(stH ? Sxpn ))'
Using equalities (2), and (4), letting n — 400, we obtain e < ¢(¢), therefore ¢ = 0, false.
Cask II. M(zg,,,zp,) = d(Sz,,, Szq,+1). Hence,
d(STq,+1,5%p,+1) < (d(Szq,,STq,+1))-
Considering n — +00, the previous relation implies € < (0), which is a contradiction.
CASE III. This is M(z,, ,zp,) = d(Szp, , Szp,+1). In this case, it follows
d(qunJ,_17 Sxpn+1) S @(d(sxpn ? Sxpn"l'l))

Using relation (4), and letting n — 400, we get £ < ¢(0) = 0. This leads us to the conclusion
that € = 0, false.

CAsE IV. M(zg,, 2p,) = % (d(Szq,, STp,41) + d(Szp,  STq,41))-
Here, using the triangle inequality, we get

1
d(Szg,+1,S7p,11) < ‘P(g (d(Szg,,, Swp,11) + d(Swpmsan+1)))
1
‘P(i (d(Szy,,, Sy, ) + d(Szp, , STp, 1)
+d(Sxpn ? S$[]n) + d(SxQn’ S.an+1)) ) .

IN

Taking n — +o00, we obtain € < ¢(¢), therefore ¢ = 0, false.
In conclusion, our claim has been proved.
In the following, we will show that {Sz,} is a Cauchy sequence.
Fix € > 0. There exists ng € N such that if p,q > ng with p — ¢ =1 (mod m),

d(Szp, Szy) < e/2. (5)
Since limy, o0 d(STy, Stpy1) = 0, there exists ny € N such that
d(Sxpn, Sxpni1) < e/2m, (6)

for each n > ny.

Suppose that r,s > max{ng,n1} = N and s > r. Then there exists k € {1,...,m}
such that s —r = k (mod m).

Since m + 1 =1 (mod m), we have (s+j) —r =1 (mod m) for j =m —k+1. So

d(Szy, Sxs) < d(Szy, Sxsqj) + d(SToyj, STsyj—1) + -+ d(STeyr, Sxs).
By (5), (6) and from the above inequality, we have
d(Szy, Sxs) <e/2+ je/2m < e/2+me/2m =¢.

Thus for € > 0, there exists N € N such that r,s > N implies that d(Sz,,Szs) < . This
means that {Sz,} is Cauchy sequence.

Sequence {z,} has infinite terms in each A; for ¢ € {1,...,m} we take a subsequence
{zn,} of {x,} with x,, € A;_; for each k € N. Hence {Sx,, } is a subsequence of {S(z,)}
such that Sz,, € S(A;_1) for each k € N.

Now, by the second assumption of the theorem, we have

d(Stpyt1,T)) = d(Tp,, Tr) < o(M(2n,, 7))

= go(max{d(ank,S:c),d(Sa:nk,ank+1),d(Sx,Tz),

5 (A8, T2) + d(Sw, S, 1)),

Taking the limit k — oo, we get d(Sz,Tx) = 0, therefore Sz = Tx.
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Since X is a complete metric space, there exists z € X such that lim,,_,o, Sz, = z.
Since lim,, .o, Sz, = z and, as X = UZ’;I A; is a cyclic representation of X with respect to
(T, S), sequence {z,} has infinite terms in each A; for i € {1,...,m}, and because S(4;)
is closed for each i we conclude that z € -, S(4;). Hence, there exists z; € A; such

that Sx; = z. Since S is one to one, we have 1 = 29 = --- = z,, = x. Therefore,

lim, o0 Sz, = Sz = 2, for z € (2, A;. O

Example 2.1. Let X = [-1, 1] as a subspace of R, endowed with the usual metric. Suppose

that A; = [-1,0] = A3 and Ay = [0,1] = A4. Define T,S: X — X respectively by the

formulas T'(z) = 5% and S(z) = 2% for all x € X. Consider ¢: [0,00) — [0,00) with
1

t) = —t.
p(t) =5

In the following, we will show that the hypotheses of Theorem 2.1 are satisfied.
4

First, we remark that X = U A; is a cyclic representation of X with respect to
i=1
(T7 S) This because T(Al) C S(Ag), T(Ag) C S(Ag,), T(A3) C S(A4) and T(A4) C S(Al)
Now we have to prove that

d(Tz, Ty) < p(M(z,y)), (7)
for any v € A;, y € A;11, i =1,...,m, where
1
M(z,y) = max {d(Sz, Sy),d(Sz, Ta), d(Sy, Ty), ;[d(Se, Ty) + d(Sy, Tw)] },

Am+1 = A1~
Suppose z € A; and y € As; other cases should be studied by analogy.
In this case,

1 1 1 1
ATz, Ty) =|Te — Ty |=|-za+ -yl = = |y -2 |= ~(y — 2).
(Tz,Ty) =| Tz — Ty | ‘6x+6y‘ cly—vl=gly—a)
and we have to examine the cases as follows.
CASE 1. This is M(z,y) = d(Sz, Sy).
1

1 1 1
We have d(Sz, Sy) =| Sx — Sy |= ‘Qm — zy' =3 |z —y|= i(y—f)'

Condition (7) becomes

and this is true since ) )
6|x—y|§1\:ﬂ—y\.
CASE 2. In this case, M(z,y) = d(Sz,Tx).

1 1 4
Since d(Sz,Tz) =| Sz —Tx |= ’x + x| = g | z |, condition (7) becomes

2 6
Sle-ylsgoslel
6! YIEg
We easily get
|z —y|<2]|x|, where z € [-1,0] and y € [0, 1]. (8)
Because z € [—1,0] and y € [0, 1], we have
lz—yl=|-(y—2) =y —= (9)

Now, from (8) and (9), we obtain that y — x < 2(—=x), that is y < —z. This is true
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4 4
from the definition of M (z,y), where we have that g | z |> g | y |, therefore we obtain
|z =]y |
[d(Sz, Ty) + d(Sy, Tx)].

DO | =

CASE 3. In this case, M(z,y) =
We have

1
ld(Sz,Ty) +d(Sy, Tz)] = 5 (| Sz~ Ty | + | Sy - Tz |)

).

N —

L, L]
=—|(|zz+ = —y+ -z
2\ 27 T 67 T2V T

3 1 1 1 1
—yl<2(|ce+ 2yl + |2y + 22 ). 1
o-vls 3 (|5o+ o] + |50+ g2 (10)

To prove (10), we have to consider the definition of M (x,y). From this definition, we

know that d(Sz, Sy) < %[d(S:z:,Ty) +d(Sy,Tz)]. So, we have

Using this form, condition (7) becomes

)

L <L, 0
L S A L
6 YI=55 (2" " 6Y

+1Ey 4]
—y+ -z
2776

and, more convenient

"

1 1/11 1 1 1
2$—y<2(‘2$+6y’+‘2y+6$>» (11)
and
|x—y|<‘1x+1y’+‘ly+1m. (12)
|2 6 2 6

Looking at (12), we see that (10) holds.
The hypotheses of Theorem 2.1 are satisfied, therefore mappings 7' and S have a
common coincidence point x = 0.

Recall that the maps S and T are called weakly compatible [11] if they commute at
their coincidence points, i.e., STx = T'Sx, for each x in X such that Tz = Sxz.

Corollary 2.1. Suppose the assumptions in Theorem 2.1 are satisfied. In addition, suppose
the pair (T, S) is weakly compatible.

Then T and S have a unique common fized point z € ()i~ A;.
Proof. For proving this statement, say z = Sx = Tz. Since S and T are two weakly
compatible mappings, we have TTx = T'Sx = STx = SSx. Hence Tz = Sz. Since z € X,
there exists some ¢ such that z € A;.

On the other hand z € ﬂ:;l A;, therefore © € A;_;, and using the contractive
condition we obtain

dTz,Tz) < o(M(z,2))
= gD(d(Sl‘, SZ)) = (p(d(TCL‘, TZ)),

therefore d(Tx,Tz) = 0, so Tx = Tz = z = Sx = Sz. Since S is one to one, we obtain
T =z

Next we prove that this fixed point is unique.

Let y,z € (-, A; be common fixed points of 7" and S. We have

dly,z) = d(Ty,Tz) < o(M(y,z))
= ¢(d(Sy, Sz)) = p(d(y, 2))-
therefore d(y, z) = 0, thus y = z. |
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Considering S = Id, we get

Corollary 2.2. Let (X,d) be a complete metric space, m be a positive integer, Ay, ..., Am
nonempty subsets of X and X =J!~; A;. Let T: X — X be a mapping such that
(1) X =Ui~, A; is cyclic representation of X with respect to (T, 1d).

1=

(2) d(Tz,Ty) < o(M(z,y)), for any x € A;,y € Ajp1,i=1,...,m where
1
M(r,y) = max {d(z, ), d(x, T2),d(y, Ty), ; {d(x, Ty) + d{y. T2)} |,

Apt1 = A1, p € F, and each A; is closed.
Then, there exist z € (-, A; such that Tz = z.

Example 2.2. Let X = [—1,1] as a subspace of R with the usual metric. Suppose that
Ay =[-1,0] = Az and Ay = [0,1] = A4. Define T': X — X by the formula T'(z) = — 3=, for
all z € X, S = Id, and let ¢: [0,00) — [0,00) with ¢(t) = 3¢. The hypotheses of Corollary
2.2 are satisfied, so T has a unique fixed point x = 0.

3. Conclusion

In this article, we introduced common fixed point results for cyclic operators satisfying
certain nonlinear contraction with a control function, on complete metric space. Illustrative
examples for the new results are given. This study is as a natural continuation of the research
of Karapinar et al. [21], Pacurar and Rus [29] and many others.
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