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INVERSION OF TOTAL SUSPENDED MATTER
CONCENTRATION IN WULIANGSU LAKE BASED ON
SWARM INTELLIGENCE OPTIMIZATION AND BP NEURAL
NETWORK

Chenhao WU?, Xueliang FU%*, Honghui LI3, Hua HU*, Xue LI

Total suspended matter (TSM) is an important parameter of the water
environment. Because of the optical complexity in water body, it is difficult to
accurately invert the TSM concentration by current traditional methods. In this
paper, using Sentinel-2 remote sensing images as the data source combined with
measured data, taking Wuliangsu Lake as the study area, a new intelligent
algorithm combining the adaptive ant colony exhaustive optimization algorithm
(A-ACEO) feature selection method with genetic algorithm (GA) optimized pack
propagation neural network (BPNN) model (GA-BP) is proposed for inversion of
TSM concentration. The ant colony algorithm (ACO) is improved to select remote
sensing feature bands for TSM concentration by introducing relevant
optimization strategies. The GA-BP model is built by optimizing BPNN using GA
with the selected feature bands as input and comparing with the traditional BPNN
model. The results show that using feature bands selected by the presented A-
ACEO algorithm as inputs, can effectively reduce complexity and improve
inversion performance of the model, under the condition of the same model, which
can provide valuable references for monitoring the TSM concentration in
Wauliangsu Lake.
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1. Introduction

Lake wetland is one of the most important ecosystems in the world [1]
and an important safeguard for human social ecological environment [2].
However, with the continuous development, frequent human activities have
seriously affected aquatic environment of lake wetlands, and various water
resources problems have emerged, causing a serious decline in water quality
and affecting regional ecological environment and sustainable economic
development [3]. Total suspended matter (TSM) is an essential indicator to
evaluate the water quality status of lake wetlands, its concentration not only
affects the distribution of the underwater light field, but also affects the primary
productivity and the ecological environment of the water area [4]. As an
important part of "One Lake, Two Seas" in Inner Mongolia, Wuliangsu Lake
has the characteristics of a typical cold and arid lake in the north [5] and belongs
to the Hetao Irrigation District, which carries the receding water of agricultural
fields for spring irrigation and autumn watering and the discharge of industrial
pollution wastewater in the region [6]. Therefore, inversion of TSM
concentration in Wuliangsu Lake can estimate lake TSM content, which is of
great practical significance for understanding the regional water ecosystem and
managing the water environment.

Traditional water quality monitoring are time-consuming, costly and
influenced by external conditions [7], which have shortcomings for monitoring
large-scale water quality. Remote sensing technology, as one of the important
means of environmental monitoring, has become a widely used method to
monitor TSM concentration in the environmental monitoring of lake wetlands
because of its advantages of rapid, real-time, wide coverage and easy access to
data [8]. Previously, many scholars have performed inversion of TSM
concentration based on the bands contained within the remote sensing data. For
the multiple feature bands present in remote sensing data, they can be broadly
classified into single-band, multi-band combination and full-band combination
for inversion modeling. When using single-band for modeling, the band data is
poorly sensitive to TSM, decreasing model accuracy [9]. When using full-band
combination for modeling, the band data may interact with each other, which
will also affect the accuracy of TSM concentration inversion [10]. In
conclusion, in the study of remote sensing feature bands, determining the
characteristic variables of TSM is the first prerequisite to simplify the structure
of the inversion model to achieve data compression and increase the efficiency
of model operation to reduce computational resources, and many scholars tend
to choose the most relevant band combination with TSM concentration [11].

Remote sensing feature selection can be classified into two methods.
The first feature selection method is based on mathematical statistics, some
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commonly used methods are correlation coefficient analysis (CC), successive
projection algorithm (SPA), competitive adaptive reweighted sampling
(CARS), etc. For example, Camiolo et al [12] used CC to analyze the data from
MODIS-Aqua satellite and TSM concentrations in Rio de la Plata, and selected
the variables with strong correlation coefficients among them to construct an
inversion model with TSM concentration. Luan et al [13] analyzed and selected
the feature bands using SPA and CARS, respectively, to finally construct a
model of TSM concentration in Yangtze estuary. Although these methods can
eliminate the influence of some redundant information to some extent, after
feature selection redundant variables are still present, and the stability of the
model is poor. The second is based on swarm intelligence optimization
algorithm. For example, Jiang et al [14] used GA for analyzing and selecting
spectral features and constructed a water quality inversion model of East Lake.
Eleyan et al [15] used particle swarm algorithm (PSO) for feature vector
selection and successfully reduced the dimension of the features, reduced the
complexity of the model. Pamiri et al [16] used ACO for feature selection and
achieved high inversion accuracy. These algorithms, which solve optimization
problems by group behavior and have a rigorous theoretical basis, provide
feasible solutions to complex problems that cannot be handled in traditional
methods.

Traditional remote sensing inversion methods can be broadly classified
into three methods. The empirical method [17] is relatively simple and
possesses good results in linear relationships, but the relationship between
remotely sensed spectral features and water body elements is difficult to
represent as a simple linear function and the empirical method is usually poorly
adaptive. The semi-empirical method [18] and the analytical method [19] are
inversion methods that mainly use the optical features inherent in the water
column and combine them with remotely sensed reflectance. These methods
require more optical data, the models are more complex, and the demand for
data hardly be met in practical applications, which is not suitable for wide
application. Currently, machine learning as a new method has been widely used
in remote sensing inversion. For example, Nazeer et al [20] studied TSM
concentration in coastal waters and constructed two machine learning models,
which showed that machine learning methods can be more accurate and
effective for routine detection of TSM concentration in coastal water. Liu et al
[21] analyzed the TSM concentration in Nansi Lake and then constructed linear
and machine learning models, which showed that machine learning models
have advantages and are more accurate in the inversion of the TSM
concentration. Neural network, an important part of machine learning, as it can
adapt to more complex nonlinear relationships, has demonstrated strong
usability in remote sensing inversion methods. For example, Hafeez et al [22]
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performed inversion of TSM concentration in Hong Kong coastal waters by
various machine learning methods, in a result, neural networks based on
machine learning methods have the better inversion results. Song et al [23]
constructed an artificial neural network (ANN) model to invert the TSM
concentration caused by the reclamation of an artificial island airport offshore
of Bohai Sea, China, and obtained good results. In general, the traditional
remote sensing inversion method is simple, but it is not widely used due to its
characteristics, while machine learning as a new method has been more widely
used in remote sensing inversion methods, and neural network also has strong
applicability in remote sensing inversion methods because of its advantages.

In conclusion, taking Wuliangsu Lake as the study area, the correlation
between remote sensing features and TSM is analyzed by combining Sentinel-
2 remote sensing images and measured data. Through the analysis, a swarm
intelligence optimization algorithm is proposed as an adaptive ant colony
exhaustive optimization (A-ACEO) algorithm which is used for remote sensing
feature bands selection. Taking the selected feature bands as inputs and
considering the advantages of swarm intelligence optimization algorithm and
neural network, the GA-BP model was constructed by using GA to optimize
the BPNN. Finally, through the study, the model is analyzed and verified the
performance of the method.

2. Feature Band Selection Methods and Modelling
2.1 Feature Band Selection Method
2.1.1 Competitive Adaptive Reweighted Sampling Algorithm

The competitive adaptive reweighted sampling (CARS) algorithm is
based on Darwinian evolutionary theory of "survival of the fittest" [24], treating
each feature as an individual and selecting individuals with high adaptive
capacity. The specific steps are shown below:

(1) Randomly selected N samples in the feature band using Monte Carlo
algorithm and constructed partial least squares regression (PLSR) model.

(2) The variables are selected by exponentially decreasing function
(EDF) and adaptive reweighted sampling algorithm (ARS), where high
regression coefficients are retained, and low ones are removed.

(3) A new subset is set to hold the reserved variables and the PLSR
model is constructed, meanwhile the root mean square error of cross validation
(RMSECV) is calculated.

(4) Repeat Step (1)-(3), after N calculations, N samples will obtain N
subsets of variables, and N subsets of variables will obtain N RMSECVs. End
up selecting the smallest subset as the optimal feature band combination.
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2.1.2 Standard Ant Colony Optimization Algorithm

The ant colony (ACO) algorithm is a swarm intelligence optimization
algorithm that simulates the foraging behavior of ants [25]. ACO algorithm was
originally designed to solve static combinatorial problems, but it also has good
applicability in dynamic combinatorial optimization problems [26]. Therefore,
ACO algorithm presents feasibility in the feature band selection method.
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Fig. 1. Visualization of ACO algorithm to select feature bands

As shown in Fig. 1, each node in the figure corresponds to a feature
band, where {B1, B>, ..., Bi} is the set of original feature bands. An ant
randomly starts from a node and selects another node according to the rules,
after a period of traversal, a subset of original feature bands {B1, B>, Bz, Bi}
will be obtained, and if this subset satisfies the stopping condition, it is judged
to be a feasible solution. The ACO algorithm is shown below:

(2) Initialization of the pheromone concentration. The initial pheromone
of all nodes is set to 1, and the initial nodes are randomly selected according to
the roulette method.

(2) Node selection probability. The next node is selected by the ant
through the pheromone concentration presented at the node, and the probability
from node B to node Bj is shown in equation (1):

Tij ® jel
Ri(t)=12,75®’
0, Other
where, t is the iteration number, 7is the node pheromone concentration, and
J is the collection of unselected nodes reachable by ants at node B;.
(3) Feature subset objective function selection. The feature subset function
F is calculated based on the root mean square error (RMSE), as shown in equation

(2):

(1)

C

F= 2
1+ RMSE @
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where C is a constant term that is usually set to 1. The equation shows that
the smaller the RMSE, the easier the subset is selected.

(4) Pheromone concentrations updating. Once all ants have completed one
iteration, the node pheromone concentration will be updated, the node pheromone
concentration within the selected subset set increases, and the remaining node
pheromone concentration volatilizes, as shown in equations (3)-(4):

7, (t+1) = (1= p) 7, (1) +Ac; (1) 3)
O I )

where p is the pheromone volatility factor between (0,1), B is the set of
selected subsets of feature bands.

2.1.3 Adaptive Ant Colony Exhaustive Optimization Algorithm

Although standard ACO algorithm has good advantages in solving dynamic
combinatorial problems, the initial parameters tend to influence the algorithm,
which can easily lead to too slow convergence and relatively low efficiency [27].
The adaptive ant colony exhaustive optimization (A-ACEQ) algorithm improves
the corresponding strategy based on the standard ACO algorithm, so that it can
accelerate the convergence speed and improve efficiency. And the combination of
ACO algorithm and exhaustive method [28] is used to effectively prevent the
algorithm dropping into local optimum, meanwhile avoiding exhaustive search of
the subset of bands by the exhaustive method, which greatly reduces the search
time. The A-ACEOQ algorithm process is as follows:

(1) Adaptive adjustment strategy of initialized pheromone concentration.
The initial pheromone concentration coefficients of the nodes are mostly the same
and fixed values in standard ACO algorithm, and the ants will randomly select a
node as the initial node, which makes the algorithm converge slowly and
inefficiently. To solve the above problem, the reciprocal of RMSE corresponding to
each node is used as the initial pheromone concentration based on GA-BP model to
guide ants in selecting the initial nodes, which avoids the shortage of the ants
finding nodes randomly in the iterations.

(2) Adaptive adjustment strategy of volatilization factor p. In ACO
algorithm, the volatility factor is a fixed value, if the value is not set reasonably will
affect the convergence speed, or even lose the full search ability. To solve the above
problem, p is made adaptive adjustment strategy to enhance the algorithm search
capability, as shown in equation (5):

T
pltry)= et ®)

where t and T are the current and maximum iteration number respectively.
It is clear that initially, p has a larger value, with more and more iterations, p
decreases, the probability of the optimal node gradually increases.
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(3) Adaptive updating strategy of pheromone concentration. The pheromone
concentration update strategy is improved with standard ACO algorithm as shown
in equations (6)-(7):

7 (t +1) = (1— p)Tij (t) +Az,(t) ©)
Ar,(t)= 4;+Qx$,<i,j>eB 7
0, Other

Where A;; is the initialized pheromone concentration of the node selected
by the ant, Q is the pheromone heuristic factor, B is the set of the selected subset of
feature bands, R;;(t) is the RMSE of the selected subset of nodes at the t-th
iteration.

(4) Optimal threshold and optimal matrix strategy. Combining the standard
ACO algorithm with the exhaustive enumeration method, an optimal threshold and
optimal matrix strategy is proposed, which uses the optimal threshold to filter the
subset of nodes generated by the iterations and deposits the subset of nodes larger
than the optimal threshold into the optimal matrix. At last, the optimal node subset
is selected from the optimal matrix, which is the optimal feature subset. By filtering,
this strategy significantly reduces the space of data storage and the consumption of
computational resources. The optimal threshold is shown in equation (8):

o) = = l(t) ,<X,y>eB, ®)

where B 1s the pheromone concentration set of nodes in order from highest
to lowest, Ryy is the RMSE of the set of subsets of nodes with the highest pheromone
concentration.

2.2 Inversion Method for TSM Concentration

In order to avoid the model falling into local optimum and to improve the
accuracy of model inversion. This paper proposes a GA-BP inversion model by
optimizing the BPNN with the global search capability of GA, based on BPNN.

2.2.1 Back propagation Neural Network

Back propagation neural network (BPNN) is a multilayer feedforward
network with forward transmission of signals and backward propagation of errors
[29]. The BPNN topology is shown in Fig. 2. In forward transmission, the signal
will be transmitted sequentially from input layer to hidden layer and then to output
layer, and the signal will be processed according to a certain function mapping
relationship between layers, and finally the output will be output at output layer,
and if the output is not within the expectation, the error will be back propagated. In
back propagation, the error is propagated in reverse order, from output layer, and
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the gradient descent method is used to adjust the weights and thresholds of the
nodes in each layer, and subsequently, the next step of forward propagation is
started again, and the error is continuously adjusted to the minimum.

2.2.2 Genetic Algorithm to Optimize BPNN

Although BPNN has been applied in many fields, it is easy to fall into local
optimum and has poor inversion effect.

GA part BP part

Input layer Hidden layer Output layer

Fig. 2. BP neural network topology ~ Fig. 3. Flow chart of the GA-BP model

The GA-BP model process is as follows:

The genetic algorithm (GA) is a stochastic search method that simulates
natural selection in nature [30]. GA is a gradient-free optimization and search
technique that can randomly generate starting points from different directions and
perform adaptive search in the solution space by the guidance of fitness function.
Therefore, the global search capability of GA is used to optimize BPNN, which can
improve the shortcomings of BPNN and accelerate the learning speed of BPNN at
the same time. The process of GA-BP model is shown in Fig. 3.

(1) Determination of network topology. The A-ACEO algorithm is used to
select feature bands as input layers and TSM concentrations as output layers.

(2) Initialization of population. The weights and thresholds in the network
are initialized and then encoded as a set of chromosomes. The population size is set
to M.

(3) Definition of fitness function. The sum of the absolute errors of the
measured and inverse suspended matter concentrations from GA-BP model is taken
as the inverse of the fitness function F. The larger the F, the higher the fitness. As
shown in equation (9):

1 ©)
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where y; and J; are the measured and inverse values of TSM concentration.

(4) Select operation. The probability is determined using the roulette
selection method and the best individual is selected to enter the next generation.

(5) Cross operation. Individuals are randomly selected for exchange and
combination operations to produce more adaptable individuals.

(6) Mutation operation. An individual is randomly selected in the
population, and a portion of its genes in which are selected to exchange and vary
with their alleles, so as to produce individuals with stronger fitness.

(7) Calculating individual fitness. Determine if the stop condition is
satisfying, if so, Step8 is executed; otherwise, Step (4) is executed.

(8) Decoding. The weights and thresholds of GA output are adapted to
BPNN, and the errors are calculated. Once the conditions are met, the final
inversion results are output.

In conclusion, the inversion of TSM concentration in Wuliangsu Lake based
on Swarm Intelligence Optimization and BPNN is shown in Fig. 4.

3. Simulation Experiment

3.1 Study Area

Wauliangsu Lake (40°36'N-41°03'N, 108°43'E-108°57'E), as shown in Fig.
5, located in Bayan Nur City, Inner Mongolia, is the biggest lake wetland at the
same latitude in the world. The lake covers an area of 325.31kmp, in which
123.11km; is open water and the remaining is reed area, with a reservoir capacity
of about 2.5 to 3x10®m3. The wetland of Wuliangsu Lake is relatively rich in
species, inhabited by a large number of fish and birds. However, due to the
continuous exploitation of WuliangSu Lake, the lake is decreasing in size, while the
wastewater discharged into the lake is increasing year by year and a large number
of fish are dying, resulting in serious ecological damage of the lake and gradual
degradation of ecosystem function.
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Fig. 4. Overall process of TSM concentration inversion  Fig. 5. Location and sampling point
distribution of study area

3.2 Measured Data Acquisition

The measured data is provided by the national research team of Inner
Mongolia Agricultural University, "River and Lake Wetland Water Environmental
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Protection and Restoration Technology Research and Innovation Talent Team",
which is dedicated to the research of lake wetlands in the northern cold and arid
region for a long time, providing comprehensive big data management and sharing
services for ecological protection in China. Wuliangsu Lake starts to freeze in early
November every year, and the freezing and thawing period can be up to 5 months,
so the sampling time is mainly concentrated in June to September, and the sampling
is fixed to the middle and end of each month, and the sampling depth is 0.5m down
from the water surface vertically. The measured data of TSM concentration were
collected from 2015 to 2018 with 92 groups, some measured data are shown in
Table 1, and the training and test sets were randomly divided into 64 and 28 groups.

Table 1.
Selected measured data from 2015-2018
Date of actual Remote Sensing Image Sampling Measured TSM concentration
test Dates point (ng/L)
2015/9/25 2015/9/25 112 22.0
2016/6/20 2016/6/21 S6 26.0
2017/6/25 2017/6/26 J11 1.0
2017/8/29 2017/8/30 L13 41.0
2017/9/25 2017/9/24 J13 197.0
2018/7/26 2018/7/26 M14 2.0

3.3 Remote Sensing Data Acquisition

Developed by the European Space Agency (ESA), the Sentinel-2 satellite
can be used to monitor remote sensing images of terrestrial ecology, inland rivers
and coastal areas. It is equipped with a multispectral imager (MSI) with 13 spectral
bands and three spatial resolutions of 10m, 20m and 60m. Specific satellite data are
shown in Table 2. The image data are available on the ESA website
(https://scihub.copernicus.eu/dhus/#/home).

Download the quasi-synchronous Sentinel-2LL1C class remote sensing
image data synchronized with or one day different from the measured data through
the European Space Agency (ESA), and set the filtering condition of cloudiness less
than 20% before downloading to guarantee clear remote sensing images of
Wuliangsu Lake. Remote sensing images are taken at as wide an interval as possible
to ensure that the experimental results are more representative. The pre-processing
of Sentinel-2 remote sensing image data includes cropping, resampling, geometric
correction and band reflectance extraction to obtain remote sensing reflectance in
each band. For atmospheric correction of the data, the Sentinel-2L.2A level image
data was acquired using Sen2Cor plug-in from ESA. When the data was resampled,
the S2 Resampling Processor in SNAP software is used, and the resolution is set to
20m using the nearest-neighbour method.
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Table 2.
Sentinel-2 sensor spectral characteristic information
Band Sentinel-2A Sentinel-2B Spatial
N an Central wavelength ~ Bandwidth Central Bandwidth patia
umber resolution(m)
(nm) (nm) wavelength (nm) (nm)
1 433.9 27 4423 45 60
2 496.6 98 492.1 98 10
3 560.0 45 559.0 46 10
4 664.5 38 665.0 39 10
5 703.9 19 703.8 20 20
6 740.2 18 739.1 18 20
7 782.5 28 779.7 28 20
8 835.1 145 833.0 133 10
8A 864.8 33 864.0 32 20
9 945.0 26 943.2 27 60
10 1373.5 75 1376.9 76 60
11 1613.7 143 1610.4 141 20
12 2202.4 242 2185.7 238 20

3.4 Model Parameter Setting

Whether A-ACEO or standard ACO algorithms is taken for feature band
selection, the setting of parameters needs to be considered. The parameters set need
to ensure both stability and efficiency of the algorithm. Table 3 shows the relevant
parameter settings for A-ACO-E and ACO algorithms.

Table 3.
The relevant parameter settings for A-ACEQ algorithm and ACO algorithm
Parameter ACO A-ACEO
Maximum iterations number t 50 50
Initial population size m 20 20
Pheromone volatility factor 0.1 /
Pheromone inspiration factor Q 5 5

When constructing the GA-BP model, the iteration number is 50, the
number of input layers is the number of feature bands obtained by the feature band
selection algorithm, the number of hidden layers is half of the number of input
layers, the number of output layers is 1. The parameters of GA are set to ensure both
stability and accuracy of the model and are shown in Table 4.

Table 4.
GA parameter settings
Parameter Value (Probability)
Initial population size 300
Maximum iterations number 50
Selection probability 0.02
Crossover probability 0.02

Mutation probability 0.02
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3.5 Model Evaluation Metrics

In this paper, the coefficient of determination (R?) and the root mean square
error (RMSE) are used as the evaluation indexes of the inversion model of TSM
concentration. The details are shown in equations (10)-(11):

Z( Yi—Y; )2

Ry = (10)

RMSE = /%i(yi—iﬁ)z (1)

where y; is the measured value of TSM concentration, ¥; is the inverse value
of TSM concentration, y; is the average value of TSM concentration. The closer the
R? is to 1, the more stable the model is; the smaller the RMSE, the more accurate
the model is.

3.6 Results and Analysis
3.6.1 Feature Band Selection

To verify the effect on selecting feature bands for A-ACEO algorithm, the
results are compared with CARS algorithm and ACO algorithm, respectively. Fig.
6 shows the optimal RMSE variation curves of the GA-BP model with three bands
selection methods. From Fig. 6, we can see that CARS algorithm starts with fast
convergence, but it is likely to drop into local optimum and hard to jump out, and
the convergence effect is poor. As a swarm intelligence algorithm, the ACO
algorithm can avoid the problems of CARS, but when the combinatorial problem is
complex, the ACO algorithm may lead to information loss and general convergence
effect, making it difficult to find the optimal solution. A-ACEO algorithm not only
retains the advantages of ACO algorithm, but also improves the problem of
information loss, increases the diversity of feature bands, and achieves a better
convergence effect.

To further validate the performance of the A-ACEO algorithm, different
feature band selection algorithms are run randomly once. The results are visualized
in Fig.7, CARS algorithm selected nine feature bands related to the TSM
concentration, and ACO and A-ACEO algorithms selected eight feature bands
related to the TSM concentration. Therefore, A-ACEO algorithm not only selects
effective feature bands information, but also reduces the influence of redundant
feature bands, thus simplifying the model.
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3.6.2 A-ACEO-GA-BP Model Performance and Analysis

In this paper, the GA-BP inversion model is constructed using the feature
band selected by full-band, CARS, ACO and A-ACEOQ algorithms and the measured
TSM concentration as the input and output of the model, respectively. Figure 8
presents the inversion results, where the diagonal line in the figure is the 1:1 line
between inversion and measured values, and the inversion evaluation metrics are

shown in Table 5.

The GA-BP models constructed by four different feature band selection
algorithms as input all have good inversion effects. From Fig. 8, most of the values
are well-distributed along the 1:1 line, and only a few values are more discrete.
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Fig. 8. Inversion results of the GA-BP models for different feature band selection algorithms

From Table 5, the results using A-ACEO algorithm combined with GA-BP
model is the best, with R%-C and R?-P of 0.9074 and 0.9030, respectively, and
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RMSE-C and RMSE-P of 0.0568ug/L and 0.0570ug/L, respectively, which are
better than the GA-BP model built from feature bands selected by the full-band,
CARS and ACO algorithms. Therefore, under the same inversion model, using A-
ACEO algorithm for feature band selection can effectively reduce the
computational consumption and improve the model inversion performance.

Table 5.

Inversion evaluation metrics of GA-BP models with different feature band selection
algorithms
Number of Training set Test set
Model feat

ode bt R-C  RMSE-C(ug/L) R-P  RMSE-P(ug/L)
GA-BP 12 0.8531 0.0701 0.8424 0.0727
CARS-GA-BP 9 0.8732 0.0652 0.8658 0.0671
ACO-GA-BP 8 0.8880 0.00613 0.8875 0.0614
A-ACEO-GA-BP 8 0.9074 0.0568 0.9030 0.0570

3.6.3 BPNN Model Building and Analysis

The traditional BPNN model is built and compared with the GA-BP model.
Fig. 9 presents the inversion results of BPNN model with different feature bands
selection algorithms, and the inversion evaluation metrics are shown in Table 6.

From Fig. 9, the inversion accuracy of BPNN model constructed with
different feature band selection algorithms is not satisfactory. The inversion effect
of the BPNN based on the full-band is the worst compared with CARS, ACO and
A-ACEO algorithms. The inversion results of the BPNN model are generally
distributed along 1:1 line, and there are some deviations.

From Table 6, compared with the GA-BP models, all BP neural network
models have a reduced inversion effect. The inversion accuracy of BPNN model
constructed using full-band is the lowest, while the best accuracy is achieved using
the A-ACEO algorithm, with R?>-C and R?-P are 0.7324 and 0.7253, respectively,
and RMSE-C and RMSE-P are 0.0923ug/L and 0.0959ug/L, respectively. This
further demonstrates that the A-ACEO algorithm has greater advantages and
application potential in the selection of feature bands.

In conclusion, GA-BP model outperformed BPNN model in all inversions.
It may be due to the fact that updating the weights and thresholds is mainly achieved
by using the error function for monotonic ascending or monotonic descending in
BPNN, while the inversion of the TSM concentrations in Wuliangsu Lake is a non-
linear problem with multiple extremes, and BPNN model will stop adjusting the
weights and thresholds when it encounters a local optimum, whereas the GA
algorithm has powerful global search capability, which allows individuals in the
population do not move in a homogenous direction. Therefore, in this paper, BPNN
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is optimized using GA algorithm, which can well invert the TSM concentration in
Wauliangsu Lake.

Table 6.
Inversion evaluation metrics of BP models with different feature band selection algorithms
Model Number of Training set Test set

feature bands R2-C RMSE-C(ug/L) R2-P RMSE-P(ug/L)
BP 12 0.6123 0.1132 0.5963 0.1163
CARS-BP 11 0.6472 0.1083 0.6326 0.1110
ACO-BP 9 0.7071 0.1008 0.6921 0.1016
A-ACEO-BP 8 0.7324 0.0923 0.7253 0.0959

3.7 Spatial and Temporal Distribution of TSM Concentration

Through analyzing different feature bands selection algorithms and
different modeling methods, the GA-BP model established with A-ACEO
algorithm has the best inversion effect. Therefore, the TSM concentration
distribution obtained based on this model is shown in Fig. 10. There are some
differences exists in the concentration and spatial distribution of TSM in Wuliangsu
Lake with time, which may be related to the fact that Wuliangsu Lake is an
extremely important part of the irrigation and drainage system of the Inner
Mongolia Loop Irrigation District. Whenever spring irrigation and autumn watering
are in progress, a large amount of receding water from agricultural fields will flow
into the northern area of Wuliangsu Lake through the drainage and irrigation canals,
and then, after purification by the lake, flow out from the receding canals in the
southern part of Wuliangsu Lake.
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Fig. 9. Inversion results of the BP models for Fig. 10. Distribution of TSM concentration
different feature band selection algorithms

4. Conclusion

In this paper, using the advantages of swarm intelligence optimization
algorithm and neural network, an A-ACEO feature band selection algorithm is
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proposed, and GA-BP model is constructed to invert the TSM concentration, which
draws the following conclusions:

1. When the inversion model is the same, compared with full-band, CARS
algorithm and standard ACO algorithm, A-ACEO algorithm selects fewer feature
bands, effectively reducing computational resources and model complexity, while
improving the inversion effect of the model.

2. When the feature band selection method is the same, compared with the
traditional BPNN model, the GA-BP model has improved the R? and RMSE and
has better results.The GA-BP model can better invert TSM concentration in
Wauliangsu Lake. Among them, the inversion of the GA-BP model based on A-
ACEO algorithm is optimal.

Therefore, the proposed method can provide new ideas for the detection of
TSM concentration in Wuliangsu Lake, which is helpful to manage the regional
water environment system and ecological balance.
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