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INVERSION OF TOTAL SUSPENDED MATTER 

CONCENTRATION IN WULIANGSU LAKE BASED ON 

SWARM INTELLIGENCE OPTIMIZATION AND BP NEURAL 

NETWORK 

Chenhao WU1, Xueliang FU2,*, Honghui LI3, Hua HU4, Xue LI5 

Total suspended matter (TSM) is an important parameter of the water 

environment. Because of the optical complexity in water body, it is difficult to 

accurately invert the TSM concentration by current traditional methods. In this 

paper, using Sentinel-2 remote sensing images as the data source combined with 

measured data, taking Wuliangsu Lake as the study area, a new intelligent 

algorithm combining the adaptive ant colony exhaustive optimization algorithm 

(A-ACEO) feature selection method with genetic algorithm (GA) optimized back 

propagation neural network (BPNN) model (GA-BP) is proposed for inversion of 

TSM concentration. The ant colony algorithm (ACO) is improved to select remote 

sensing feature bands for TSM concentration by introducing relevant 

optimization strategies. The GA-BP model is built by optimizing BPNN using GA 

with the selected feature bands as input and comparing with the traditional BPNN 

model. The results show that using feature bands selected by the presented A-

ACEO algorithm as inputs, can effectively reduce complexity and improve 

inversion performance of the model, under the condition of the same model, which 

can provide valuable references for monitoring the TSM concentration in 

Wuliangsu Lake. 
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1. Introduction 

Lake wetland is one of the most important ecosystems in the world [1] 

and an important safeguard for human social ecological environment [2]. 

However, with the continuous development, frequent human activities have 

seriously affected aquatic environment of lake wetlands, and various water 

resources problems have emerged, causing a serious decline in water quality 

and affecting regional ecological environment and sustainable economic 

development [3]. Total suspended matter (TSM) is an essential indicator to 

evaluate the water quality status of lake wetlands, its concentration not only 

affects the distribution of the underwater light field, but also affects the primary 

productivity and the ecological environment of the water area [4]. As an 

important part of "One Lake, Two Seas" in Inner Mongolia, Wuliangsu Lake 

has the characteristics of a typical cold and arid lake in the north [5] and belongs 

to the Hetao Irrigation District, which carries the receding water of agricultural 

fields for spring irrigation and autumn watering and the discharge of industrial 

pollution wastewater in the region [6]. Therefore, inversion of TSM 

concentration in Wuliangsu Lake can estimate lake TSM content, which is of 

great practical significance for understanding the regional water ecosystem and 

managing the water environment. 

Traditional water quality monitoring are time-consuming, costly and 

influenced by external conditions [7], which have shortcomings for monitoring 

large-scale water quality. Remote sensing technology, as one of the important 

means of environmental monitoring, has become a widely used method to 

monitor TSM concentration in the environmental monitoring of lake wetlands 

because of its advantages of rapid, real-time, wide coverage and easy access to 

data [8]. Previously, many scholars have performed inversion of TSM 

concentration based on the bands contained within the remote sensing data. For 

the multiple feature bands present in remote sensing data, they can be broadly 

classified into single-band, multi-band combination and full-band combination 

for inversion modeling. When using single-band for modeling, the band data is 

poorly sensitive to TSM, decreasing model accuracy [9]. When using full-band 

combination for modeling, the band data may interact with each other, which 

will also affect the accuracy of TSM concentration inversion [10]. In 

conclusion, in the study of remote sensing feature bands, determining the 

characteristic variables of TSM is the first prerequisite to simplify the structure 

of the inversion model to achieve data compression and increase the efficiency 

of model operation to reduce computational resources, and many scholars tend 

to choose the most relevant band combination with TSM concentration [11]. 

Remote sensing feature selection can be classified into two methods. 

The first feature selection method is based on mathematical statistics, some 
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commonly used methods are correlation coefficient analysis (CC), successive 

projection algorithm (SPA), competitive adaptive reweighted sampling 

(CARS), etc. For example, Camiolo et al [12] used CC to analyze the data from 

MODIS-Aqua satellite and TSM concentrations in Río de la Plata, and selected 

the variables with strong correlation coefficients among them to construct an 

inversion model with TSM concentration. Luan et al [13] analyzed and selected 

the feature bands using SPA and CARS, respectively, to finally construct a 

model of TSM concentration in Yangtze estuary. Although these methods can 

eliminate the influence of some redundant information to some extent, after 

feature selection redundant variables are still present, and the stability of the 

model is poor. The second is based on swarm intelligence optimization 

algorithm. For example, Jiang et al [14] used GA for analyzing and selecting 

spectral features and constructed a water quality inversion model of East Lake. 

Eleyan et al [15] used particle swarm algorithm (PSO) for feature vector 

selection and successfully reduced the dimension of the features, reduced the 

complexity of the model. Pamiri et al [16] used ACO for feature selection and 

achieved high inversion accuracy. These algorithms, which solve optimization 

problems by group behavior and have a rigorous theoretical basis, provide 

feasible solutions to complex problems that cannot be handled in traditional 

methods. 

Traditional remote sensing inversion methods can be broadly classified 

into three methods. The empirical method [17] is relatively simple and 

possesses good results in linear relationships, but the relationship between 

remotely sensed spectral features and water body elements is difficult to 

represent as a simple linear function and the empirical method is usually poorly 

adaptive. The semi-empirical method [18] and the analytical method [19] are 

inversion methods that mainly use the optical features inherent in the water 

column and combine them with remotely sensed reflectance. These methods 

require more optical data, the models are more complex, and the demand for 

data hardly be met in practical applications, which is not suitable for wide 

application. Currently, machine learning as a new method has been widely used 

in remote sensing inversion. For example, Nazeer et al [20] studied TSM 

concentration in coastal waters and constructed two machine learning models, 

which showed that machine learning methods can be more accurate and 

effective for routine detection of TSM concentration in coastal water. Liu et al 

[21] analyzed the TSM concentration in Nansi Lake and then constructed linear 

and machine learning models, which showed that machine learning models 

have advantages and are more accurate in the inversion of the TSM 

concentration. Neural network, an important part of machine learning, as it can 

adapt to more complex nonlinear relationships, has demonstrated strong 

usability in remote sensing inversion methods. For example, Hafeez et al [22] 
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performed inversion of TSM concentration in Hong Kong coastal waters by 

various machine learning methods, in a result, neural networks based on 

machine learning methods have the better inversion results. Song et al [23] 

constructed an artificial neural network (ANN) model to invert the TSM 

concentration caused by the reclamation of an artificial island airport offshore 

of Bohai Sea, China, and obtained good results. In general, the traditional 

remote sensing inversion method is simple, but it is not widely used due to its 

characteristics, while machine learning as a new method has been more widely 

used in remote sensing inversion methods, and neural network also has strong 

applicability in remote sensing inversion methods because of its advantages. 

In conclusion, taking Wuliangsu Lake as the study area, the correlation 

between remote sensing features and TSM is analyzed by combining Sentinel-

2 remote sensing images and measured data. Through the analysis, a swarm 

intelligence optimization algorithm is proposed as an adaptive ant colony 

exhaustive optimization (A-ACEO) algorithm which is used for remote sensing 

feature bands selection. Taking the selected feature bands as inputs and 

considering the advantages of swarm intelligence optimization algorithm and 

neural network, the GA-BP model was constructed by using GA to optimize 

the BPNN. Finally, through the study, the model is analyzed and verified the 

performance of the method. 

2. Feature Band Selection Methods and Modelling 

2.1 Feature Band Selection Method 

2.1.1 Competitive Adaptive Reweighted Sampling Algorithm 

The competitive adaptive reweighted sampling (CARS) algorithm is 

based on Darwinian evolutionary theory of "survival of the fittest" [24], treating 

each feature as an individual and selecting individuals with high adaptive 

capacity. The specific steps are shown below: 

(1) Randomly selected N samples in the feature band using Monte Carlo 

algorithm and constructed partial least squares regression (PLSR) model. 

(2) The variables are selected by exponentially decreasing function 

(EDF) and adaptive reweighted sampling algorithm (ARS), where high 

regression coefficients are retained, and low ones are removed. 

(3) A new subset is set to hold the reserved variables and the PLSR 

model is constructed, meanwhile the root mean square error of cross validation 

(RMSECV) is calculated. 

(4) Repeat Step (1)-(3), after N calculations, N samples will obtain N 

subsets of variables, and N subsets of variables will obtain N RMSECVs. End 

up selecting the smallest subset as the optimal feature band combination. 
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2.1.2 Standard Ant Colony Optimization Algorithm 

The ant colony (ACO) algorithm is a swarm intelligence optimization 

algorithm that simulates the foraging behavior of ants [25]. ACO algorithm was 

originally designed to solve static combinatorial problems, but it also has good 

applicability in dynamic combinatorial optimization problems [26]. Therefore, 

ACO algorithm presents feasibility in the feature band selection method. 

 

Fig. 1. Visualization of ACO algorithm to select feature bands 
 

As shown in Fig. 1, each node in the figure corresponds to a feature 

band, where {B1, B2, …, Bi} is the set of original feature bands. An ant 

randomly starts from a node and selects another node according to the rules, 

after a period of traversal, a subset of original feature bands {B1, B2, B3, Bi} 

will be obtained, and if this subset satisfies the stopping condition, it is judged 

to be a feasible solution. The ACO algorithm is shown below: 

(1) Initialization of the pheromone concentration. The initial pheromone 

of all nodes is set to 1, and the initial nodes are randomly selected according to 

the roulette method. 

(2) Node selection probability. The next node is selected by the ant 

through the pheromone concentration presented at the node, and the probability 

from node Bi to node Bj is shown in equation (1): 
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where, t is the iteration number,  is the node pheromone concentration, and 

J is the collection of unselected nodes reachable by ants at node Bi. 

(3) Feature subset objective function selection. The feature subset function 

F is calculated based on the root mean square error (RMSE), as shown in equation 

(2): 
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where C is a constant term that is usually set to 1. The equation shows that 

the smaller the RMSE, the easier the subset is selected. 

(4) Pheromone concentrations updating. Once all ants have completed one 

iteration, the node pheromone concentration will be updated, the node pheromone 

concentration within the selected subset set increases, and the remaining node 

pheromone concentration volatilizes, as shown in equations (3)-(4): 
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where  is the pheromone volatility factor between (0,1), B is the set of 

selected subsets of feature bands. 

2.1.3 Adaptive Ant Colony Exhaustive Optimization Algorithm 

Although standard ACO algorithm has good advantages in solving dynamic 

combinatorial problems, the initial parameters tend to influence the algorithm, 

which can easily lead to too slow convergence and relatively low efficiency [27]. 

The adaptive ant colony exhaustive optimization (A-ACEO) algorithm improves 

the corresponding strategy based on the standard ACO algorithm, so that it can 

accelerate the convergence speed and improve efficiency. And the combination of 

ACO algorithm and exhaustive method [28] is used to effectively prevent the 

algorithm dropping into local optimum, meanwhile avoiding exhaustive search of 

the subset of bands by the exhaustive method, which greatly reduces the search 

time. The A-ACEO algorithm process is as follows: 

(1) Adaptive adjustment strategy of initialized pheromone concentration. 

The initial pheromone concentration coefficients of the nodes are mostly the same 

and fixed values in standard ACO algorithm, and the ants will randomly select a 

node as the initial node, which makes the algorithm converge slowly and 

inefficiently. To solve the above problem, the reciprocal of RMSE corresponding to 

each node is used as the initial pheromone concentration based on GA-BP model to 

guide ants in selecting the initial nodes, which avoids the shortage of the ants 

finding nodes randomly in the iterations. 

(2) Adaptive adjustment strategy of volatilization factor . In ACO 

algorithm, the volatility factor is a fixed value, if the value is not set reasonably will 

affect the convergence speed, or even lose the full search ability. To solve the above 

problem,  is made adaptive adjustment strategy to enhance the algorithm search 

capability, as shown in equation (5): 
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where t and T are the current and maximum iteration number respectively. 

It is clear that initially,  has a larger value, with more and more iterations,  

decreases, the probability of the optimal node gradually increases. 
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(3) Adaptive updating strategy of pheromone concentration. The pheromone 

concentration update strategy is improved with standard ACO algorithm as shown 

in equations (6)-(7): 

 ( ) ( ) ( )1 1 ( )ij ij ijt t t  + = − +△  (6) 
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Where 𝑖𝑗 is the initialized pheromone concentration of the node selected 

by the ant, Q is the pheromone heuristic factor, B is the set of the selected subset of 

feature bands, 𝑅𝑖𝑗(𝑡) is the RMSE of the selected subset of nodes at the t-th 

iteration. 

(4) Optimal threshold and optimal matrix strategy. Combining the standard 

ACO algorithm with the exhaustive enumeration method, an optimal threshold and 

optimal matrix strategy is proposed, which uses the optimal threshold to filter the 

subset of nodes generated by the iterations and deposits the subset of nodes larger 

than the optimal threshold into the optimal matrix. At last, the optimal node subset 

is selected from the optimal matrix, which is the optimal feature subset. By filtering, 

this strategy significantly reduces the space of data storage and the consumption of 

computational resources. The optimal threshold is shown in equation (8): 
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where Bm is the pheromone concentration set of nodes in order from highest 

to lowest, Rxy is the RMSE of the set of subsets of nodes with the highest pheromone 

concentration. 

2.2 Inversion Method for TSM Concentration 

In order to avoid the model falling into local optimum and to improve the 

accuracy of model inversion. This paper proposes a GA-BP inversion model by 

optimizing the BPNN with the global search capability of GA, based on BPNN. 

2.2.1 Back propagation Neural Network 

Back propagation neural network (BPNN) is a multilayer feedforward 

network with forward transmission of signals and backward propagation of errors 

[29]. The BPNN topology is shown in Fig. 2. In forward transmission, the signal 

will be transmitted sequentially from input layer to hidden layer and then to output 

layer, and the signal will be processed according to a certain function mapping 

relationship between layers, and finally the output will be output at output layer, 

and if the output is not within the expectation, the error will be back propagated. In 

back propagation, the error is propagated in reverse order, from output layer, and 
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the gradient descent method is used to adjust the weights and thresholds of the 

nodes in each layer, and subsequently, the next step of forward propagation is 

started again, and the error is continuously adjusted to the minimum. 

2.2.2 Genetic Algorithm to Optimize BPNN 

Although BPNN has been applied in many fields, it is easy to fall into local 

optimum and has poor inversion effect. 

       
Fig. 2. BP neural network topology       Fig. 3. Flow chart of the GA-BP model 

 

The GA-BP model process is as follows: 

The genetic algorithm (GA) is a stochastic search method that simulates 

natural selection in nature [30]. GA is a gradient-free optimization and search 

technique that can randomly generate starting points from different directions and 

perform adaptive search in the solution space by the guidance of fitness function. 

Therefore, the global search capability of GA is used to optimize BPNN, which can 

improve the shortcomings of BPNN and accelerate the learning speed of BPNN at 

the same time. The process of GA-BP model is shown in Fig. 3. 

(1) Determination of network topology. The A-ACEO algorithm is used to 

select feature bands as input layers and TSM concentrations as output layers. 

(2) Initialization of population. The weights and thresholds in the network 

are initialized and then encoded as a set of chromosomes. The population size is set 

to M. 

(3) Definition of fitness function. The sum of the absolute errors of the 

measured and inverse suspended matter concentrations from GA-BP model is taken 

as the inverse of the fitness function F. The larger the F, the higher the fitness. As 

shown in equation (9): 
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where 𝑦𝑖 and 𝑦̂𝑖 are the measured and inverse values of TSM concentration. 

(4) Select operation. The probability is determined using the roulette 

selection method and the best individual is selected to enter the next generation. 

(5) Cross operation. Individuals are randomly selected for exchange and 

combination operations to produce more adaptable individuals. 

(6) Mutation operation. An individual is randomly selected in the 

population, and a portion of its genes in which are selected to exchange and vary 

with their alleles, so as to produce individuals with stronger fitness. 

(7) Calculating individual fitness. Determine if the stop condition is 

satisfying, if so, Step8 is executed; otherwise, Step (4) is executed. 

(8) Decoding. The weights and thresholds of GA output are adapted to 

BPNN, and the errors are calculated. Once the conditions are met, the final 

inversion results are output. 

In conclusion, the inversion of TSM concentration in Wuliangsu Lake based 

on Swarm Intelligence Optimization and BPNN is shown in Fig. 4. 

 

3. Simulation Experiment  

3.1 Study Area 

Wuliangsu Lake (40°36′N-41°03′N, 108°43′E-108°57′E), as shown in Fig. 

5, located in Bayan Nur City, Inner Mongolia, is the biggest lake wetland at the 

same latitude in the world. The lake covers an area of 325.31km2, in which 

123.11km2 is open water and the remaining is reed area, with a reservoir capacity 

of about 2.5 to 3×108m3. The wetland of Wuliangsu Lake is relatively rich in 

species, inhabited by a large number of fish and birds. However, due to the 

continuous exploitation of WuliangSu Lake, the lake is decreasing in size, while the 

wastewater discharged into the lake is increasing year by year and a large number 

of fish are dying, resulting in serious ecological damage of the lake and gradual 

degradation of ecosystem function. 

 
Fig. 4. Overall process of TSM concentration inversion Fig. 5. Location and sampling point 

distribution of study area 

3.2 Measured Data Acquisition 

The measured data is provided by the national research team of Inner 

Mongolia Agricultural University, "River and Lake Wetland Water Environmental 
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Protection and Restoration Technology Research and Innovation Talent Team", 

which is dedicated to the research of lake wetlands in the northern cold and arid 

region for a long time, providing comprehensive big data management and sharing 

services for ecological protection in China. Wuliangsu Lake starts to freeze in early 

November every year, and the freezing and thawing period can be up to 5 months, 

so the sampling time is mainly concentrated in June to September, and the sampling 

is fixed to the middle and end of each month, and the sampling depth is 0.5m down 

from the water surface vertically. The measured data of TSM concentration were 

collected from 2015 to 2018 with 92 groups, some measured data are shown in 

Table 1, and the training and test sets were randomly divided into 64 and 28 groups. 
 

Table 1. 

Selected measured data from 2015-2018 

Date of actual 

test 

Remote Sensing Image 

Dates 

Sampling 

point 

Measured TSM concentration 

(g/L) 

2015/9/25 2015/9/25 I12 22.0 

2016/6/20 2016/6/21 S6 26.0 

2017/6/25 2017/6/26 J11 1.0 

2017/8/29 2017/8/30 L13 41.0 

2017/9/25 2017/9/24 J13 197.0 

2018/7/26 2018/7/26 M14 2.0 

3.3 Remote Sensing Data Acquisition 

Developed by the European Space Agency (ESA), the Sentinel-2 satellite 

can be used to monitor remote sensing images of terrestrial ecology, inland rivers 

and coastal areas. It is equipped with a multispectral imager (MSI) with 13 spectral 

bands and three spatial resolutions of 10m, 20m and 60m. Specific satellite data are 

shown in Table 2. The image data are available on the ESA website 

(https://scihub.copernicus.eu/dhus/#/home). 

Download the quasi-synchronous Sentinel-2L1C class remote sensing 

image data synchronized with or one day different from the measured data through 

the European Space Agency (ESA), and set the filtering condition of cloudiness less 

than 20% before downloading to guarantee clear remote sensing images of 

Wuliangsu Lake. Remote sensing images are taken at as wide an interval as possible 

to ensure that the experimental results are more representative. The pre-processing 

of Sentinel-2 remote sensing image data includes cropping, resampling, geometric 

correction and band reflectance extraction to obtain remote sensing reflectance in 

each band. For atmospheric correction of the data, the Sentinel-2L2A level image 

data was acquired using Sen2Cor plug-in from ESA. When the data was resampled, 

the S2 Resampling Processor in SNAP software is used, and the resolution is set to 

20m using the nearest-neighbour method. 

 

 

https://scihub.copernicus.eu/dhus/#/home
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Table 2. 

Sentinel-2 sensor spectral characteristic information 

Band 

Number 

Sentinel-2A Sentinel-2B 
Spatial 

resolution(m) 
Central wavelength 

(nm) 

Bandwidth 

(nm) 

Central 

wavelength (nm) 

Bandwidth 

(nm) 

1 433.9 27 442.3 45 60 

2 496.6 98 492.1 98 10 

3 560.0 45 559.0 46 10 

4 664.5 38 665.0 39 10 

5 703.9 19 703.8 20 20 

6 740.2 18 739.1 18 20 

7 782.5 28 779.7 28 20 

8 835.1 145 833.0 133 10 

8A 864.8 33 864.0 32 20 

9 945.0 26 943.2 27 60 

10 1373.5 75 1376.9 76 60 

11 1613.7 143 1610.4 141 20 

12 2202.4 242 2185.7 238 20 

3.4 Model Parameter Setting 

Whether A-ACEO or standard ACO algorithms is taken for feature band 

selection, the setting of parameters needs to be considered. The parameters set need 

to ensure both stability and efficiency of the algorithm. Table 3 shows the relevant 

parameter settings for A-ACO-E and ACO algorithms. 
Table 3. 

The relevant parameter settings for A-ACEO algorithm and ACO algorithm 

Parameter ACO A-ACEO 

Maximum iterations number t 50 50 

Initial population size m 20 20 

Pheromone volatility factor  0.1 / 

Pheromone inspiration factor Q 5 5 

When constructing the GA-BP model, the iteration number is 50, the 

number of input layers is the number of feature bands obtained by the feature band 

selection algorithm, the number of hidden layers is half of the number of input 

layers, the number of output layers is 1. The parameters of GA are set to ensure both 

stability and accuracy of the model and are shown in Table 4. 
Table 4. 

GA parameter settings 

Parameter Value (Probability) 

Initial population size  300 

Maximum iterations number 50 

Selection probability 0.02 

Crossover probability 0.02 

Mutation probability 0.02 
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3.5 Model Evaluation Metrics 

In this paper, the coefficient of determination (R2) and the root mean square 

error (RMSE) are used as the evaluation indexes of the inversion model of TSM 

concentration. The details are shown in equations (10)-(11): 
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where 𝑦𝑖 is the measured value of TSM concentration, 𝑦̂𝑖 is the inverse value 

of TSM concentration, 𝑦̅𝑖 is the average value of TSM concentration. The closer the 

R2 is to 1, the more stable the model is; the smaller the RMSE, the more accurate 

the model is. 

3.6 Results and Analysis 

3.6.1 Feature Band Selection 

To verify the effect on selecting feature bands for A-ACEO algorithm, the 

results are compared with CARS algorithm and ACO algorithm, respectively. Fig. 

6 shows the optimal RMSE variation curves of the GA-BP model with three bands 

selection methods. From Fig. 6, we can see that CARS algorithm starts with fast 

convergence, but it is likely to drop into local optimum and hard to jump out, and 

the convergence effect is poor. As a swarm intelligence algorithm, the ACO 

algorithm can avoid the problems of CARS, but when the combinatorial problem is 

complex, the ACO algorithm may lead to information loss and general convergence 

effect, making it difficult to find the optimal solution. A-ACEO algorithm not only 

retains the advantages of ACO algorithm, but also improves the problem of 

information loss, increases the diversity of feature bands, and achieves a better 

convergence effect. 

To further validate the performance of the A-ACEO algorithm, different 

feature band selection algorithms are run randomly once. The results are visualized 

in Fig.7, CARS algorithm selected nine feature bands related to the TSM 

concentration, and ACO and A-ACEO algorithms selected eight feature bands 

related to the TSM concentration. Therefore, A-ACEO algorithm not only selects 

effective feature bands information, but also reduces the influence of redundant 

feature bands, thus simplifying the model. 
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Fig. 6. Optimal RMSE change curve in each 

iteration 

Fig. 7. Visualization of different algorithms to 

select the feature band 

3.6.2 A-ACEO-GA-BP Model Performance and Analysis 

In this paper, the GA-BP inversion model is constructed using the feature 

band selected by full-band, CARS, ACO and A-ACEO algorithms and the measured 

TSM concentration as the input and output of the model, respectively. Figure 8 

presents the inversion results, where the diagonal line in the figure is the 1:1 line 

between inversion and measured values, and the inversion evaluation metrics are 

shown in Table 5. 

The GA-BP models constructed by four different feature band selection 

algorithms as input all have good inversion effects. From Fig. 8, most of the values 

are well-distributed along the 1:1 line, and only a few values are more discrete. 

 

 
Fig. 8. Inversion results of the GA-BP models for different feature band selection algorithms 

 

From Table 5, the results using A-ACEO algorithm combined with GA-BP 

model is the best, with R2-C and R2-P of 0.9074 and 0.9030, respectively, and 
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RMSE-C and RMSE-P of 0.0568g/L and 0.0570g/L, respectively, which are 

better than the GA-BP model built from feature bands selected by the full-band, 

CARS and ACO algorithms. Therefore, under the same inversion model, using A-

ACEO algorithm for feature band selection can effectively reduce the 

computational consumption and improve the model inversion performance. 
 

Table 5. 

Inversion evaluation metrics of GA-BP models with different feature band selection 

algorithms 

Model 

Number of 

feature 

bands 

Training set Test set 

R2-C RMSE-C(g/L) R2-P RMSE-P(g/L) 

GA-BP 12 0.8531 0.0701 0.8424 0.0727 

CARS-GA-BP 9 0.8732 0.0652 0.8658 0.0671 

ACO-GA-BP 8 0.8880 0.00613 0.8875 0.0614 

A-ACEO-GA-BP 8 0.9074 0.0568 0.9030 0.0570 

3.6.3 BPNN Model Building and Analysis 

The traditional BPNN model is built and compared with the GA-BP model. 

Fig. 9 presents the inversion results of BPNN model with different feature bands 

selection algorithms, and the inversion evaluation metrics are shown in Table 6. 

From Fig. 9, the inversion accuracy of BPNN model constructed with 

different feature band selection algorithms is not satisfactory. The inversion effect 

of the BPNN based on the full-band is the worst compared with CARS, ACO and 

A-ACEO algorithms. The inversion results of the BPNN model are generally 

distributed along 1:1 line, and there are some deviations. 

From Table 6, compared with the GA-BP models, all BP neural network 

models have a reduced inversion effect. The inversion accuracy of BPNN model 

constructed using full-band is the lowest, while the best accuracy is achieved using 

the A-ACEO algorithm, with R2-C and R2-P are 0.7324 and 0.7253, respectively, 

and RMSE-C and RMSE-P are 0.0923g/L and 0.0959g/L, respectively. This 

further demonstrates that the A-ACEO algorithm has greater advantages and 

application potential in the selection of feature bands. 

In conclusion, GA-BP model outperformed BPNN model in all inversions. 

It may be due to the fact that updating the weights and thresholds is mainly achieved 

by using the error function for monotonic ascending or monotonic descending in 

BPNN, while the inversion of the TSM concentrations in Wuliangsu Lake is a non-

linear problem with multiple extremes, and BPNN model will stop adjusting the 

weights and thresholds when it encounters a local optimum, whereas the GA 

algorithm has powerful global search capability, which allows individuals in the 

population do not move in a homogenous direction. Therefore, in this paper, BPNN 
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is optimized using GA algorithm, which can well invert the TSM concentration in 

Wuliangsu Lake. 
Table 6. 

Inversion evaluation metrics of BP models with different feature band selection algorithms 

Model 
Number of 

feature bands 

Training set Test set 

R2-C RMSE-C(g/L) R2-P RMSE-P(g/L) 

BP 12 0.6123 0.1132 0.5963 0.1163 

CARS-BP 11 0.6472 0.1083 0.6326 0.1110 

ACO-BP 9 0.7071 0.1008 0.6921 0.1016 

A-ACEO-BP 8 0.7324 0.0923 0.7253 0.0959 

3.7 Spatial and Temporal Distribution of TSM Concentration 

Through analyzing different feature bands selection algorithms and 

different modeling methods, the GA-BP model established with A-ACEO 

algorithm has the best inversion effect. Therefore, the TSM concentration 

distribution obtained based on this model is shown in Fig. 10. There are some 

differences exists in the concentration and spatial distribution of TSM in Wuliangsu 

Lake with time, which may be related to the fact that Wuliangsu Lake is an 

extremely important part of the irrigation and drainage system of the Inner 

Mongolia Loop Irrigation District. Whenever spring irrigation and autumn watering 

are in progress, a large amount of receding water from agricultural fields will flow 

into the northern area of Wuliangsu Lake through the drainage and irrigation canals, 

and then, after purification by the lake, flow out from the receding canals in the 

southern part of Wuliangsu Lake. 

 

   
Fig. 9. Inversion results of the BP models for 

different feature band selection algorithms 

Fig. 10. Distribution of TSM concentration 

4. Conclusion 

In this paper, using the advantages of swarm intelligence optimization 

algorithm and neural network, an A-ACEO feature band selection algorithm is 
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proposed, and GA-BP model is constructed to invert the TSM concentration, which 

draws the following conclusions: 

1. When the inversion model is the same, compared with full-band, CARS 

algorithm and standard ACO algorithm, A-ACEO algorithm selects fewer feature 

bands, effectively reducing computational resources and model complexity, while 

improving the inversion effect of the model. 

2. When the feature band selection method is the same, compared with the 

traditional BPNN model, the GA-BP model has improved the R2 and RMSE and 

has better results.The GA-BP model can better invert TSM concentration in 

Wuliangsu Lake. Among them, the inversion of the GA-BP model based on A-

ACEO algorithm is optimal. 

Therefore, the proposed method can provide new ideas for the detection of 

TSM concentration in Wuliangsu Lake, which is helpful to manage the regional 

water environment system and ecological balance. 
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