
U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 3, 2011 ISSN 1454-234x

AUTOMATIC TRANSFORMATION OF SOFTWARE
ARCHITECTURE MODELS

Liliana DOBRICĂ1, Anca Daniela IONIŢĂ2, Radu PIETRARU3, Adriana
OLTEANU4

Modelul unei arhitecturi software este creat după specificarea cerinţelor sau
recuperat din codul sursă al sistemului, rafinat pe niveluri succesive de detaliere
sau modificat pe acelaşi nivel de abstractizare pentru satisfacerea unor noi cerinţe.
Rolul arhitectului este realizarea acestor transformări arhitecturale. În lucrare se
discută despre tehnicile actuale de transformare automată a modelelor
arhitecturilor software. Principala contribuţie este identificarea unui cadru de
prezentare şi comparare a acestor tehnici, care se deosebesc prin scopul
transformării definit de modelul ţintă obţinut, limbajul de descriere a arhitecturii, şi
instrumentul software utilizat în realizarea transformării.

Software architecture model is created from requirements specification or
recovered from system code, improved or modified iteratively in its refinement or
evolution. The software architect realizes architectural transformations in order to
change it. This paper presents an analysis of the current approaches supporting
automatic architecture model transformations. The comparison criteria include the
goal of transformation, the target architecture model, and the maturity of a tool
supporting the techniques. Also we consider other basic modeling concepts such as
description based on an architecture description language, views and consistency
among views, static and dynamic aspects, functional and quality aspects.

Keywords: software architecture, quality, model transformation, techniques, tools

1. Introduction

Software architecture (SA) is considered of highest importance to the
software development life-cycle [20]. It is used to represent and communicate the
system structure and behavior to all of its stakeholders with various concerns.
Additionally, SA facilitates stakeholders in understanding design decisions and
rationale, further promoting reuse and efficient evolution. One of the major issues

1 Prof., Dept. of Automation Control and Computers, University POLITEHNICA of Bucharest,

Romania, e-mail: liliana@aii.pub.ro
2 Prof., Dept. of Automation Control and Computers, University POLITEHNICA of Bucharest,

Romania
3 Lecturer, Dept. of Automation Control and Computers, University POLITEHNICA of Bucharest,

Romania
4 Lecturer, Dept. of Automation Control and Computers, University POLITEHNICA of Bucharest,

Romania

4 Liliana Dobrică, Anca Daniela Ioniţă, Radu Pietraru, Adriana Olteanu

in software systems development today is systematic SA restructuring to
accommodate new requirements due to the new market opportunities,
technologies, platforms and frameworks. SA transformations require special
attention, because of the well-known impact on the project success. Arguments
that support this statement can be mentioned. Firstly, SA transformations may be
oriented to an evolution changing the source model into a target model and
staying at the same level of abstraction. These directly influence the final system
properties. Secondly, transformational approaches may be carried out in service of
refinement going from a high level SA description to a more detailed one, thus
constructing iteratively the final SA, which represents the input of the next
development stage. Finally, because of their influence on software quality, they
can provide good mechanisms for early-stage quality management. The control of
the quality moves to the stage of architectural transformations decreasing in this
way production costs and speeding up the time-to market. On the other hand, it
enhances the role of the software architect. The architect must be creative in
reasoning tradeoffs among different alternatives and applies SA transformations
based on his tacit architectural knowledge. SA transformations are not easy to
apply and various business drivers (time, resources, costs, etc.) contribute to the
complexity of the problem. Automation is desirable, because the manual tasks
require not only vast tacit knowledge, but are laborious and therefore cost-
intensive, and are error-prone due to the complex design space for human beings.

This paper presents an analysis of the current techniques supporting
automatic SA model transformations. This is a very important and poorly
understood area of SA, much in need of systematization. Having concrete ways to
compare and contrast different approaches would benefit the SA community. Our
contribution is the definition of the comparison framework and the presentation of
existing approaches based on this framework. The framework includes the goal of
transformation, the maturity of a tool supporting the techniques and the basic
modeling concepts such as the architecture description language (ADL), views
and consistency among views, static and dynamic aspects, functional and quality
aspects. Our study distinguishes between SA approaches that are carried out in
service of refinement, going from a high level SA model to a more detailed one,
and those oriented to SA model evolution, staying at the same level of abstraction.
The paper provides solid principles for evaluating SA transformations and it
points out important areas that are in need of further research.

2. Background

2.1. Software architecture definition and description

There is not today a clear consensus on a definition of SA or to
understanding what constitutes an ADL. During the last decade in the literature

Automatic transformation of software architecture models 5

hundreds of definitions have been introduced; several have been cataloged by the
Software Engineering Institute (SEI) and are available on the Web [24]. In 2000
an early study identified many alternative notions of what constituted SA and
what made up an ADL [25]. Based on a broad survey it has been stated that ADLs
capture aspects of software design centered around a system’s components,
connectors, and configuration. Recently a newer definition of a software system’s
architecture was given in [26] that is the set of principal design decisions about
the system. Design decisions encompass every aspect of the system under
development, including design decisions related to: (1) system structure (2)
behavior (also referred to as functional) (3) interaction (4) the system’s non-
functional properties, such as dependability (5) the system’s development itself,
for example, the process that will be used to develop and evolve the system. It can
also be derived definitions for SA models, ADLs, and the act of modeling. An SA
model is a document that captures some or all of the design decisions that make
up a system’s SA. SA models are referred to as architecture descriptions. A model
means a formal specification, where a formal specification expects either textual
or graphical language with strictly defined syntax and semantics. An ADL is a
notation in which SA models can be expressed. SA modeling is the effort to
capture and document the design decisions.

In architecture modeling no single set of modeling notations is sufficient
for a project. However an architect can choose between a general-purpose
notation, such as Unified Modeling Language 2.0. (UML), which is among the
richest composite notations or a domain-specific notation, which could be more
expressive or highly optimized. A general-purpose notation attracts more users,
and therefore will likely be better validated, have more tool support from vendors,
and have increased utility as a communication medium among stakeholders. An
important property of modeling notations is extensibility (i.e. UML profiles).
Extensible notations provide a basic, general purpose foundation for architectural
modeling along with mechanisms that allow stakeholders to specialize the
notation for their particular business needs, domain, and technology. The main
power of a notation comes not through its syntax or even its semantics, but the
tools that can be used to operate on the notation. ADLs are supported by a variety
of software tools and environments, mainly for editing, visualization, analysis,
creating extensions. A good tool support is a driving force behind the widespread
adoption of a modeling notation. Conversely, lack of good tool support can leave
an otherwise excellent ADL to obscurity.

2.2. Software architecture life-cycle

SA modeling is performed considering various stages of a software
architecture lifecycle. Hofmeister et al. have proposed a general model of SA

6 Liliana Dobrică, Anca Daniela Ioniţă, Radu Pietraru, Adriana Olteanu

lifecycle [21]. This model consisted of three stages: architectural analysis,
architectural synthesis, and architectural evaluation. This model has been
extended to include two more stages, implementation and maintenance (Fig. 1)
[22]. All stages are supported by architectural knowledge (AK). AK is divided
into four categories [22]: (1) context knowledge, which is a collection of
information about the problem space, for instance, architectural significant
requirements and the context of a project; (2) general knowledge, which is a
collection of knowledge that helps architects to design software, for example,
architectural styles and patterns [23]; (3) reasoning knowledge, which is a
collection of reasoning information about a design, for example design decisions,
design rationale, design alternatives, and trade-offs; (4) design knowledge, which
is a collection of system designs such as components and architectural models.

The architectural analysis stage serves to define the problems an architect
must solve. An architect examines architectural concerns and context in order to
come up with a set of architecturally significant requirements. During the
architectural synthesis stage, the architect designs SA solutions for a set of
architecturally significant requirements. This task requires an architect to create
the proposed solutions. For this purpose, the architect can apply existing solutions
(e.g. styles, patterns) to solve the problems at hand. The design is created and
synthesized by the architect to capture the design knowledge. The architect also
produces the necessary traces between reasoning knowledge, design knowledge,
general and context knowledge. Architectural evaluation ensures that the proposed
architectural solutions are the right ones. The candidate architectural solutions are
evaluated against the architecturally significant requirements. At this stage, an
architect shares architecture knowledge with architecture evaluators. This allows
the evaluators to learn, search/retrieve, and evaluate the reasoning knowledge and
design knowledge. In order to perform an architecture evaluation, they often need
to trace reasoning knowledge to context knowledge (i.e. the requirements),
general knowledge and design knowledge. When an architecture design is
evaluated and approved, architects and reviewers may distill the design as a
general design pattern in general knowledge for future reuse.

Architectural
Synthesis

Architectural
Analysis

Architectural
Evaluation

Architectural
Maintenance

Architectural
Implementation

Fig. 1. Software architecture lifecycle

Automatic transformation of software architecture models 7

After architecture evaluation, the SA is realized by designers during
architectural implementation. At this stage designers and developers need to learn,
and search/retrieve the available reasoning knowledge in order to understand the
architecture design for implementation. Architects share the knowledge with the
implementers to facilitate their understanding. Once the initial system is deployed,
architectural changes may take place during the architectural maintenance stage.
At this stage, tracing the design knowledge aims to learn about design reasoning
and evaluate the impact of certain architectural changes.

3. SA model transformation automation

3.1. SA Model Transformation

The first ideas regarding software architectural transformation appeared in
the ‘90s on the migration trend from code towards software architecture
technology. Several definitions of architectural transformation can be found in the
literature. Kikhaar [16] defines architectural transformations as operations
performed at the code level. Changes applied to the architectural model of a
software system are qualified to impact analysis phase and they are left to the
software architect experience. Carriere, Woods and Kazman [19] discuss about
architectural transformations, too. They describe architectural elements in terms of
their static and dynamic features and define transformations in terms of features
modification. Early architectural changes are categorized to transformations for
understanding, analysis, and modification [18]. The idea towards automatic model
synchronization from model transformations has been introduced in [15].

Source
SA Model

Target
SA Model

Vertical Model Transformation
-refinement-

Target
SA Model

Horizontal Model
Transformation

Fig. 2. Model Transformation

Later on model driven development technologies discuss about the idea to
automate the process of creating new SA models and to facilitate evolution in a
rapidly changing environment by using model transformations [27, 28]. The
systematic use of models and reuse of model transformations simplifies and
formalize various activities and tasks that comprise the SA lifecycle. We
distinguish horizontal and vertical SA model transformations (Fig. 2). In vertical
transformations models from higher level of abstraction are transformed to models
of lower level of abstraction, e.g. platform independent models to platform

8 Liliana Dobrică, Anca Daniela Ioniţă, Radu Pietraru, Adriana Olteanu

specific models [5]. Here knowledge of platforms is encoded into automatic
model transformations, reused for many systems rather than redesigned for each
new system. An automatic model transformation specifies how an output model is
constructed based on the elements of an input model. Horizontal model
transformations are used for describing mappings between models of the same
abstraction level. By relating concepts of various types, knowledge of modeling
domains is encoded into transformations, enabling the integrated use of models
without having to specify relationships between each set models manually.

3.2. Arguments for SA model transformation automation

Model transformation languages aim at automating the process of deriving
one model from another one. Thus, when the mapping between two different
kinds of models is known, model transformations can provide the following
benefits: (1) Repetitive, laborious and error-prone tasks, required to create a
model from another model are avoided, as transformations are executed by a tool.
(2) Architectural knowledge can be encapsulated in model transformations,
ensuring target model quality. (3) The mapping process encapsulated in a model
transformation can be easily applied, as software architects applying the model
transformations do not need to know the details about how the mapping is
performed. (4) Changes are less difficult to manage, as they can be done at the
corresponding abstraction level and propagated quickly to lower abstraction levels
by model transformations. The SA model in the model-driven process would be
updated and then the change propagated to design, implementation and
deployment models. Nevertheless, most of model transformation languages have
difficulties to preserve manual changes made to a model when the model is
updated, so this kind of round-trip engineering is still an open research issue. (5)
When several transformations, from a source model to different kinds of target
models are available, the same source model can be reused.

SA model transformations are not easy to apply. Firstly, the architect has
to remember all the constraints on elements and relationships in order to perform
a correct improvement. For certain types of transformation that require vast
experience he may need additional design knowledge about the static or dynamic
aspects of the system. Secondly, architectural decisions may result in several
alternatives of SA improvement; the architect is rarely able to decide which
modification to choose, before he understands all consequences of applying a
certain approach. Architects have almost no assistance in reasoning about
changes. Thirdly, in order to satisfy a new requirement more than one
transformation need to be applied to modify SA model and an optimal evolution
path needs to be developed. Finally, the architect may need to integrate new
crosscut concerns (i.e. security [29]) that could affect the consistency of the SA

Automatic transformation of software architecture models 9

model due to modifications of all elements affected by that concern. The
execution of a transformation causes a reaction in chain where other architectural
changes are required. Usually they propagate in the structure altering adjacent
views or hierarchical sub-structures stopping just at the lowest level of the model.
Because of the multiplicity of applied transformations and their unpredictable
consequences, the process of SA modification is error-prone due to the
overwhelmingly complex design space for human beings and time consuming,
especially when manually performed by an architect, whose skills to control
changes are limited to the ability of remembering a transformation sequence,
constraints, or conditions. It is therefore necessary to provide automation tools
and techniques to the architectural model transformations.

4. Approaches supporting automatic transformation

This section presents five approaches, which are pattern-based refactoring,
sequence of transformations with multiple views extraction, an architecture
evolution style, architecture refactoring to improve quality attributes, and
evolutionary optimization of an SA model. The presentation framework focus is
on the approach description, the goal of transformation, the ADL, the multiple
views consistency and the tools to be used in transformation.

4.1. Pattern-based refactoring

Description. Pattern-based refactoring represents the process of
transforming a model using a design pattern [4]. This technique is achieved by
developing metamodels called transformation specifications that characterize
families of transformations. Fig. 3 gives an overview of the main concepts
involved in this model transformation approach.

Source
Metamodel

Source Model

Transformation
Specification

Transformation
Engine

Target
Metamodel

Target Model
Conforms to

Refers to Refers to

Conforms to Executes
Reads Writes

Metamodel

Model

Fig. 3. Metamodelling approach to pattern-based refactoring

A metamodeling consists in patterns specification and transformation
rules. Pattern specifications include the problem specification, which is a precise
specification of the family of design problems that the pattern addresses; solution
specification, which is a precise specification of the designs representing solutions

10 Liliana Dobrică, Anca Daniela Ioniţă, Radu Pietraru, Adriana Olteanu

of the pattern and transformation specification, which is a specification of
problem-to-solution transformations defining a transformation language.
Composing two or more design patterns could lead to conflicts that must be
resolved involving possible trade-off analysis. A validation step is required for
models that contain composed patterns.

ADL. A general purpose ADL is considered by pattern-based refactoring
approach. Thus it has been applied to SA models represented in UML notation.

Goal. The main goal of automating the process of applying pattern based
transformations is to reduce the effort of consistently and correctly realizing a
general knowledge that is collected in specific patterns across a SA model.

Multiple views. This approach does not consider multiple views.
Functionality conformance is the only concern.

Tools. The software tools are called pattern-aware, embedding codified
knowledge of patterns that can be accessed during usage that tools. Pattern-aware
tools present patterns as abstraction units that architects can use to construct SA
models. A tool support for such approach should provide two interfaces, one for a
pattern engineer to evolve and manipulate the tool’s representation of the UML
metamodel, and the other for the architect to create, manipulate and evolve UML
SA models using patterns. Such tools can help in establishing conformance of
models to the specification, due to preserving functional properties when defining
common properties to problem and solution specifications.

4.2. Sequence of transformation with multiple views extraction

Description. Transformation in SA models is described using a precise
mathematical semantics, which is called category theory in [6]. This approach
separates computations of a system from its coordination and configuration,
allowing the introduction of a dynamic configuration step. SA models are
diagrams in the sense of category theory [17] involving explicit superposition and
refinement relationships between architectural components. SA is defined by the
space of all possible configurations that can result from a certain starting
configuration. From this starting configuration, a dynamic step produces the
derivation from one SA model to another in a sequence of transformations.

ADL. This technique is expressed by using COMMUNITY, which is a
domain specific ADL.

Goal. There are two goals to be considered for SA model transformation.
A first goal is to produce SA model derivation in a sequence of transformations as
it has been described above. Another goal is to extract multiple views from an
ADL metamodel in a systematic way, by listing the design questions each view
should answer. Each one of the view types is defined by a metamodel, which is
obtained from the architectural metamodel by adding the necessary new entities

Automatic transformation of software architecture models 11

and associations. The view’s metamodel also show (through a class diagram and
OCL expressions) how the new entities are related to those of the SA model.

Multiple views. Multiple views are homogeneous, coherent, relevant, and
explicitly related, because they stem from the constructs of an ADL suitable for
the description of important architectural concepts. Architectural concepts, their
relationships, and their aggregations into various different views are explicitly
defined through a metamodel that enables to relate the various views explicitly
and enforce their mutual consistency through constraints. Each view can be
described in a declarative way through the metamodel, and operationally as a
transformation from the architecture. The decisions on which views to define and
how to define them is guided by an explicit enumeration of the design questions
the architect would like the views to answer.

Tools. There is a workbench developed as a proof of concept This
workbench provides a graphical integrated development environment to write,
run, debug components and draw configurations of components and connectors.
The workbench is extended to provide support for computation, coordination and
distribution views.

4.3. Specifying an architecture evolution style

Description. A sequence of transformations is also considered by Garlan
in [2] where an architecture evolution style is defined and the possibility to
automatically generate possible paths is envisioned. The key is that at an
architectural level many systems evolutions follow certain common paths. Each
path defines a sequence of SA models in which the first element of the path is the
SA model of the current system, and the final element is a desired target SA
model. Links between successive nodes in a path are associated with transitions
that are composed using a set of evolution operators for that style. In this respect
an evolution style is like a state machine for which an execution trace defines an
evolution path. Path constraints are specified to constrain the space of paths and
to give the correctness dimension of this approach. The evaluation function is
introduced for comparison of different paths with respect to quality metrics.

Goal. The goal is to provide automated assistance for expressing
architectural evolution and for reasoning about the correctness and quality of
evolution paths to achieve business concerns of stakeholders by choosing an
optimal path. This asistance is provided by taking advantage of regularity in the
space of common architectural evolutions.

ADL. The ADL notation for SA models representation is Acme. SA
model is a graph in which nodes represent components and edges represent
connectors. Ports are defined as interfaces of components. Annotations with
properties of these elements provide more-detailed semantics to represent

12 Liliana Dobrică, Anca Daniela Ioniţă, Radu Pietraru, Adriana Olteanu

reliability (for components), protocols of interaction (for connectors), or
signatures of required and provided services (for ports). In this way a list of
properties may vary from an SA model to another SA model.

Multiple views. A particularity of this approach is the set of architectures,
which is an architectural style and is defined by specifying a vocabulary of
architectural structures as a set of component, connector, and port types, together
with a set of constraints. Other specifications refer to evolution path properties,
path constraints, evolution operators, and evaluation functions.

Tools. This approach has been implemented in a tool called Ævol [2].

4.4. Architecture refactoring to improve quality attributes

Description. Mapping architectural specifications to hypergraphs, then
using these to define architecture refactorings is another technique that could be
applied automatically [3]. Refactorings are formally specified and a mechanism
must be provided to automatically apply them.

Goal. The goal is to preserve architectural behavior and to improve the
quality attributes of the architecture. Thus it reduces the development cost and
improves the quality of the final system because an automated and systematic
search will identify more and better design alternatives. When the architect has to
deal with a large number of quality attributes such as safety, availability,
reliability, maintainability that conflict with one another and with economic
constraints, architecture trade-off analysis methods are appropriate to evaluate
design decisions and design alternatives.

ADL. AADL (Architecture Analysis and Description Language) [8] is the
underlying ADL in this approach. AADL has been designed on the foundation of
MetaH [9]. The goal of AADL is to specifically support model-based quality
analysis (e.g. safety with a specific Error Annex [8, 10]) and specification of
software and system architectures for complex embedded systems. Architecture
specifications are defined as graph-based structures. Graph transformations are
identified as a suitable formalism for refactorings. Graph transformations
represent the set of architectural design alternatives that are evaluated using
evolutionary algorithms and multi-objective optimization strategies.

Multiple views. Only deployment view is considered.
Tools. There is a tool called ArcheOpterix [7] that implements this

approach.

4.5. Evolutionary optimization based on metaheuristic search

Description. This approach encodes the challenge of improving SA
models as an optimization problem [1]. Metaheuristic search techniques [11] (e.g.,
genetic algorithms, simulated annealing, etc.) are used to find better SA models.

Automatic transformation of software architecture models 13

Goal. The goal of transformation is to automatically improve a given SA
model with respect to performance, reliability, and cost.

ADL. The approach is best suited for component-based SAs. Components
encapsulate functionality that can be independently reused, and thus component-
based SAs provide degrees of freedom to be exploited. In particular, SAs models
are expressed with the Palladio Component Model (PCM). PCM strictly separates
parametrized component performance models from the composition models and
resource models, and it provides configuration options of the models [12]. Quality
prediction is done using Layered Queueing Networks (LQN) [13] (or SimuCom
EQNs [12]) for performance metrics, Markov models for reliability metrics [14],
and a newly introduced PCM cost extension for cost.

Multiple views. This approach does not consider the problem of
consistency between multiple views. A view of interest is annotated, then is
translated into an analysis model.

Tools. This approach has been implemented in the PerOpteryx tool.

5. Principles for evaluating automatic architectural transformations

The purpose of this section is to offer guidelines related to the selection of
the most suitable technique for an automated SA model transformation during SA
life cycle. The comparison is based on the framework of the presentation and the
focus is mainly on three elements 1) the goal of transformation, 2) the ADLs and
multiple view-based SA modeling and 3) the existent tools supporting
transformation.

Goal of transformation. The goal of automating the process of
transformation could be to reduce the effort of consistently and correctly realizing
patterns across a design, to produce derivation in a sequence of transformations, to
extract views from an ADL metamodel, to provide automated assistance for
expressing architectural evolution, and for reasoning about the correctness and
quality of evolution paths to achieve business objectives of an organization by
choosing an optimal path, to preserve architectural behavior and to improve the
quality attributes of the architecture, to automatically improve a given architecture
model with respect to performance, reliability, and cost.

The general problem with quality and software architecture is rooted in the
nature of the former. Quality refers to the whole software and thus they cannot be
presented in software architecture as components or functions offered by the
system, as it is the case with functional requirements. Currently there are
approaches that explicitly represent quality requirements in specific models
[13][14]. Also software architecture and quality are closely related and they are
analyzed together during architectural automatic transformation. Thus quality
driven model architecture transformation may be performed automatically.

14 Liliana Dobrică, Anca Daniela Ioniţă, Radu Pietraru, Adriana Olteanu

Architectural description language. According to the level of detail for
an SA model description these approaches can be classified into three groups:
highest level transformations, which are applied on elements of a deployment
diagram [1]; middle level transformations performed on component diagram [2];
lowest level transformations aimed at design patterns and their compositions [4].
Description language is a key issue in the SA automatic transformation. It is
impossible to provide any architectural change without adopting a formal
architecture representation. Additionally, the complexity of a software structure,
the number of viewpoints from which software architecture can be observed, and
the great majority of available approaches which can be applied to model and
transform architecture result in many alternative description languages like
ACME, AADL, UML. 2.0, PCM and other specific quality models. Almost every
ADL concentrates on some particular aspects of SA and it is not easy to find a
language that can represent all architectural perspectives, from static abstraction
levels to system behavior and architectural styles. Architectural transformations
cannot be defined before all nuances of the SA are well described in a unified and
formalized manner, mainly because changing operations, especially their pre- and
post-conditions, must be expressed on the base of established architectural
description, to ensure that the system structure is changed in a controlled manner.

UML is strongly related to ADLs and architectural transformations. UML
is more popular than any ADL and is used in model driven development with
related OCL and QVT languages. Performing or presenting the results of
architectural transformations in UML would make them comprehensible to
everyone, not only to the specialists acquainted with a specific ADL.

Tools. All the approaches described above supporting automatic
architecture model transformation have been included in specific tools or in
integrated development environments. Some tools are just workbenches for the
proof of concept.

6. Conclusions and further research

This paper discussed about current techniques for supporting automatic
architecture model transformations. Automation in architectural transformations
depends on the formality and the completeness of the architectural model. A more
formal notation is more easily to automation than a less formal one. Similarly, a
model that captures a great number of architectural design decisions for the given
system will be more agreeable to rigorous, automated transformation than a model
that is missing many of such design decisions. Automation is possible in a design
process when this process is well understood.

Most of the techniques have shown how they can be used in experiments
and prototype implementations. Their results are most often of a preliminary

Automatic transformation of software architecture models 15

nature and the prototype implementations are limited and over-simplified. Also
compared to real-world systems, most of the case studies are small and have a
very limited problem/solution space. This has the benefit that the results can be
validated by calculating and interpreting the results manually. However, it
remains to be proven that these approaches can handle complex and convex
solution spaces in an acceptable time with an acceptable diversity of solutions. In
case of simulations the predictions are limited and their precisions depend on the
initial assumptions. However the simulation can serve as a basis for experiments
and comparisons with real systems in order to improve the models.

Additionally, the applicability and understandability of SA models and
tools by common software architects requires experiments to gain insights about
the feasibility of these approaches. For example, a special attention must be paid
to what kind of information is supplementary required for annotating models.

An open issue remains the toolsets to support automated generation of
design alternatives to cope with run-time quality attributes such as performance or
reliability. Our current research work focuses on a tool chain development for
functional and quality-driven model transformations for various embedded
systems domains.

Acknowledgement

This work was supported by CNCSIS –UEFISCSU, project number PNII
– IDEI 1238/2008.

R E F E R E N C E S

[1]. A. Martens, H. Koziolek, S. Becker, R. Reussner, “Automatically Improve Software

Architecture Models for Performance, Reliability, and Cost using Evolutionary
Algorithms”, in Proceedings of WOSP/SIPEW 2010, San Francisco Bay Area, USA.

[2]. D. Garlan, J.M. Barness, B. Schmerl, O. Celiku, “Evolution Styles: Foundations and Tool
Support for Software Architecture Evolution”, WICSA 2009.

[3]. L. Grunske, “Identifying “good” architectural design alternatives with multi-objective
optimization strategies”, in Procs of ICSE 2006, Shanghai, China.

[4]. R. France, S. Ghosh, E., Song, D.K, King, “A metamodelling Approach to Pattern-Based
Model Refactoring”, in IEEE Software, 2003.

[5]. M. Matinlassi, Quality driven software architecture model transformation. Towards
automation, VTT Publications 608, 2006.

[6]. C. Oliveira, M.Wermelinger, “A model driven approach to extract views from an architectural
description language”, in Procs of. WICSA 2007.

[7]. A. Aleti, S. Bjornander S., L. Grunske, I. Meedennya, “ArcheOpterix: An extendable tool for
architecture optimization of AADL models”, in Proceedings of Mompes 2009.

[8]. P.H. Feiler, D.P. Gluch, J.J. Hudak, The Architecture Analysis and Design Language
(AADL): An Introduction. Technical report, CMU/SEI-2006-TN-011, 2006.

[9]. P. Binns, M. Englehart, M. Jackson, and S. Vestal, “Domain specific software architectures
for guidance, navigation and control”, in International Journal of Software Engineering and
Knowledge Engineering, 6(2):201–227, 1996.

16 Liliana Dobrică, Anca Daniela Ioniţă, Radu Pietraru, Adriana Olteanu

[10]. L. Grunske, J. Han, “A comparative study into architecture-based safety evaluation
methodologies using AADL’s error annex and failure propagation models”, in 11th IEEE
High Assurance Systems Eng. Symp., HASE 2008, 283–292. IEEE Computer Society

[11]. C. Blum, A. Roli, “ Metaheuristics in combinatorial optimization: Overview and conceptual
comparison”, in ACM Computing Surveys, 35(3):268-308, 2003

[12]. S. Becker, H. Koziolek, and R. Reussner, “The Palladio component model for model-driven
performance prediction”, in J. of Systems and Software, 82:3-22, 2009

[13]. G. Franks, T. Omari, C.M. Woodside, O. Das, and S. Derisavi, “Enhanced modeling and
solution of layered queueing networks”, in IEEE Trans. Software Eng, 35(2):148-161, 2009

[14]. H. Koziolek, F. Brosch, “Parameter dependencies for component reliability specifications”, in
Proc. of Workshop on Formal Engineering approaches to Software Components and
Architectures. Elsevier, 2009

[15]. Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Tacheichi, H. Mei, “Towards Automatic Model
Synchronization from Model Transformations”, in Procs. of ASE 07, 164-173, 2007

[16]. R. Krikhaar, A. Postma, A. Sellink, M. Stroucken, C. Verhoef, “A Two-phase Process for
Software Architecture Improvement”, in Proceedings of International Conference on
Software Maintenance 1999, Oxford, UK, September 1999

[17]. J.L. Fiadeiro, Categories for Software Engineering, Springer, 2004
[18]. L. Dobrica, E. Niemela, “A survey on software architecture analysis methods”, in IEEE

Transactions on Software Engineering, vol. 28, no. 7, pg 628-653, 2002.
[19]. S.J. Carriere, S. Woods, R. Kazman, “Software Architecture Transformation”, Proc. of the

Conf. on Reverse Engineering, October 1999
[20]. L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison Wesley,

Boston, 2003
[21]. A.M. Babar, I. Gorton, D.R. Jeffery, “Capturing and using software architecture knowledge

for architecture-based software development”, in Proceedings of the Quality Software
International Conference (QSIC ‘05), pp. 169–176, 2005

[22]. A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M.A. Babar, “A comparative study of
architecture knowledge management tools”, J. of Syst. and Software, 83 (2010), pp. 352-
370

[23]. L. Dobrica, “Integrating reusable concepts into reference architecture design of complex
embedded systems”, Procs. of the 6th Int. Conf. on Informatics in Control, Automation and
Robotics (ICINCO 2009), vol. 3, pg. 234-237, 2009

[24]. *** Carnegie Mellon University. How Do You Define Software Architecture?
<http://www.sei.cmu.edu/architecture/definitions.html>, Software Eng. Institute, 2005

[25]. N. Medvidovic, R.N. Taylor, “A Classification and Comparison Framework for Software
Architecture Description Languages”, IEEE Transactions on Soft. Eng. 26 (1), 70–93

[26]. N. Medvidovic, E.M. Dashofy, R.N. Taylor, “Moving Architectural Description from under
the technology lampost”, Journal of Information and Software Technology, 2007

[27]. I. Reinhartz-Berger, “Towards automation of domain modeling”, Journal of Data and
Knowledge Engineering, 69 (2010), 491-515

[28]. A. Olteanu, A.D. Ionita, T. Ionescu, “Leveraging Open Source ELearning Systems with Web
2.0 and Knowledge Structures”, U.P.B Scientific Bulletin- Series C; Electrical Engineering
and Computers Science, no.2, (2010), 3-16

[29]. L. Dobrica, R. Pietraru, “Security Analysis at Architectural Level in Embedded Software
Development”, in Control and Applied Informatics, vol. 11, no. 2, pg. 51-58, 2009.

