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SEMI-EMPIRICAL METHODS FOR BEARINGS DIAGNOSIS

Janetta CULITA', Dan STEFANOIU?, Florin IONESCU?

Vibratiile, in special generate de sistemele mecanice, posedd o trasatura
extrem de importanta care poate fi exploatata pentru diagnosticarea defectelor:
codificarea informatiei despre starea de functionare a sistemului care le produce.
Pentru a decodifica aceasta informatie, trebuie cunoscute a priori principalele
proprietati ale vibratiilor care conduc la identificarea si izolarea defectelor. Scopul
articolului este de a evidentia aceste proprietati si de a prezenta cdteva metode
elementare de diagnoza automata a defectelor prin prelucrarea vibratiilor.

Vibrations, especially generated by mechanical systems, exhibit a fortunate
and extremely useful feature in fault diagnosis: encoding information about the
health state of the system that produced them. In order to decode that information,
the main properties of vibration yielding identification and isolation of faults have to
a priori be known. The paper goal is to review such properties and to present some
elementary methods of automatic fault diagnosis by vibrations processing.
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1. Introduction

Like in medicine, faults prevention remains a demanding task, which
requires both self-anticipation from the system and intelligent approach from the
user. Usually, a self-anticipatory system is transmitting information about its
behavior through anticipating signals. For example, human or animal muscles
have different electrochemical activity just before they are damaged, due to high
intensity and long effort [1]. Another example is issued from mechanical systems,
for which the vibrations act as anticipating signals [2], [3], [4], [5]. Their intimate
structure changes some time before a failure occurs [5]. But this change is so fast
and sometimes so difficult to distinguish, that, without special detection and
decoding techniques, it could be ignored. These techniques focus on the extraction
of vibration main characteristics (features), in order to classify the possible faults.
In general, the strategy adopted within a fault detection method starting from
vibrations consists of the following stages: signal acquisition, signal analysis (in
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order to extract features), features grouping, faults classification (eventually
adaptively, through a continuously learning mechanism), fault identification (if
defects exist).

Vibration acquired from mechanical systems is interesting mainly for its
capacity to encode information about threatening defects or faults. Several distinct
efforts in detection of such defects can be noticed, but only in the last few decades
the vibration has became crucial for automating this process. The first methods of
fault detection and diagnosis (fdd) were rather empirical. A trained observer or
listener referred to as (expert) analyst can detect flaws, by simply “watching” or
“listening” some machinery. Other subsequent attempts became more systematic
and are based on the monitoring of some specific parameters. For example, in a
mechanical system, one watches: the lubricant temperature, the oil cleanness, the
noise level of acoustic emission, etc.

Modern and efficient methods in early detection of defects are using
Signal Processing (SP) techniques [7]. Differently from many typical SP
applications, where the noise attenuation is a fundamental requirement, when
using vibrations for fdd, exactly the noise is the most concerned part in the
analysis. This is due to the fact that not the natural oscillations of machinery could
encode the defective behavior, but the noise corrupting them. Moreover, the
applications revealed that the signal-to-noise ratio (SNR) is extremely small for
vibrations encoding information about defects. Therefore, the models of vibration
used in fdd are actually models of their noisy parts, encoding information about
defect types and severity [8].

One of the most interesting applications in fdd is concerned with bearings,
due to their simple structure and large integration within mechanical systems [9],
[10], [11]. By inspecting the spectrum of vibration acquired from bearings, some
researchers believed that its irregular shape is mainly due to the environmental
noise and correlation between different components. Hence, techniques to
“remove” the white noise and decorrelate the data, based on SP concepts such as:
auto-correlation, backstrum, or cepstrum were introduced first. Although the
irregularities are only slightly attenuated, an analyst could easier perform the
diagnosis, which is the result of an ad hoc fault classification, by simply
inspecting the spectrum. Moreover, the analyst is usually able to improve the
accuracy of classification for every new investigated case. What rationale is
employed by the expert? — that is a question with a difficult answer. Modeling
such rationales often requires non conventional approaches. For example, a very
interesting approach combining statistics and pattern recognition has been
introduced in [12]. This is in fact an attempt of human reasoning automating,
which resulted in a quite efficient and simple fdd algorithm, though with
unavoidable limitations. A different approach is introduced in [13], where one
assumes the largely accepted idea that human reasoning is also fuzzy. This means
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a solution to a problem could be issued even from unclear, vague or ambiguous
information, i.e. from information, which is strongly affected by uncertainty.
Usually, the analyst selects the most plausible diagnostic, according to the
available data. Therefore, the analyst’s experience is crucial for diagnosis
accuracy. Unfortunately, the analyst has to cope not only with external
perturbations corrupting the data, but also with his/her own subjectivism. In order
to increase objectivity, the analysis relies on simple statistical assessments. The
reasoning hidden behind data analysis could thus be automated by performing a
combination between spectral statistics and fuzzy clustering (in entropy sense
[14]). In this way, both subjectivism and perturbations influence decrease.

This article is not concerned with advanced fdd methods based on
vibration analysis, but rather with the most employed of them in bearings
industry, referred to as semi-empirical. 1t constitutes a survey on the most
encountered bearing abnormalities and also on the industrial employed fdd
methods. Within the next section, the main defect types of bearings are revised, in
order to reveal their variety. Sections 3 presents some semi-empirical fdd
methods, based on statistics and spectral analysis. The article is completed by
conclusions and a references list.

2. Bearings typical defects

The rich experience acquired during utilization of semi-empirical fdd
methods led to a number of very useful insights concerning the bearing defects.

In case of defect free bearings, the friction forces and the generated
vibration are independent on the rotation angles of rolling elements. But, if a
defect starts to develop, the amplitude of vibration could basically be modulated
following 2 types of defect trajectories: periodic (or train of impulses, due mostly
to defects on races, rolling elements (if tubular) and cage); quasi-random (due
mostly to defects on rolling elements (if balls) and of lubrication). Moreover, in
case of defects, vibration statistical parameters are very sensitive to magnitude
and direction of applied load and to relative speed between races, as reveals the
study in [12]. If the defect trajectory is periodic, then the period of vibration
amplitude changing encodes the defect type, whereas the modulation amplitude
encodes the degree of severity. Otherwise (and especially for lubrication defects),
the severity degree is difficult to estimate.

The abnormal functioning of bearings could succinctly be described as
follows:

a.Defects develop following an evolution difficult to predict. Also, they
can convert from a type to another.
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b.The severity degree of a defect could better be emphasized by another
defect. It could decrease in time, after reaching some value, due mostly
to excessive wearing. But, in general (and especially at early stage of
defect evolution), the severity degree increases in time (even if
decreased before).

c.Indications about a defect could vanish and not appear again over a large
period of time.

d.Multiple defects are developing more rapidly than single ones.

e.Defects of lubrication induce a faster apparition and development of
other defects than in case of appropriate lubrication.

f. Short time before failure, the harmonic amplitudes in vibration spectrum
could strongly be attenuated or even vanish.

g.After a while, some defects (especially the multiple point ones) induce
harmonic components over the limit of 2 kHz.

h.When the bearing is new and defect free, the vibration could look as if it
would have defects, caused by the lack of usage and imperfections on
rolling surfaces.

1. The defects on rolling elements develop faster. Actually, the life time of
a bearing with defects on rolling elements is no greater than 25% of its
MTBF (Mean Time Before Failure). (MTBF is a standard parameter,
statistically evaluated, specified by manufacturers together with bearings
constructive parameters and types.)

Regarding the last remark (i), after testing more than 5000 bearings, one
has concluded in [15] that the failure occurred as follows: for about 26% of
bearings, when the first defect appeared on the outer race; for about 28% of
bearings with lubrication defects; for about 44% of bearings, when the first defect
appeared on the inner race; for about 76% of bearings, when the first defect
appeared on rolling elements. Obviously, rolling elements are by far the most
exposed parts to defects. The evolution of a defect from single point to multiple
points and from incipient to medium or high severity degree is illustrated in
Fig. 1.
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Fig. 1. Development of a defect on inner race.

The defect consists of cracks on the inner race and appeared very early
during the life time of bearing (before 1% of MTBF). One can see to the left the
different instants of defect evolution, in percentages of MTBF. The severe
multiple defects to the figure right put the bearing in state of advanced wearing
out. The forces that originate vibrations in bearings are mostly due to:
irregularities of rolling surfaces; excessive friction; shock pulses and ruptures of
lubrication layer; variation in stiffness; rotor self oscillations; interaction/collision
with other constructive parts. These forces induce mechanical constraints on
bearing constructive parts, which constitute the premise of defect apparition and
development. Thus, irregularities of rolling surfaces induce shaft vibrations. They
encode information about possible defects around some critical frequencies,
related to the natural ones described in [8]. Usually, set of 5 natural oscillation
frequencies could be derived: the ball pass frequency on the outer race (v, ); the

ball pass frequency on the inner race (v,,); the cage rotation frequency with

respect to the outer race (v, , ); the cage rotation frequency with respect to the

cout

inner race (v,,, ); the ball rotation frequency (v, ).

The friction forces are seen as sets of short shock pulses randomly
distributed in time, duration and shape. They induce strong vibrations in range
2-10 kHz and very weak vibrations beyond 10 kHz, up to 30 kHz, by means of
bearing resonance. Normally, when the defects are incipient or missing, these
vibrations could not include any related information, because the defect shock
pulses intensity could not overpass (too much) the intensity of friction shock
pulses. This information starts to significantly be encoded only when defect pulses
have an intensity of more than about 10 times bigger than friction pulses. Shock
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pulses and ruptures of lubrication layer produce 2 types of bearing oscillations:
forced and natural. Forced oscillations are distributed over a wide range of
frequencies, whereas the natural ones concentrate in narrow sub-bands around
some specific frequencies (related to the natural ones)) and have fast decay. The
variation in stiffness is almost due to variation of loads applied on bearing. The
rotor self oscillations are due to excessive distance between engine and bearing. In
general, the corresponding vibration has strong harmonic components at v, /2 and

2v

cout *
information about defects of other mechanisms. They also could damage a healthy
bearing, if not cancelled.

The most important forces that could damage a mechanical system are
described for example in [16]. They appear mostly when: the bearing is wrongly
mounted (the races are misaligned, the shaft is wobbling, etc.); the loads are very
irregular, the bearing has intrinsic constructive defects; the lubrication is
insufficient or overrated, etc. The raw vibration could thus encode information
about 3 main categories of possible defects:

The interaction with other constructive parts induces vibrations that encode

a.Installation defects: misalignment of races; non-uniform radial tension.

b.Defects during bearing operation: wear of outer race; cracks, spalls,
cavities on outer or inner race; wear of inner race; wear of rolling
elements; cracks, spalls, chops on rolling elements; wear of cage (or
other cage defects such as: deformation, local ruptures, etc.);
inappropriate lubrication (too much or too few lubricant).

c.Defects of other machinery parts (especially under dynamic loads): rotor
revolution (shaft wobbling); jointed coupling effects; gear teeth defects;
gear interaction defects.

For example, in Figure 2, races misalignment is produced by wrong
bearings positions or by excessive load. After a while, an eccentric grove is
practically created on inner race, which is associated to excessive wearing out.

=4 J Tl =4 =
j =% "
== o — J —
==

Fig. 2. Effect of races and/or axes misalignment.
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Another example is depicted in Figure 1 above, where cracks and wear on
inner race were pictured. Some defects on outer race are illustrated in Figure 3.

Fig. 3. Defects on outer race.

To the left, the cracks were produced by rust (the bearing worked in a
corrosive environment), whereas to the right one could see how an excessive and
non uniform dynamic load created transversal groves only on a sector of race.

The rolling elements can also be affected by chops, wear or cracks, like in
Fig. 4.

Fig. 4. Chops, wear or cracks on tubular elements.

The last example is depicted in Figure 5 and concerns the cage wearing,
also due to excessive loads. In general, cage defects lead to loss of clearance
between rolling elements, which involves non uniform wearing and local quasi
random impacts between rolling elements and cage.
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Fig. 5. Cage wearing out and local deformation.

The defects involve different behaviors of raw vibration, depending on
their nature. Thus, for example:

a.Cavities, spalls, cracks or chops on rolling surfaces (including rolling
elements) produce uniform or non uniform shock pulses that activate the
sensor resonance, which results in vibration enveloping [6].

b.The wearing out of rolling surfaces and elements or cage produces non-
uniform friction, although without visible shocks. Apparently, these
defects are not activating the sensor resonance, but the effect in vibration
is the same: enveloping. Therefore, one considers that variations of
friction forces could be modeled by a train of microscopic shock pulses.

c.The ruptures in lubrication layer and/or the loss of its purity are the most
difficult defects to diagnose by only using the raw vibration. They could
or could not produce shock pulses. Shocks appear especially when the
lubricant is mixed with metallic parts or another impurities or when the
shaft is wobbling (eventually combined with another defects). In the
absence of shocks, self sustained oscillations could appear, especially
when the lubricant is insufficient. When the lubricant is overrated, the
friction forces increase, due to viscosity, which produce a low frequency
modulation of vibration.

d.When the clearance between rolling elements is lost (due to cage
defects), shock pulses could appear as well (especially because of local
impacts between cage and rolling elements or even between rolling
elements themselves).

3. Spectral-statistical diagnosis

Once the vibration has been acquired and after performing some
preliminary processing operations (in order to remove accidental samples and to
reduce environmental noise), the main problem is to extract the information
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concerning the type and severity degree of defects. This goal is not easy to
approach. However, during the last 50 years, several solutions have been
proposed.

The oldest attempt is based on the classical Fourier Analysis of vibration
data. The vibration spectrum is usually constructed by spectral estimators with
appropriate windows (it seems that, in this case, the Hanning window is the most
suitable) [7]. The analyst could detect some defects even at their early stage of
development by direct inspection of vibration spectrum. But, because the
frequency content of vibration components are mixed in an unknown way
(resulting in a very irregular spectrum), many defects are hidden and could not be
detected, even by an experienced analyst. Moreover, the defect severity degree is
practically impossible to estimate with good accuracy only by inspection.

Take, for example, a tested bearing. If vibration data v are consistent (few

thousands of rotations), the vibration spectrum |V| looks like in Figure 6.
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Fig. 6. Overall vibration spectrum.
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Two cases could be discussed here. When the bearing is defect free, the
spectral energy is mainly concentrated inside the low frequency sub-band (LF)
encoding information about bearing oscillations and their natural frequencies
(derived from bearing geometry and depending on shaft rotation speed). Few
multiples of natural frequencies are replicated within spectrum, but their power
have an exponential decay (due to damping). In case of defective bearing, the idea
that the defect noise is basically generated by visible or microscopic quasi-random
shocks has been largely accepted today (even in case of wearing). Shocks are
modeled by trains of impulses and force the sensor to resonate. Usually, sensors
resonance appears at (very) high frequency, but, by convolution with a train of
impulses, it is replicated towards low and middle frequency as well. In Figure 6,
this phenomenon is suggested by energy concentration around some peaks located
in middle frequency sub-band (MF). Usually, a resonance peak is mixed with
basic LF spectrum as well, such that it could hardly be distinguished. The high
frequency sub-band (HF) rather encodes information about resonance corrupted
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by environmental noises. The spectrum could change (even dramatically),
depending on the applied load, sensors locations, shaft speed, bearing mounting,
etc. Because of this sensitive behavior, the information about defects encoded by
vibration spectrum is extremely difficult to read.

By inspecting the spectrum, some researchers believed that its irregular
shape is due to the environmental noise (white or colored). A simple technique to
remove the white noise component from data is to operate with auto-correlation
sequence instead of the genuine vibration data. This sequence is estimated as

follows, for N—length vibration data series, { v[n]}nEm :

k-1
:NL Z (nM[n+k], (D)
=0

where N, is either N or N—k and ke 0,(N / 4—‘ (in order to avoid introducing

supplementary computational noises). Hence, instead of vibration and its
spectrum, one operates with the auto-correlation sequence and the power spectral
density (psd), but the irregularities are only slightly smoothed.

Another different spectral concepts are also used. For example, two
successive Fourier Transforms (FT) are applied on v, resulting in a new concept:

the backstrum, V . This is defined like below for continuous time signals:

def +®
P(A) = j V(Q)e%dQ, VAeR, )

—0

where V' is the FT of v and A is referred to as quefrency (instead of frequency).
The defect information extraction is good enough, but it requires sophisticated
neuro-fuzzy classifiers and good interpretation skills from human operator, as
proven in [17].

The vibration model of convolution between two vibration components (a
harmonic resonance one and a defect encoding one), described in [8], inspired
other authors to replace the spectrum by the concept of cepstrum (V) and to use
the homomorphic deconvolution [7], in order to separate the components. The
cepstrum is defined as the inverse Fourier Transform of logarithmic V' :
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def +o0 .
3(2) :i [m[r@]e 7 aq, vreRr. 3)

Thus, by accounting the Convolution Theorem, the cepstra of the two
components are added each other. The deconvolution (i.e. the component
separation) can now be realized by appropriately filtering the cepstrum. This
method is quite effective for some single point defects, but multiple defects are
still hidden and the severity degree is difficult to estimate. Moreover, the cepstral
methods have shown that the superposition hypothesis does not hold in any case.

The limitations of methods mentioned so far are mainly due to the fact that
the sensor intimate behavior is ignored. The sensor is only seen as a quasi-linear
device that distorts insignificantly the crude vibration. The resonance effect
produced by defects is not actually accounted. The cepstrum method advanced
one step in the direction of considering this effect, but did not go farther. The
Fourier Analysis could be completed by a statistical approach. Statistical
parameters of vibration itself and/or of the associated spectrum are sometimes
very useful when inspecting a spectrum. Using statistics to extract information
about defects from raw vibration is not a new idea. Many analysts perform
diagnosis with the help of some parameters such as the root mean square (RMS)
or the peak value of vibration or its spectrum.

A quasi complete statistical set includes the following 12 parameters: peak

energy or variance (E); root mean square (RMS,); peak to average ratio
(PAR)); crest factor (CF,); impulse factor (IF,); shape factor (SF,); clearance
factor (CLF)); Kurtosis (X,). Their definitions are listed next, for N-length

vibration data series, { v[n]} but they could be used for any numerical data:

€0,N-1"
def | ) _def ] N —def 1 ¥ def N-1 )
v = 3 s o) = i (ot s 52 S0t01s = Sl = Shenr
dof [ Nz . def 1 e Ay
= —— - ; == 5 CF = s
RMS, N”Z:(;(v[n] V) : PAR, ; max. {vnll}; CF, RS,

IF, = —; SF, = ——"; CLF, = NAv/
M ¥

1 4
def Ay 4o RMS, def (N—l jz dof Ny (V[”]_V)
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The first 6 parameters are concerned with energetic characteristics, while
the other 6 quantify different properties of graphical shape. Obviously, the whole
set is redundant. But selecting a non redundant sub-set of statistical parameters is
complicated and, often, not really necessary. Two of them could however be
removed: the (absolute) average and the (normalized) energy.

Usually, the values of parameters defined in (4) are compared to standard
values corresponding to defect free systems. Their biases could indicate the
desired information about defects (including estimations of severity degree).
Although the number of parameters to account is large enough, no one is able to
extract all necessary information about defects. Therefore, the analysis becomes
complicated. A promising attempt of automating the faults classification starting
from 4 of these parameters (Av, RMS, , IF,, X ) has been introduced in [12].

The 4 parameters define a 3D space, where the coordinates are:

Qv
RMS?’
Here, RMS! stands for RMS of defect free vibration. The 3D space is transformed

in a so called features space, with 2 dimensions. The features are: Kurtosis X

IF,, %, .

(which is sensitive to energy distribution and to impulsive behavior) and data
spikiness, defined as:

gvdfln[Lqu} (5)

These 2 features are considered representative for discriminating between
defects. Six faults classes are isolated inside the features space, by continuously
training a pattern recognition classifier with data acquired from bearings. The
method introduced in [12] is computationally simple and has been implemented in
an experimental faults detector for bearings at Canadian Railways. Its drawbacks
are however obvious: only single point defects are accurately detected; the
severity degree could not be estimated; raw vibration acoustic data require
sophisticated denoising techniques, etc.

In [13], the diagnosis method is different. A fuzzy classifier can make the
distinction between different fault classes, through a holonic mechanism, starting
from the biases of 10 parameters (4). Results are quite surprising (even the
severity degree of defects could be estimated), but the method still requires a
trained analyst.
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4. Conclusion

The research concerning fdd by means of vibrations is by far more
advanced than described within this article. However, the industry is still fully
using semi-empirical diagnosis methods, due to their simplicity.

The paper aimed to review the most important defect types of bearings and
the most industry employed methods of fdd based on vibration analysis. The
vibration analysis mainly considers the noise component of the vibration signal to
encode the abnormal functioning of the bearings. The type and the severity degree
of the defects could be determined by applying several techniques based on
different spectral concepts (Fourier analysis, auto-correlation sequence,
backstrum, cepstrum) combined with statistical approaches based on statistical
parameters studies.

REFERENCES

[1]. V. von Tscharner, Intensity Analysis in Time-Frequency Space of Modelled Surface
Myoelectric Signals by Wavelets of Specified Resolution, preprint, 2000.

[2]. M. Angelo, Vibration Monitoring of Machines, Bruel & Kjiaer Technical Review, No.1, pp.1—
36, 1987.

[3]. 4. Bedford, D.S. Drumbheller, Introduction to Elastic Wave Propagation, John Wiley & Sons
Inc., Chichester, U.K., 1994.

[4]. K.G.McConnell, Vibration Testing. Theory and Practice, John Wiley & Sons Inc., NY, 1995.

[5]. V. Wowk, Machinery Vibration. Balancing, McGraw-Hill Inc., Upper Saddle River, New
York, USA, 1995.

[6]. S. Braun, Mechanical Signature Analysis, Academic Press, London, UK, 1986.

[7]. J.G. Proaki, D.G. Manolakis, Digital Signal Processing. Principles, Algorithms and
Applications, Prentice Hall, New Jersey, 1996.

[8]. Janetta Culita, D. Stefdanoiu, F. lonescu, Simulation Models of Defect Encoding Vibrations,
ISSN 1454-8658, vol 9, nr. 2, pp. 59-67, iunie 2007.

[9]. I. Howard, A Review of Rolling Element Bearing Vibration: Detection, Diagnosis and
Prognosis, Report of Defense Science and Technology Organization, Australia, 1994.

[10]. FAG OEM & AG. Handel, Wilzlagerschiden — Schadenserkennung und Begutachtung
gelaufener Wilzlager, Technical Report Nr.WL 82 102/2 DA (in German), 1996.

[11]. FAG OEM & AG. Handel, Rolling Bearings — State-of-the-Art, Condition-Related
Monitoring of Plants and Machines with Digital FAG Vibration Monitors, Technical Report
Nr.WL 80-65 E, April 1997.

[12]. F. Xi, Q. Sun, G. Krishnappa, Bearing Diagnostics Based on Pattern Recognition of
Statistical Parameters, Journ. of Vibration and Control, No. 6, pp. 375-392, 2000.

[13]. D. Stefanoiu, F. lonescu, Fuzzy Statistical Reasoning in Fault Diagnosis, chapter book in
Computational Intelligence in Fault Diagnosis (Eds. Palade V., Bocaniala C.D., Jain L.),
Springer Verlag, London, U.K., pp. 126-177, 2006.

[14]. G.J. Klir, T.A.Folger, Fuzzy sets, Uncertainty, and Information, Prentice Hall, New York,
USA, 1988.

[15]. A.V. Barkov, N.A. Barkova, J.S. Mitchell, Assessing the Condition and Lifetime of Rolling
Element Bearings from a Single Measurement, (http://www.inteltek.com/articles/bbmvi95).




74 Janetta Culita, Dan Stefanoiu, Florin Ionescu

[16]. A.V. Barkov, N.A. Barkova, The Arttificial Intelligence Systems for Machine Condition
Monitoring and Diagnostics by Vibration, Joint Proceedings of Sankt Petersburg post-
graduate Institute of the Russian Power Industry and of American Vibration Institute, vol. 9,
(http://www.vibrotek.com/articles/intelect-eng), 1999.

[17]. F. Ionescu, D. Arotaritei, Fault Diagnosis of Bearings by Using Analysis of Vibrations and
Neuro-Fuzzy Classification, Proc. ISMA’23 Conference, KU-Leuven, Belgium, September
16-18, 1998.




