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SINGULAR PERTURBATION DETECTION USING
WAVELET FUNCTION REPRESENTATION

Dan OLARU?, Mihai Octavian POPESCU?

Calitatea distributiei energiei electrice este o problema foarte importantd in
contextul actual. Detectia perturbatiilor singulare ramdne dificil de rezolvat pentru
cele mai multe metode de analiza. Acest tip de perturbatie este caracteristicd pentru
anumite evenimente anormale ce pot apare in retea. ldentificarea lor depinde de
eficienta instrumentelor de detectie si analizd. Lucrarea de fata prezintd un nou mod
de lucru bazat pe descompunerea in subspatii de functii Wavelet. Aceastd procedura
are o eficientd ridicatd chiar cand semnalul contine o perturbatie aleatoare
permanenta (zgomot). Continutul lucrarii vizeazd prezentarea modului de lucru si
interpretarea  rezultatelor obtinute. Caracteristicile procedurilor dovedesc
avantajele si aplicabilitatea metodei.

The distribution power quality is a very important issue in present context.
The singular perturbation detection remains a serious challenge for the most
analysis methods. This type of perturbation is characteristic for certain abnormal
events which may occur. Their identification depends on the efficiency of the
detection and analysis tools. The presented paper gives a new methodology based
on the Wavelet function decomposition. This procedure has a good efficiency even
when the signal is affected by a permanent noise perturbation. The paper content is
focused on presenting the working mode and the results’ interpretation. The features
of the procedures prove the advantages and the applicability of the methods.
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1. Introduction

The electric equipment may be monitored using the analysis of the electric
signal that is measured on the power supply connections. Certain anomalies
produce singular perturbations on the current or voltage signals. These
perturbations consist in rapid variations with irregular occurrence on very short
time durations. Frequency domain analysis may give good results in certain
situations. This is mainly based on using high pass filter. The band-pass filter is
not recommended because the spectrum of the perturbation signal cannot be well
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specified. However, in certain cases efficiency becomes very low. This is
explained by two characteristics specific to singular perturbation. The first refers
to the very short duration of evolution. The action of a high pass filter is related in
a certain way to the signal duration. Even if this is conformable to the band-pass
of the filter, the output signal depends on the signal duration, because of the
power dissipated by the filter. The second problem is related to the presence of
noise. This represents a permanent perturbation but with variable characteristics
with random features. Usually a part of the noise signal spectrum conforms to the
filters transfer function. Therefore, it may happen that the singular perturbation
that needs to be detected is covered by the noise passing to the filter.

2. Characteristics of Wavelet analysis

In principle, the analysis of a signal may be done in the time domain, in
the frequency domain or using a combination of the both domains. The frequency
domain analysis, for example by Fourier transform, gives a useful global image,
but it doesn’t offer relevant results in the case of singular perturbations. This can
be explain by the constant value of the Fourier transform for a Dirac “delta” pulse,
which can be used as mathematical model for a singular perturbation.

Better results may be obtained using the “Short Time Fourier Transform”
(STFT) or the Wavelet transform. Their characteristics may be observed in Fig.1,
2 and 3. In all the cases, using a 2D window, for each time moment (in abscissa),
and for each frequency (in ordinate, with relative units) the corresponding
transform value is given by a gray scale representation. Here, a particular test
signal is taken under consideration. Its variation is based on two frequency
sinusoidal components perturbed by two “delta” pulses singular perturbations.
Although the Wavelet transform would offer promising results, as it can be seen
in Fig.3, it must be observed that, when an additive random “noise” is present, the
singular perturbation detection is poor for the both transforms (Fig.1 and 2).

It must be mentioned that the presented numerical results are based on a
graphical representation, where the levels of gray in the upper window correspond
to the Wavelet transform values for time and frequency coordinates. The shaded
content of the image is due to the distribution of the computed values. For the
Short time Fourier transform, the discontinuous distribution is due to the local
frequency domain window, which is translated, step by step, along the whole
interval. In order to give a better solution, the paper presents a special type of four
levels Wavelet decomposition, matched for this kind of singular perturbation. This
procedure carries out a functional projection of the time dependent signal, on
certain subspaces, defined by corresponding Wavelet functions bases.

It is very interesting to point out one of the essential difference of the
Wavelet representation, compared to frequency domain filtering. The latter is
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defined by the "pass-band", that is the frequency interval where the attenuation is
reduced, so that, if for certain of the spectrum attenuation is null, applying the
filtering operation repeatedly this not change the output signal. However, in
Wavelet function representation the projection process is based on the selection of
certain variation speeds of original signal, which is, in a certain way, similar to the
Taylor series development, where terms correspond to derivatives of different
order. For a signal with finite variation speed, the maximum value of the
derivative decreases as the derivation order increases. Thus projections
corresponding to higher order Wavelet functions result in lower values. Therefore
increasing the level of the decomposition is not similar to successively applying
frequency domain filtering. Unlike filtering in the frequency domain, projections
on spaces generated by the Wavelet functions do not lead to disjoint frequency
domains. At each stage (level) of the projection two "components” of the signal
are obtained: one corresponding to low frequencies and one corresponding to high
frequencies. By choosing a certain base of Wavelet functions, we can obtain a
"hierarchy™ or a "tree" of several levels decomposition for a certain original
signal, each level having a partition in a low and a high range of frequencies.

An interesting propriety of Wavelet decomposition is that elements
composing the signal do not conserve their characteristics when we use different
levels of decomposition, as in the case of frequency components in classic
filtering. For example, the sign of certain components may change depending on
the level of decomposition, as we will see in Fig.6. However, one of important
characteristic of Wavelet decomposition is the fact that the signal can be precisely
reconstructed after the decomposition. In the case of frequency filtering, this is not
possible due to the additive structure of the decomposition and to the impossibility
of obtaining an ideal transfer function (that ensures disjoint frequency bands).

Very important is to point that the Wavelet decomposition is a powerful
analysis tool, giving more relevant information comparative with the Wavelet
discrete transform (WDT).
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Fig.1. “Short time Fourier transform” (for 32 samples window).
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Fig.2. Wavelet discrete transform (“noised” signal).
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Fig.3 Wavelet discrete transform (“noiseless” signal).

3. Mathematical formalism

As it was showed above, the Wavelet analysis is based on a projection

procedure using the spaces defined by the Wavelet functions. In the following, it
is presented the working principle, considering a more simple Wavelet function
class, known as Haar functions. These are simple shaped functions, with step

variation, very different compared to the Daubechies functions, whose evolution,

having an asymptotical variation, is described in Fig.4 (for the 10" order).
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Fig.4. The Daubechies function shape (scaling function and Wavelet function)
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The Wavelet projection process implies two categories of functions,
named as “scaling functions” and “Wavelet functions” (in proper sense).
Generally, the first have a semi-interval defined support and the second a well
localized support. The “scaling functions”, denoted as ®(¢) are given by the
following representation (for the Haar functions case):

1 te[0))
w1 @
and the “Wavelet” class functions, denoted as ‘P'(¢), are represented by:
1 1e[01/2)
y()=<-1 te[l/2)) (2)
0 r¢[0))

The elements of the function base, corresponding to ¢(z) type function are defined
by:
0/ (t)=~27¢27 -t —i) for j=01,.; i=01,...2-1 (3)

where the j index correspond to an expansion of the function shape and the i index
corresponds to a translation. These functions generate the spaces V'

v/ =sp{¢{}i:0 ,i, having the propriety: ¥/ cv/* 4)

The elements of the function base, corresponding to W(¢) type function are defined
by:
w/(t)=~27y (27 -t-i) for j=01,.; i=01,...2-1 (5)

These functions generate the spaces 1#:
w/ =sp{w{}i:0 ,i, having the propriety: w/ cv/* (6)

It must be mentioned that these definitions may be also formulated with
other relations, which may have other rules for intervals and for signs. In our case

the ¥2/ constant is chosen in order to satisfy the norm condition:
1

(wlwi)=[lw/ofar=1 (7)

0

where we denote by <., . > the scalar product.

The spaces generated by the function above defined satisfy the following
direct sum relation:

vitl—yvieow/ (8)

Using these functions, the projection process is equivalent to direct sum
decomposition. This process is well known as a multiresolution analysis, in the
composed space:
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corresponding to the following representation:
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4. Case study, numerical simulations

In order to emphasize the characteristics of the presented analysis
procedure, a composed signal is taken under consideration, containing two “sinus”
components superposed by two “delta” distribution pulses and a random “noise”
signal function. The “delta” pulses correspond to singular perturbations of the
sinusoidal signal (as we can see in an expanded form in Fig.5). The composed
signal function may be described by an analytical relation:

£(£) = sin(1000mt) + sin(2000mz) + a[8(t —2,) + (¢ — 1,)]+ Rnd (1) (11)

Fig.5. The composed signal (magnification containing two pulses of “5” singular perturbation).

The main objective of the Wavelet analysis is the singular perturbation
detection (represented by the delta pulses), when a high amplitude “noise” is
present. The data were processed by a program package referred in [1]. The
discrete form of the original signal, containing the sinusoidal functions and the
singular perturbations is added by a unitary amplitude pseudo-random signal. For
the numerical simulation 2048 samples were processed. The Wavelet
decomposition was done for four levels, using the 5" order, biorthogonal
Daubechies functions. The four level results, represented in Fig.6 are obtained
from the decomposition resulting data, applying a 50% threshold. Thus, the noise
contribution is completely eliminated. The presented numerical results are an
optimal choice, derived from several numerical experiments, where there are used
different functional bases as: Spline or non-orthogonal Daubechies wavelet
functions of inferior or superior rank.
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Fig.6. Four decomposition levels, corresponding to the Wavelet spaces for 2048 samples.

The presented results are very interesting for a comparative analysis between
the Wavelet type analysis and the classical detection possibilities. It must be
emphasized that the Wavelet analysis, used for the singular perturbation detection
is not equivalent with a high-pass filtering process, combined with controlled
level peak detection. This approach is affected by some inherent restrictions:

- the singular perturbation signal must exceed (in amplitude) the level of the

high frequency component contained by the random noise.

- the detection threshold level must be chosen so that to discriminate the

singular perturbation from the “noise” signal.

The Wavelet analysis can eliminate these problems. Thus, as it can be see in
Fig.7 that the “noise” high frequency component is higher or comparable with the
singular perturbation level. This signal results from a value selection, using a 75%
threshold, applied to the original composed signal (Ao).

The efficiency of the Wavelet analysis, used as a singular perturbation
detection tool, is based especially on the functional projecting procedure, and the
Wavelet functions characteristics. This class contains functions with short time
evolution (limited support), comparable with the singular perturbation duration.
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Thus, by the projection process (similar with a “correlation” function) are selected
those signal variations that are comparable, from the shape and duration point of
view, with the singular perturbation. When we gradually increase the
decomposition level, the short time variations are emphasized, having a certain
intensity level relative to the other components of the signal. In Fig.8, which
shows a magnification of the Fig.7 representation, it can be observed that, when
the noise is present, the signal peaks are more frequent when the singular
perturbation occurs. So, in that zone, the intensity (the energy) of the short time
signal variations is more important.
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Fig.7. The original signal remainder, after applying a 75% threshold processing.
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Fig.8. The magnification of the perturbation zone, for the Fig.7 signal.

5. Conclusions

The presented results yield some unique features of Wavelet
multiresolution analysis. This enables the detection of some signal perturbations
with unpredictable characteristics, with minimum computing effort and maximum
efficiency. This gives better results compared to “Wavelet discrete transform” and
the other classical or algorithmic methods. In our case, the imposed threshold is
used only for clarity reasons. The perturbation may be detected as well by
amplitude peak detection, after the Wavelet decomposition. In contrast, no good
results can be obtained if the amplitude peak detection actions on the original
signal (with high frequency components shown in Fig.6).
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