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Calitatea distribuţiei energiei electrice este o problemă foarte importantă în 
contextul actual. Detecţia perturbaţiilor singulare rămâne dificil de rezolvat pentru 
cele mai multe metode de analiză. Acest tip de perturbaţie este caracteristică pentru 
anumite evenimente anormale ce pot apare în reţea. Identificarea lor depinde de 
eficienţa instrumentelor de detecţie şi analiză. Lucrarea de faţă prezintă un nou mod 
de lucru bazat pe descompunerea în subspaţii de funcţii Wavelet. Această procedură 
are o eficienţă ridicată chiar când semnalul conţine o perturbaţie aleatoare 
permanentă (zgomot). Conţinutul lucrării vizează prezentarea modului de lucru şi 
interpretarea rezultatelor obţinute. Caracteristicile procedurilor dovedesc 
avantajele şi aplicabilitatea metodei. 

The distribution power quality is a very important issue in present context. 
The singular perturbation detection remains a serious challenge for the most 
analysis methods. This type of perturbation is characteristic for certain abnormal 
events which may occur. Their identification depends on the efficiency of the 
detection and analysis tools. The presented paper gives a new methodology based 
on the Wavelet function decomposition. This procedure has a good efficiency even 
when the signal is affected by a permanent noise perturbation. The paper content is 
focused on presenting the working mode and the results’ interpretation. The features 
of the procedures prove the advantages and the applicability of the methods. 
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1. Introduction 
 

The electric equipment may be monitored using the analysis of the electric 
signal that is measured on the power supply connections. Certain anomalies 
produce singular perturbations on the current or voltage signals. These 
perturbations consist in rapid variations with irregular occurrence on very short 
time durations. Frequency domain analysis may give good results in certain 
situations. This is mainly based on using high pass filter. The band-pass filter is 
not recommended because the spectrum of the perturbation signal cannot be well 
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specified. However, in certain cases efficiency becomes very low. This is 
explained by two characteristics specific to singular perturbation. The first refers 
to the very short duration of evolution. The action of a high pass filter is related in 
a certain way to the signal duration. Even if this is conformable to the band-pass 
of the filter, the output signal depends on the signal duration, because of the 
power dissipated by the filter. The second problem is related to the presence of 
noise. This represents a permanent perturbation but with variable characteristics 
with random features. Usually a part of the noise signal spectrum conforms to the 
filters transfer function. Therefore, it may happen that the singular perturbation 
that needs to be detected is covered by the noise passing to the filter. 
 

2. Characteristics of Wavelet analysis 
 

In principle, the analysis of a signal may be done in the time domain, in 
the frequency domain or using a combination of the both domains. The frequency 
domain analysis, for example by Fourier transform, gives a useful global image, 
but it doesn’t offer relevant results in the case of singular perturbations. This can 
be explain by the constant value of the Fourier transform for a Dirac “delta” pulse, 
which can be used as mathematical model for a singular perturbation. 

Better results may be obtained using the “Short Time Fourier Transform” 
(STFT) or the Wavelet transform. Their characteristics may be observed in Fig.1, 
2 and 3. In all the cases, using a 2D window, for each time moment (in abscissa), 
and for each frequency (in ordinate, with relative units) the corresponding 
transform value is given by a gray scale representation. Here, a particular test 
signal is taken under consideration. Its variation is based on two frequency 
sinusoidal components perturbed by two “delta” pulses singular perturbations. 
Although the Wavelet transform would offer promising results, as it can be seen 
in Fig.3, it must be observed that, when an additive random “noise” is present, the 
singular perturbation detection is poor for the both transforms (Fig.1 and 2). 

It must be mentioned that the presented numerical results are based on a 
graphical representation, where the levels of gray in the upper window correspond 
to the Wavelet transform values for time and frequency coordinates. The shaded 
content of the image is due to the distribution of the computed values. For the 
Short time Fourier transform, the discontinuous distribution is due to the local 
frequency domain window, which is translated, step by step, along the whole 
interval. In order to give a better solution, the paper presents a special type of four 
levels Wavelet decomposition, matched for this kind of singular perturbation. This 
procedure carries out a functional projection of the time dependent signal, on 
certain subspaces, defined by corresponding Wavelet functions bases.  

It is very interesting to point out one of the essential difference of the 
Wavelet representation, compared to frequency domain filtering. The latter is 
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defined by the "pass-band", that is the frequency interval where the attenuation is 
reduced, so that, if for certain of the spectrum attenuation is null, applying the 
filtering operation repeatedly this not change the output signal. However, in 
Wavelet function representation the projection process is based on the selection of 
certain variation speeds of original signal, which is, in a certain way, similar to the 
Taylor series development, where terms correspond to derivatives of different 
order. For a signal with finite variation speed, the maximum value of the 
derivative decreases as the derivation order increases. Thus projections 
corresponding to higher order Wavelet functions result in lower values. Therefore 
increasing the level of the decomposition is not similar to successively applying 
frequency domain filtering. Unlike filtering in the frequency domain, projections 
on spaces generated by the Wavelet functions do not lead to disjoint frequency 
domains. At each stage (level) of the projection two "components" of the signal 
are obtained: one corresponding to low frequencies and one corresponding to high 
frequencies. By choosing a certain base of Wavelet functions, we can obtain a 
"hierarchy" or a "tree" of several levels decomposition for a certain original 
signal, each level having a partition in a low and a high range of frequencies.  

An interesting propriety of Wavelet decomposition is that elements 
composing the signal do not conserve their characteristics when we use different 
levels of decomposition, as in the case of frequency components in classic 
filtering. For example, the sign of certain components may change depending on 
the level of decomposition, as we will see in Fig.6. However, one of important 
characteristic of Wavelet decomposition is the fact that the signal can be precisely 
reconstructed after the decomposition. In the case of frequency filtering, this is not 
possible due to the additive structure of the decomposition and to the impossibility 
of obtaining an ideal transfer function (that ensures disjoint frequency bands). 

Very important is to point that the Wavelet decomposition is a powerful 
analysis tool, giving more relevant information comparative with the Wavelet 
discrete transform (WDT). 

 

 
Fig.1. “Short time Fourier transform” (for 32 samples window). 
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Fig.2. Wavelet discrete transform (“noised” signal). 

 

 
 

Fig.3 Wavelet discrete transform (“noiseless” signal). 
 
 

3. Mathematical formalism 
 
As it was showed above, the Wavelet analysis is based on a projection 

procedure using the spaces defined by the Wavelet functions. In the following, it 
is presented the working principle, considering a more simple Wavelet function 
class, known as Haar functions. These are simple shaped functions, with step 
variation, very different compared to the Daubechies functions, whose evolution, 
having an asymptotical variation, is described in Fig.4 (for the 10th order). 

 

 
 

 
 

Fig.4. The Daubechies function shape (scaling function and Wavelet function) 
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The Wavelet projection process implies two categories of functions, 
named as “scaling functions” and “Wavelet functions” (in proper sense). 
Generally, the first have a semi-interval defined support and the second a well 
localized support. The “scaling functions”, denoted as Φ(t) are given by the 
following representation (for the Haar functions case): 
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and the “Wavelet” class functions, denoted as Ψ(t), are represented by: 
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The elements of the function base, corresponding to φ(t) type function are defined 
by: 
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where the j index correspond to an expansion of the function shape and the i index 
corresponds to a translation. These functions generate the spaces Vj: 
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The elements of the function base, corresponding to Ψ(t) type function are defined 
by: 
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These functions generate the spaces Wj: 

{ } 12,...,0 −=ψ= ji
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j spW  having the propriety: 1+⊆ jj VW   (6) 
It must be mentioned that these definitions may be also formulated with 

other relations, which may have other rules for intervals and for signs. In our case 
the j2  constant is chosen in order to satisfy the norm condition: 
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where we denote by < . , . > the scalar product. 

The spaces generated by the function above defined satisfy the following 
direct sum relation: 

jjj WVV ⊕=+1        (8) 
Using these functions, the projection process is equivalent to direct sum 

decomposition. This process is well known as a multiresolution analysis, in the 
composed space: 
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corresponding to the following representation: 
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4. Case study, numerical simulations 

 
In order to emphasize the characteristics of the presented analysis 

procedure, a composed signal is taken under consideration, containing two “sinus” 
components superposed by two “delta” distribution pulses and a random “noise” 
signal function. The “delta” pulses correspond to singular perturbations of the 
sinusoidal signal (as we can see in an expanded form in Fig.5). The composed 
signal function may be described by an analytical relation: 

 
[ ] )1()()()2000sin()1000sin()( 21 Rndtttttttf +−δ+−δα+π+π=  (11) 

 
Fig.5. The composed signal (magnification containing two pulses of  “δ” singular perturbation). 

 
The main objective of the Wavelet analysis is the singular perturbation 

detection (represented by the delta pulses), when a high amplitude “noise” is 
present. The data were processed by a program package referred in [1]. The 
discrete form of the original signal, containing the sinusoidal functions and the 
singular perturbations is added by a unitary amplitude pseudo-random signal. For 
the numerical simulation 2048 samples were processed. The Wavelet 
decomposition was done for four levels, using the 5th order, biorthogonal 
Daubechies functions. The four level results, represented in Fig.6 are obtained 
from the decomposition resulting data, applying a 50% threshold. Thus, the noise 
contribution is completely eliminated. The presented numerical results are an 
optimal choice, derived from several numerical experiments, where there are used 
different functional bases as: Spline or non-orthogonal Daubechies wavelet 
functions of inferior or superior rank. 
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 Noiseless composed signal 

Composed signal (A0) 

 “1A- high” level 

.  “2B- high” level selection 
with a 50% threshold 

 “3D- high” level selection 
with a 50% threshold 

 “4H- high” level selection 
with a 50% threshold 

 
Fig.6. Four decomposition levels, corresponding to the Wavelet spaces for 2048 samples. 

 
The presented results are very interesting for a comparative analysis between 

the Wavelet type analysis and the classical detection possibilities. It must be 
emphasized that the Wavelet analysis, used for the singular perturbation detection 
is not equivalent with a high-pass filtering process, combined with controlled 
level peak detection. This approach is affected by some inherent restrictions: 

- the singular perturbation signal must exceed (in amplitude) the level of the 
high frequency component contained by the random noise. 

- the detection threshold level must be chosen so that to discriminate the 
singular perturbation from the “noise” signal. 

The Wavelet analysis can eliminate these problems. Thus, as it can be see in 
Fig.7 that the “noise” high frequency component is higher or comparable with the 
singular perturbation level. This signal results from a value selection, using a 75% 
threshold, applied to the original composed signal (A0). 

The efficiency of the Wavelet analysis, used as a singular perturbation 
detection tool, is based especially on the functional projecting procedure, and the 
Wavelet functions characteristics. This class contains functions with short time 
evolution (limited support), comparable with the singular perturbation duration. 
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Thus, by the projection process (similar with a “correlation” function) are selected 
those signal variations that are comparable, from the shape and duration point of 
view, with the singular perturbation. When we gradually increase the 
decomposition level, the short time variations are emphasized, having a certain 
intensity level relative to the other components of the signal. In Fig.8, which 
shows a magnification of the Fig.7 representation, it can be observed that, when 
the noise is present, the signal peaks are more frequent when the singular 
perturbation occurs. So, in that zone, the intensity (the energy) of the short time 
signal variations is more important. 
 

 
Fig.7. The original signal remainder, after applying a 75% threshold processing. 

 

 
Fig.8. The magnification of the perturbation zone, for the Fig.7 signal. 

 
 

5. Conclusions 
 

The presented results yield some unique features of Wavelet 
multiresolution analysis. This enables the detection of some signal perturbations 
with unpredictable characteristics, with minimum computing effort and maximum 
efficiency. This gives better results compared to “Wavelet discrete transform” and 
the other classical or algorithmic methods. In our case, the imposed threshold is 
used only for clarity reasons. The perturbation may be detected as well by 
amplitude peak detection, after the Wavelet decomposition. In contrast, no good 
results can be obtained if the amplitude peak detection actions on the original 
signal (with high frequency components shown in Fig.6). 
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