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A CLASS OF SOLID BURST ERROR CORRECTING CODES
DERIVED FROM A REVERSIBLE CODE

Pankaj Kumar Das1

In this paper, we present a class of linear codes that are capable
of correcting solid burst errors of certain length or less. We obtain the
codes by modifying the parity check matrix of the reversible code given by
Muttoo and Lal (“A reversible code over GF(q)”, Kybernetika, 22(1), 85–
91, 1986). Further, we present solid burst error uncorrected probability
and weight distribution of the reversible code and the obtained codes for
particular cases.
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1. Introduction

In some communication channels like semiconductor memory data, su-
percomputer storage systems [1, 2, 3, 6], it was found that errors do not occur
independently, they occur consecutively. As a result in the received codeword
(codevector), some consecutive (adjacent) components get disturbed and so
there is a need to rectify them. This type of disturbances is known as solid
burst error/adjacent error.

Definition 1.1. A solid burst of length b is a vector whose all the b-consecutive
components are non-zero and rest are zero.

Muttoo and Lal [8] have presented a linear code over finite field GF (q)
(which is also reversible code), capable of correcting solid burst of odd length
only. This paper modifies the parity check matrix of the code and obtains a
class of linear codes that correct all solid burst errors of certain length or less,
irrespective of even or odd length. The work of this paper is motivated from
the paper [7] where the author obtains two codes by rearranging the columns
of the parity check matrix of a systematic code given by [5]. One code can
correct double errors as well as detect all triple-adjacent errors removing the
restriction of detecting triple-adjacent errors within 8-bit bytes and another
code is capable of correcting all 16 single errors, correct 113 of the 120 double
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errors, detect seven double errors, correct seven of 14 triple adjacent errors,
detect seven triple adjacent errors, and correct all quadruple adjacent errors.
In a very recent paper [4], it also obtains a class of solid burst error detecting
and locating codes (with better information rate) derived from the famous
Extended (8, 4) Hamming code.

As it is not always possible to detect/correct all errors, so it becomes
important to know the probability of errors that goes undetected/uncorrected
even after applying error detection/correction mechanism. In this direction,
the probability of solid burst errors going undetected/uncorrected by the orig-
inal code and by new derived codes is studied here. Further, for carefully
characterizing the performance of codes, the weight distribution of a code is
important. This paper also studies weight distribution of the codes for binary
case.

The paper has been organized as follows. Section 1 is the introductory
part and motivation of the paper. In Section 2, we derive a class of linear codes
that are capable of correcting solid burst errors of certain length or less from
the reversible code studied by Muttoo and Lal [8]. In Section 3, we obtain solid
burst error probability that goes uncorrected by the original and new derived
codes. It is followed by weight distribution of the codes for binary case.

2. Code Construction

The main result of the paper [8] is the following theorem.

Theorem 2.1. An (n, k) linear code Ck over GF (q), n = 2k+1, whose parity
check matrix is Hk,

Hk =



k︷ ︸︸ ︷
x1 x2 . . . xk−1 xk y

k︷ ︸︸ ︷
0 0 . . . 0 0

0 x2 . . . xk−1 xk y xk 0 . . . 0 0
0 0 . . . xk−1 xk y xk xk−1 . . . 0 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 . . . 0 xk y xk xk−1 . . . x2 0
0 0 . . . 0 0 y xk xk−1 . . . x2 x1


,

where y, xj ∈ {1, 2, . . . q− 1}, (xi, y) = 1 and (xi, xj) = 1 for i 6= j, i, j = 1, 2, . . . k.

is capable to correct,
(i) all solid bursts of odd lengths upto 2k − 1, if n− k is even, i.e. if k is odd,
(ii) all solid bursts of odd lengths upto k − 1, if n− k is odd, i.e. if k is even.

The matrix Hk in the theorem can be written as

Hk =
[
Ak Y Bk

]
,

where
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Ak =



x1 x2 . . . xk−1 xk

0 x2 . . . xk−1 xk

0 0 . . . xk−1 xk

. . . . . . .

. . . . . . .
0 0 . . . 0 xk

0 0 . . . 0 0


, Y =



y
y
y
.
.
y
y


and

Bk =



0 0 . . . 0 0
xk 0 . . . 0 0
xk xk−1 . . . 0 0
. . . . . . .
. . . . . . .
xk xk−1 . . . x2 0
xk xk−1 . . . x2 x1


.

The main drawback of the code is that it can not correct solid burst of even
length (less than certain value given in Theorem 2.1). This is due to the fact
that syndromes of solid burst of even length are not distinct with syndromes
of other solid bursts. For example, the syndrome of solid bursts confined to
the kth and (k + 1)th components may coincide with the syndrome resulting
from the error at last position.

In this correspondence, we modify the matrix Hk such that the syndromes
of all solid bursts of length 2k−1 ( or k−1) or less, irrespective of even or odd
length, become all distinct and the resulting code can correct all such errors.
We modify the matrix Hk by keep on adding rows to Hk and finally obtaining
the general matrix, denoted by H t

k which gives rise to a linear code Ct
k that

can correct all solid bursts of certain length or less, irrespective of even or odd
length.

First, we add a single row to Hk after the (k + 1)th row as follows.

H1
k =



x1 x2 . . . xk−1 xk y 0 0 . . . 0 0
0 x2 . . . xk−1 xk y xk 0 . . . 0 0
0 0 . . . xk−1 xk y xk xk−1 . . . 0 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 . . . 0 xk y xk xk−1 . . . x2 0
0 0 . . . 0 0 y xk xk−1 . . . x2 x1

0 0 . . . 0 0 y 0 xk−1 . . . 0 0


,
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or

H1
k =

[
Ak Y Bk

0 y a1

]
,

where a1 represents the k-tuple (0, xk−1, 0, xk−3, 0, . . . , c) and the value of c is given
as follows.

c =

{
x1 if k − 2 is a multiple of 2

0 if k − 2 is not a multiple of 2.

This matrix gives rise to a (2k + 1, k− 1) linear code C1
k which will correct all solid

burst error of length upto 3. This can be confirmed by showing that all the syn-
dromes produced by solid bursts of length 3 or less are distinct and non-zero. Since
the code obtained from Hk correct all solid bursts of length 1 and 3, so the syndromes
resulting from such errors are distinct and non-zero. The situation of syndromes of
solid burst of length 2 coinciding with other syndromes of solid bursts of length upto
3 is only possible when one burst comes from the first k + 1 components and the
second comes from the last k+1 components. We have added the (k+2)th row to Hk

in such a way even if the first k+1 components of the syndromes of solid burst errors
of length 3 or less coincide, the last component i.e. (k+2)th component gets different.

We now add another row to H1
k as follows.

H3
k =

 Ak Y Bk

0 y a1
0 y a3

 ,

where a3 represents the k-tuple (0, 0, 0, xk−3, 0, 0, 0, xk−7 . . . , c) and the value of c is
given as follows.

c =

{
x1 if k − 4 is a multiple of 4

0 if k − 4 is not a multiple of 4.

This matrix gives rise to a (2k + 1, k − 2) linear code C3
k that will correct all

solid bursts of length 5 or less. This is again justified by showing that syndromes of
such solid burst errors are all distinct and non-zero. The pattern of the tuple a3 is
such that the syndromes of all such solid bursts gets distinct from all syndromes of
solid burst of length 5 or less.

If we continue the process of adding row in the above manner, we obtain the follow-
ing matrix Ht

k (t is odd) that gives rise to a (2k + 1, k − t+1
2 ) linear code Ct

k which
corrects all solid bursts of length t + 2 or less.
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Ht
k =



Ak Y Bk

0 y a1
0 y a3
0 y a5
. . .
. . .
0 y at


,

where at represents the k-tuple (0, 0, ..., 0︸ ︷︷ ︸
t

, xk−t, 0, 0, ..., 0︸ ︷︷ ︸
t

, xk−2t−1, . . . , c) and the

value of c is given as follows:

c =

{
x1 if k − t− 1 is a multiple of t + 1

0 if k − t− 1 is not a multiple of t + 1.

Observation: The number of non-zero components in at is given by dk−tt+1e, where

dxe means the smallest integer greater than or equal to x.

By Theorem 2.1, the code Ck corrects (i) all solid bursts of odd lengths upto
2k − 1, if k is odd, (ii) all solid bursts of odd lengths upto k − 1, if k is even. So,
the value of t in the length of solid burst correction is restricted to (i) t ≤ 2k − 3 if
k is odd, and (ii) t ≤ k − 3 if k is even.

Note that if t = 2k − 1, then n− k = k + 1 + 2k−3+1
2 = 2k + 1 = n.

We can summarise the above discussion as follows.

Theorem 2.2. An (2k+1, k− t+1
2 ) linear code Ct

k over GF (q), t is an odd number,
whose parity check matrix is Ht

k, is capable to correct
(i) all solid bursts of length t + 2 or less (t ≤ 2k − 3) and all solid bursts of odd
lengths upto 2k − 1, if k is odd,
(ii) all solid bursts of length t + 2 or less (t ≤ k − 3) and all solid bursts of odd
lengths upto k − 1, if k is even.

Example 2.1. Consider the following (5× 7) matrix H1
3 over GF(2):

H1
3 =


1 1 1 1 0 0 0
0 1 1 1 1 0 0
0 0 1 1 1 1 0
0 0 0 1 1 1 1
0 0 0 1 0 1 0


We can easily check that the syndromes produced by all solid bursts of length 3 or
less are non-zero and distinct. Therefore, the null space of H1

3 over GF(2) corrects
all solid bursts of length 1, 2, 3.

3. Error Probability and Weight Distribution

In this section, we study solid burst error probability and weight distribution
of the codes Ck and Ct

k discussed in Section 2. The generator matrix of the (2k+1, k)
linear code Ck over GF (q) can be obtained as follows.
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Gk =



k︷ ︸︸ ︷
xk 0 . . . 0 0 −y−1x1xk

k︷ ︸︸ ︷
x1 0 . . . 0 0

0 xk−1 . . . 0 0 −y−1x2xk−1 0 x2 . . . 0 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 0 . . . x2 0 −y−1xk−1x2 0 0 . . . xk−1 0
0 0 . . . 0 x1 −y−1xkx1 0 0 . . . 0 xk

 ,

where y, xj ∈ {1, 2, . . . q − 1}, (xi, y) = 1 and (xi, xj) = 1 for i 6= j, i, j =
1, 2, . . . k.

Remark 3.1. From the generator matrix Gk, we see that no codeword is of the
form-solid burst of length 2k or less. Therefore, the code Ck can detect any solid
burst of length 2k or less.

Solid Burst Error Probability: Now we find the probability of solid burst
error that goes undetected/ uncorrected by the codes Ck and Ct

k. Let us consider a
binary symmetrical channel (BSC) which has error probability p.

For the Ck code, since the code can correct (i) all solid burst of odd length
upto 2k − 1, if k is odd, and (ii) all solid bursts of odd lengths upto k − 1, if k
is even. So, the probability that solid burst goes uncorrected for k being odd is∑k

i=1(2k + 2 − 2i)p2i(1 − p)2k+1−2i + p2k+1 and for k being even is
∑ k

2
i=1(2k + 2 −

2i)p2i(1− p)2k+1−2i +
∑2k+1

i=k+1(2k + 2− i)pi(1− p)2k+1−i.

For the Ct
k code (t being odd), the code can correct (i) all solid bursts of length

t + 2 or less (t ≤ 2k− 3) and all solid bursts of odd lengths upto 2k− 1, if k is odd,
(ii) all solid bursts of length t + 2 or less (t ≤ k − 3) and all solid bursts of odd
lengths upto k−1, if k is even. So, the probability that solid burst goes uncorrected

for k being odd is
∑k

i= t+3
2

(2k+ 2− 2i)p2i(1− p)2k+1−2i + p2k+1 and for k being even

is
∑ k

2

i= t+3
2

(2k + 2− 2i)p2i(1− p)2k+1−2i +
∑2k+1

i=k+1(2k + 2− i)pi(1− p)2k+1−i.

Remark 3.2. As the code Ck can detect any solid burst of length 2k or less and
probability that solid burst goes undetected is p2k+1.

Now consider the value of p is 0.1. In Table 3.1, we list the probabilities of
solid burst error going uncorrected by the codes Ck and Ct

k for different values of k
and t.

Table 3.1: Error Probability

Probability that solid burst goes Probability that solid burst goes
k t uncorrected by Ck for p = 0.1 uncorrected by Ct

k for p = 0.1
(appr. value) (appr. value)

(Odd value)
5 1 0.0391282587 0.00038620980
5 3 0.0391282587 0.00000357229
5 5 0.0391282587 0.00000002935
5 7 0.0391282587 0.00000000019

(Even value)
6 1 0.0469729930 0.00039165790
6 3 0.0469729930 0.00000423741



A Class of Solid Burst Error Correcting Codes Derived from a Reversible Code 159

Weight Distribution: Here we give the weight distribution of the codes Ck and
C1
k . Clearly the distance of the codes Ck and C1

k is 3. If wt(j) represents the number
of codevector of the code Ck of hamming weight j, then weight distribution of the
code Ck for the binary case is given by

wt(3) =

(
k

1

)
,

wt(4) =

(
k

2

)
,

wt(5) = 0,

wt(6) = 0,

wt(7) =

(
k

3

)
,

wt(8) =

(
k

4

)
,

wt(9) = 0,

wt(10) = 0,

wt(11) =

(
k

5

)
,

wt(12) =

(
k

6

)
,

wt(13) = 0,

wt(14) = 0,

−−−−−−−
−−−−−−−

This can be summarised as follows.

Theorem 3.1. If wt(j) represents the number of codevector of the binary code
Ck(2k + 1, k) having hamming weight j where j ≤ 2k + 1, then for i ∈ N and

assuming

(
n

r

)
= 0 if r > n, we have

wt(j) =



(
k

i

)
if j = 4i− 1(

k

2i

)
if j = 4i

0 if j = 4i− 2 or 4i− 3.

Using the MacWilliams Identity (Theorem 3.14, [9]), we get the following theorem.

Theorem 3.2. If wt(i) and wt′(i) denote the number of codevectors of weight i in
the binary code Ck(n, k), where n = 2k + 1 and its dual code, then

wt′(i) = q−k
n∑

j=0

wt(j)

n∑
s=0

(
j

s

)(
n− j

i− s

)
(−1)s(q − 1)i−s,

where wt(j) is given by Theorem 3.1.
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Next, we give the weight distribution of Ct
k for t = 1. The code C1

k is more
important than other codes Ct

k for t 6= 1 due to high probability of occurring of solid
burst error of length upto 3. The generator matrix of the code C1

k for binary case is
given by

G1
k =

[
J Ik−1 L Ik−1

]
,

where Ik−1 represents the identity matrix of order (k − 1), J is a matrix of order
(k − 1) × 1, the single column consisting of elements 0 and 1 alternatively with 0
first; and L is a matrix of order (k − 1) × 2 with the rows 10 and 01 alternatively
with 10 as first row. For example the generator matrix of binary C1

6 is given by

G1
6 =


0 1 0 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 0 0 0 0 0 1

 .

The generator matrix of the binary code C1
k in the above form helps us to

obtain the weight distribution of the code. If Aj represents the number of codevectors
of hamming weight j in the code C1

k(n, k − 1), then the weight distribution of the
C1
k is given by

A3 =

(
dk−12 e

1

)
.

(
bk−12 c

0

)
,

A4 =

(
dk−12 e

0

)
.

(
bk−12 c

2

)
+

(
dk−12 e

2

)
.

(
bk−12 c

0

)
+

(
dk−12 e

0

)
.

(
bk−12 c

1

)
,

A5 = 0,

A6 = 0,

A7 =

(
dk−12 e

1

)
.

(
bk−12 c

2

)
+

(
dk−12 e

3

)
.

(
bk−12 c

0

)
+

(
dk−12 e

1

)
.

(
bk−12 c

1

)
,

A8 =

(
dk−12 e

0

)
.

(
bk−12 c

4

)
+

(
dk−12 e

2

)
.

(
bk−12 c

2

)
+

(
dk−12 e

4

)
.

(
bk−12 c

0

)
+

(
dk−12 e

0

)
.

(
bk−12 c

3

)
+

(
dk−12 e

2

)
.

(
bk−12 c

1

)
,

A9 = 0,

A10 = 0,

A11 =

(
dk−12 e

1

)
.

(
bk−12 c

4

)
+

(
dk−12 e

3

)
.

(
bk−12 c

2

)
+

(
dk−12 e

5

)
.

(
bk−12 c

0

)
+

(
dk−12 e

1

)
.

(
bk−12 c

3

)
+

(
dk−12 e

3

)
.

(
bk−12 c

1

)
,
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A12 =

(
dk−12 e

0

)
.

(
bk−12 c

6

)
+

(
dk−12 e

2

)
.

(
bk−12 c

4

)
+

(
dk−12 e

4

)
.

(
bk−12 c

2

)
+

(
dk−12 e

6

)
.

(
bk−12 c

0

)
+

(
dk−12 e

0

)
.

(
bk−12 c

5

)
+

(
dk−12 e

2

)
.

(
bk−12 c

3

)
+

(
dk−12 e

4

)
.

(
bk−12 c

1

)
,

A13 = 0,

A14 = 0,

−−−−−−−−−−
−−−−−−−−−−
−−−−−−−−−−.

This leads to the following result.

Theorem 3.3. If Aj represents the number of codevectors of hamming weight j in
the binary code C1

k(n, k − 1), where n = 2k + 1 and j ≤ 2k + 1, then for i ∈ N and

assuming

(
n

r

)
= 0 if n < r, we have

A4i−1 =

[(
dk−12 e

1

)
.

(
bk−12 c
2i− 2

)
+

(
dk−12 e

3

)
.

(
bk−12 c
2i− 4

)
+ . . . +

(
dk−12 e
2i− 1

)
.

(
bk−12 c

0

)]

+

[(
dk−12 e

1

)
.

(
bk−12 c
2i− 3

)
+

(
dk−12 e

3

)
.

(
bk−12 c
2i− 5

)
+ · · ·+

(
dk−12 e
2i− 3

)
.

(
bk−12 c

1

)]
,

A4i =

[(
dk−12 e

0

)
.

(
bk−12 c

2i

)
+

(
dk−12 e

2

)
.

(
bk−12 c
2i− 2

)
+ . . . +

(
dk−12 e

2i

)
.

(
bk−12 c

0

)]

+

[(
dk−12 e

0

)
.

(
bk−12 c
2i− 1

)
+

(
dk−12 e

2

)
.

(
bk−12 c
2i− 3

)
+ · · ·+

(
dk−12 e
2i− 2

)
.

(
bk−12 c

1

)]
,

A4i−2 = 0,

A4i−3 = 0.

By the MacWilliams Identity (Theorem 3.14, [9]), the following theorem follows.

Theorem 3.4. If Ai and Bi denote the number of codevectors of weight i in the
binary code C1

k(n, k − 1), where n = 2k + 1 and its dual code, then

Bi = q−(k−1)
n∑

j=0

Aj

n∑
s=0

(
j

s

)(
n− j

i− s

)
(−1)s(q − 1)i−s.

where Aj is given by Theorem 3.3.

4. Conclusion and scope for further study

The codes Ct
k are obtained from Ck by adding rows to the parity check matrix

Hk. The new codes Ct
k are capable of correcting all solid bursts of certain length

or less. The new codes are better codes from the point of view of correction of
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solid burst error. But the new codes are no longer reversible code and have less
information rate. Further, we have studied solid burst error uncorrected probability
of the codes Ck and Ct

k and weight distribution of the codes Ck and C1
k in binary

case. The weight distribution for the codes for other cases remains a further study.
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