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A PROCEDURE TO OBTAIN THE PROBABILISTIC 
KITAGAWA-TAKAHASHI DIAGRAM 

José A.F.O. CORREIA1, Abílio M.P. De JESUS2, Alfonso Fernández-
CANTELI3, Roberto BRIGHENTI4, Pedro M.G.P. MOREIRA5, Rui A.B. 

CALÇADA6 

An alternative way of interpreting the Kitagawa-Takahashi diagram for 
structural components is proposed. With this aim, the equivalent initial flaw size 
(EIFS) model, as a way of defining the initial defects of the structural components is 
used in conjunction with the probabilistic S-N model proposed by Castillo and 
Canteli, thus allowing the probabilistic distribution of the EIFS to be generated and, 
consequently, a probabilistic definition of the KT diagram (P-KT) to be achieved. 
The proposed approach is applied to a notched plate made of P355NL1 steel, the 
results of predictions are analyzed and the deviations discussed. 

Keywords: Kitagawa-Takahashi Diagram; Fatigue; Probabilistic model; Fracture 
Mechanics. 

1. Introduction 

The Kitagawa-Takahashi (KT) diagram [1] represents a boundary in terms 
of crack size and stress range for which infinite fatigue lifetime of structural and 
mechanical components can be safely ensured due to non-propagating micro- and 
macrocracks [2]. Generally, only a deterministic conception of the K-T diagram is 
considered in the practice despite the obvious necessity of incorporating its 
probabilistic dimension in a more reliable structural integrity design. Some 
exceptions are found in the literature.  As the preliminary attempt, Fernández-
Canteli et al. [3] incorporates the probabilistic information of the experimental S-
N field, as provided by the P-S-N model proposed by Castillo and Fernández-
Canteli [4], which relates crack size and lifetime, into the K-T diagram. On its 
turn, the probabilistic model of Pessard et al. [5] is based on the consideration of 
                                                            
1 Post-Doctoral Researcher, INEGI, University of Porto, Portugal, e-mail: jacorreia@inegi.up.pt   
2 Assistant Professor, INEGI/Faculty of Engineering, University of Porto, Portugal, e-mail: 
ajesus@fe.up.pt   
3 Emeritus Professor, Department of Construction and Manufacturing Engineering, University of 
Oviedo, Spain, e-mail: afc@uniovi.es   
4 Associate Professor, Department of Civil-Environmental Engineering and Architecture, 
University of Parma, Italy, e-mail: roberto.brighenti@unipr.it 
5 Assistant Researcher, INEGI, University of Porto, Portugal, e-mail: pmoreira@inegi.up.pt 
6 Full Professor, Faculty of Engineering, University of Porto, Portugal, e-mail: ruiabc@fe.up.pt   



4           J. Correia, A. De Jesus, A. Fernández-Canteli, R. Brighenti, P. Moreira, R. Calçada 

Weibull distributions for the two damage mechanisms: initiation (safe-life 
concept) and propagation (damage tolerance concept). 

In this paper, an alternative way of promoting a probabilistic concept of 
the K-T diagram is intended using the equivalent initial flaw size (EIFS) concept 
based on fracture mechanics, particularly on the elastoplastic cyclic J-integral, in 
which the initial defects of the structural components are taken into account [6,7]. 
The inverse analysis proposed by Alves et al. [8] is applied to estimate the EIFS 
parameter and after considering the probabilistic P-S-N model developed by 
Castillo and Canteli [4], the probabilistic Kitagawa-Takahashi diagram (P-KT) is 
obtained for structural components. The proposed approach is applied to lifetime 
prediction of a notched plate made of P355NL1 steel, and the results analyzed and 
discussed. 
 

2. Probabilistic S-N model by Castillo and Canteli 

Castillo and Fernández-Canteli [4] derived a Weibull regression model for 
constant stress range and given stress level (e.g. stress ratio, mean stress). This 
model, being formulated in the stress space, is recommended for medium to high, 
or even very high cycle fatigue life prediction. The derivation of the model is 
based on the fulfilment of physical conditions (identification of the involved 
variables and dimensional analysis) and statistical requirements (weakest link 
principle, stability, limited range, limit behaviour). In addition, the fulfilment of 
the necessary compatibility condition between lifetime distribution, for given 
stress range, and the stress range distribution, for given lifetime, leads to a 
functional equation, the solution of which provides the following Weibull 
distribution, defining the probabilistic S-N field [4]: 
;ܰ݃݋ሺ݈ܨ ሻߪ∆݃݋݈ ൌ ݌ ൌ 1 െ ݌ݔ݁ ൜െ ቂሺ௟௢௚ேି஻ሻሺ௟௢௚୼ఙି஼ሻିఒ

ఋ
ቃ

ఉ
ൠ ;  ሺ݈ܰ݃݋ െ ߪΔ݃݋ሻሺ݈ܤ െ ሻܥ ൒  (1) ߣ

 
where: N is the lifetime; ∆σ is the stress range; F() is the Weibull cumulative 
distribution function (CDF) of N for given ∆σ; B=log(N0), N0 being a threshold 
value of lifetime; C=log(∆σ0), ∆σ0 being the endurance fatigue limit; and λ, β and 
δ are, respectively, the shape, scale and location Weibull model parameters, the 
latter defining the position of the zero-percentile curve. The model, as presented 
in Figure 1a) and defined by Equation (1), has been studied and successfully 
applied to different lifetime assessments [4,9,10] and extended to the case of 
variable stress level [11]. 

The normalized variable V=(logN-B)(logΔσ-C) by simultaneous melting of 
the stress/strain ranges or amplitudes and the number of cycles allows the S-N 
field to be reduced to a simple Weibull CDF, see Figure 2, which can be 
occasionally relaxed to a Gumbel distribution. For a fixed stress range, the 
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probability of failure increases monotonically with the number of cycles; in the 
same way, the probability of failure goes up by increasing stress ranges for a fixed 
number of cycles. By considering the normalized variable V, equivalent loading 
conditions are established, as those leading to the same probability of failure thus 
allowing a damage cumulative conversion to be formulated.  Considering the S-N 
field of Figure 1b), the loading condition (ΔσA, NA) is equivalent to (ΔσB, NB) since 
they exhibit the same probability of failure as a result of showing the same 
normalizing variable, VA=VB: 
 ஺ܸ ൌ ஻ܸ ൌ ሺ݈݃݋ ஺ܰ െ ஺ߪ∆݃݋ሻሺ݈ܤ െ ሻܥ ൌ ሺ݈݃݋ ஻ܰ െ ஻ߪ∆݃݋ሻሺ݈ܤ െ  ሻ (2)ܥ

஻ߪ∆  ൌ exp ቂሺ௟௢௚ேಲି஻ሻሺ௟௢௚∆ఙಲି஼ሻ
ሺ௟௢௚ேಳି஻ሻ ൅ ቃܥ ൌ exp ቂ ௏ಲ

ሺ௟௢௚ேಳି஻ሻ ൅  ቃ (3)ܥ

 ஻ܰ ൌ exp ቂሺ௟௢௚ேಲି஻ሻሺ௟௢௚∆ఙಲି஼ሻ
ሺ௟௢௚∆ఙಳି஼ሻ ൅ ቃܤ ൌ exp ቂ ௏ಲ
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a) b) 

Fig. 1. Probabilistic S-N field: a) S-N model proposed by Castillo and Fernández-Canteli [4]; b) 
Representation of two equivalent loading conditions (same probability of failure and damage). 

 

 
Fig. 2. Cumulative distribution function of the Weibull normalized variable V. 
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3. Equivalent Initial Flaw Size (EIFS) concept based on Fracture 
Mechanics and Cyclic J-Integral 

The fatigue life evaluation based on the fracture mechanics approach for 
notched details is supported by material crack propagation laws [12].  The cyclic 
J-integral can be used to take into account the elastic–plastic deformations in the 
crack-tip area by means of the expression: 
 ௗ௔

ௗே
ൌ ݂ሺ∆ܬሻ (5) 

where da/dN is the fatigue crack growth rate, ΔJ is the range of the cyclic J-
integral and f() is a function of the J-integral. 

The number of cycles to failure may be computed by integrating the crack 
propagation law between the initial crack size, ai and the final crack size, af : 
 ܰ ൌ ׬ ௗ௔

௙ሺ∆௃ሻ
௔೑

௔೔
 (6) 

The material is assumed to exhibit surface defects acting as initial cracks. 
In order to allow the computation of the global fatigue life of the component to be 
performed, the initial crack size ai, is supposed to be a material characteristic 
representing the EIFS of the material. 

To consider the crack propagation regime I, an extension of the Paris-type 
crack growth law [12] is proposed by Alves et al. [8]:  
 ௗ௔

ௗே
ൌ ሺ∆ܬ െ ,௧௛ሻܬ∆ ܬ∆ ൒  ௧௛ (7)ܬ∆

A numerical integration of the propagation law based on cyclic J-integral is 
adopted by the following approximation: 
 ܰ ൌ ∑ ௗ௔

௙ሺ∆௃ሻ
௔೑
௔೔

 (8) 

where the equivalent initial flaw size (EIFS) is estimated by means of the inverse 
(back-extrapolation) analysis proposed by Alves et al. [8], the procedure of which 
is schematically depicted in Figure 3. 
 

4. Probabilistic procedure applied to the Kitagawa-Takahashi 
diagram 

The process proposed to obtain a probabilistic Kitagawa-Takahashi 
Diagram (P-KT) for notched structural details can be summarized as follows: 

i) A probabilistic S-N field must be derived for the material or 
mechanical/structural  component under consideration from stress-based fatigue 
data, using the probabilistic model by Castillo and Canteli [4]. 

ii) The equivalent initial flaw size (EIFS) is obtained for any probability of 
failure, using the fatigue crack propagation data and the S-N field represented by 
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the percentile  curves previously established in step i).  The cyclic J-Integral is 
thereby adopted. 

iii) Next, the relation between the variable V=[log(N)-B][log(Δσ)-C] vs. 
probability p is deduced, then the relation between EIFS vs. the normalized 
variable V  is established from which, finally, the relation   between EIFS vs. p 
can be found. 

iv) As a last step, the probabilistic Kitagawa-Takahashi Diagram is 
derived. This  procedure allows us to obtain an equivalent initial flaw size 
distribution (EIFS-CDF). 
 

 
Fig. 3. Procedure proposed by Alves et al. [8] to estimate the EIFS using inverse analysis. 
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 The schematic procedure for the derivation of the probabilistic Kitagawa-
Takahashi diagram, as proposed in this paper, is represented in Figure 4. 

The consideration of the normalized variable, V, allows the equivalence 
between two loading states to be established based on percentile (iso-probability) 
curves - these being interpreted as iso-initial flaw size (iso-EIFS) curves - and the 
probability of failure, p. In this way, the normalizing variable, V, may be 
understood as a possible alternative to EIFS measurements [9]. The consideration 
of the probability of failure associated to the equivalent initial flaw size (EIFS) 
parameter could be used advantageously for design purposes, namely to establish 
safety margins. In this sense, the percentile curves can be interpreted as 
representing different initial flaw sizes. 
 

 
Fig. 4. Procedure adopted to compute the probabilistic Kitagawa-Takahashi diagram (P-KT). 
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The S-N curves are generally related to a unique probability of failure, 
p=0.5 or p=0.05, though the scatter of experimental data requires the definition of 
the whole S-N field as percentile curves based on statistical principles. 

The percentile curves can be assumed to be associated with the probability 
of existence of a crack being less than a certain initial crack size, ai, initially 
unknown (see Fig. 5). 

The fatigue failure is governed by the maximum crack size, present in the 
specimen being tested, so that percentile curves with increasing probabilities of 
failure are related to diminishing crack sizes: the percentile curve p=0, 
corresponding to the greatest, or worst, among the maximum crack sizes of the 
population, i.e., ai,w=max(amax), which is denoted max-max crack size [3]. 

Similarly, the upper percentile curve, p=1, corresponds to the minimum, 
or best, of the maximum crack sizes of the population, i.e., ai,b=min(amax), which 
is denoted min-max crack size [3]. 

For practical purposes, the definition of the latter can be relaxed 
identifying ai,b, as an initial crack size related to a high probability of failure, for 
instance, pb=0.90 or 0.95. The two curves associated with ai,w and ai,b represent 
the two limiting sizes of the initial maximum defect corresponding to the 
particular surface finishing of the material tested [3]. 

For a given number of cycles to failure NL, two different stress ranges Δσb 
and Δσw (Δσb>Δσw), are identified with the best and worst surface defects 
respectively [5].  

For finite reference lifetime NL, an engineering threshold value ΔJth,eng can 
be found, particularly for the defect sizes ai,w and ai,b, but also for a generic crack 
size ai,m (ai,w > ai,m> ai,b) [3]. 

For NL→∞, the ΔJth,eng becomes the true threshold value ΔJth of the crack 
growth rate curve. 
 

 
Fig. 5. Statistical principles applied to the reference lifetime, using the probabilistic S-N model 

proposed by Castillo and Fernández-Canteli [4]. 
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5. Application to a notched plate made of P355NL1 steel 

The proposed probabilistic procedure was applied to the experimental data 
derived from 5 mm thick plates made of P355NL1 steel [13,14]. Table 1 
summarizes the mechanical properties of this steel. Figure 6 presents the crack 
propagation data for the P355NL1 steel according to the recommendations of the 
ASTM E647 standard. Experimental tension fatigue tests were carried out on 
notched plates, as those depicted in Figure 7, for a stress ratio R=0, the results of 
which are shown in Figure 8. The fatigue propagation law for stress R=0, used in 
this investigation, is presented in Figure 9 [8]. 

Table 1 
Mechanical properties of the P355NL1 
steel 

 
Fig. 6. Crack propagation data for the P355NL1 steel. 

 

 
 
Fig. 7. Notched rectangular plate used in the 
tests (dimensions in mm). 

 
 Fig. 8. S-N fatigue data from notched plates. 
 

In order to apply the procedure proposed by Alves et al. [8] an 
elastoplastic stress analysis was performed for computation of the cyclic J-integral 
range at the notched structural detail using a finite element model. Figure 10 
represents the results of the cyclic J-Integral as a function of the nominal stress 
range for a crack length, a=0.625mm, obtained for the notched plate [8]. The 
proposed procedure requires the probabilistic S-N field for the structural detail 
allowing to obtain V vs. p and in turn V vs. EIFS. Finally, the results of the 
proposed procedure are presented in Figure 11 allowing an equivalent initial flaw 
size distribution (EIFS-CDF) to be estimated. 
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Fig. 10. Value of the cyclic J-Integral as a 
function of nominal stress range for the 
notched plate (a=0.625mm). 
 

Fig. 9. Crack growth law adopted in this study. 

a) Probabilistic S-N field of the notched structural details. 

 b) Comparison between the experimental and theoretical 
cumulative distribution functions of the normalized 
variable V associated to the S-N data of the notched 
structural details. 

c) Normalized variable V versus EIFS parameter. d) Failure probability computed for the EIFS parameter. 
Fig. 11. Application and results of the proposed probabilistic procedure. 
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equivalent initial flaw size (EIFS) concept based on fracture mechanics 
and cyclic J-integral. The approach can be applied indistinctly for both 
finite and infinite limit number of cycles. 

- Further study is needed to allow an extension of the proposed approach 
to define the KT diagram for small cracks. i.e., in the low-cyclic 
fatigue (LCF) region, as well as the consideration of stochastic cracks 
growth rate curves, particularly in the threshold regime. 
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