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D-FUSION SLAM: A VSLAM SYSTEM OPTIMIZED BY
INTEGRATING DEPTH INFORMATION AND RGBD
FEATURE POINTS

Qingchun ZHENG %2, Moudong WU 2, Peihao ZHU 123 Bin YANG?,
Shubo LI 12

This paper introduces D-Fusion SLAM, an advanced VSLAM system based
on ORB-SLAM2. D-Fusion SLAM integrates depth information to enhance feature
selection, aiming to improve accuracy and speed in visual SLAM applications. The
system mainly comprises two modules: an image grid filtering module based on
grayscale information and a feature selection module integrating depth information.
These modules effectively eliminate redundant and useless features, ensuring high-
quality features for pose estimation. We tested D-Fusion SLAM on the TUM dataset
and compared it with ORB-SLAM2. Experimental results demonstrate that D-Fusion
SLAM outperforms ORB-SLAMZ, significantly enhancing the system's accuracy and
robustness.
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1. Introduction

Visual SLAM (VSLAM) is a computer vision technology enabling real-
time localization and environment mapping using image data from visual sensors,
without external maps[1]. It is widely used in robotic autonomous navigation[2]
and unmanned systems[3], providing them with autonomy and environmental
perception[4]. Thus, improving the speed and accuracy of VSLAM systems for
quick and precise environmental information acquisition is essential.

Two primary approaches enhance the VSLAM speed and accuracy[5]. The
first is a hardware-based improvement, progressing from monocular to stereo and
depth cameras, which allows for faster and more accurate environmental
perception and map construction. Notable examples include the ORB-SLAM
series by Mur-Artal R et al.. ORB-SLAMI6] for monocular cameras, ORB-
SLAMZ2][7] for stereo and depth cameras, and ORB-SLAM3|[8], which integrates
multi-sensor information including LiDAR.
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The second approach to enhance VSLAM involves innovations in
advanced geometric features based on environmental structures, such as points,
lines, planes, and edges. ORB-SLAM and ORB-SLAMZ2[7] estimate camera poses
using FAST corners and ORB features. Gomez-Ojeda et al.[9] integrate point and
line features for pose estimation in low-texture environments, enhancing the
SLAM robustness. Sun et al.[10] introduce the STING-SM method for plane
matching, achieving complete 6-DoF camera pose estimation suitable for
handheld cameras and mobile robots. Li et al.[11] utilize point and line features
with depth cameras to improve field scene reconstruction in low-texture outdoor
environments. Despite these advancements improving VSLAM accuracy,
challenges like feature redundancy and computational speed remain. As shown in
Fig. 1, after converting RGB images to grayscale, detected point and line features
display a high level of redundancy.

To address the issues above, researchers have proposed a series of
improvements. Zhang et al.[12] proposed a concise ray-to-ray residual model to
replace the popular point-to-line model, enhancing SLAM accuracy and
robustness through line feature optimization. Yu et al.[13] employed a hypothesis
testing framework to resolve rotational ambiguities arising when matching
vanishing directions with 3D directions, improving camera pose estimation
accuracy. Zhang et al.[14] developed TTT SLAM, a feature-based bathymetric
SLAM framework that extracts and matches terrain gradient features from
submaps, enhancing robustness and efficiency. Yang et al.[15] proposed a unified
multi-feature framework for the mutual association of point-line-plane features,
integrating them to improve environmental information utilization, positioning
accuracy, and robustness. Yuan et al.[16] calculated the uncertainty of 3D position
estimates of map points in depth measurements within the ORB-SLAM2
framework, implementing selection strategies for keyframes and map points to

(a) RGB image (b) grayscale image (c) point feature (d) line feature

Fig. 1. Common point features and line features detection
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This paper introduces D-Fusion SLAM, a VSLAM algorithm that
enhances point feature processing by integrating depth information from a depth
camera. This approach allows for explicit analysis of 3D positions of feature
points in unknown environments, filtering out abnormal and redundant features.
Our research significantly improves VSLAM accuracy, with key contributions as
follows:

(1) Image Grid Filtering Module: We developed a grayscale-based image grid
filtering module to obtain feature-rich images for detection.

(2) Feature Selection Module: Our feature selection module integrates depth
information, converting 2D feature points into 3D spatial points and
improving their quality.

(3) Experimental Validation: We validated D-Fusion SLAM's superiority in
localization and mapping through experiments on the public TUM dataset,
showing it outperforms the state-of-the-art ORB-SLAM2 system.

The paper is organized as follows: Section 2 details the D-Fusion SLAM
framework and modules; Section 3 discusses experimental parameter settings and
results; Section 4 concludes with future research directions.

2. System Overview

This paper presents the D-Fusion SLAM algorithm by introducing a
feature selection module that integrates depth information. Incorporating depth
information enables the system to accurately generate 3D point clouds from 2D
images, enhancing spatial understanding. To address the increased computational
demand of the feature selection module, we propose an image grid filtering
module based on grayscale information, which preprocesses images by masking
indistinct areas, significantly improving the computational efficiency of the
VSLAM system. The overall system framework is illustrated in Fig. 2.
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2.1 Grayscale Image Grid Filtering Module

As shown in Fig. 3, during VSLAM experiments, performing feature
detection grid by grid can become computationally burdensome due to some grids
lacking significant features. To address this issue, we propose an image grid
filtering module based on grayscale analysis. By comparing the grayscale range
and variance within each grid, this module improves computational efficiency.
The calculation process is as follows:

1) Image Initialization: The RGB image input from the sensor is first
converted into a grayscale image, and the grayscale value of each pixel is
obtained.

2) Grid Division: Based on the size of the grayscale image, the image is divided
into multiple small grids, and the grayscale values of pixels within each grid
are obtained. The divided grids are denoted as Dk, Dk+1..., as shown in Fig.
3(a).

(a) grid diagram (b) detect feature  (c) mask processing  (d) re-detection
Fig. 3. Image Grid Filtering Module Execution Steps Diagram

3) Grid Grayscale Analysis: Use grayscale values to determine the overall
feature significance of each grid. The specific steps are as follows:

Grayscale Range Calculation: Calculate the grayscale range of each grid,
as shown in Equation (1). A more extensive grayscale range indicates the grid has
strong contrast, meaning its features are significant.

Range, = max(D,)—min(D,) Q)
where Rangex is the grayscale range of grid k, and Dk represents the
grayscale values of all pixels within grid k.

Grayscale Variance Calculation: Calculate the grayscale variance of each

grid, as shown in Equation(2). Variance reflects the degree of variation in
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grayscale values within the image, with larger variance indicating more
significant features within the grid.

Ny —
Var, = iZ:(Di,k - Dk)z 2)
Nk i=1
where Var is the grayscale variance of grid k, Nk is the number of pixels
within grid k, Dix is the grayscale value of the i-th pixel within grid k, and D is

the mean grayscale value of grid k.

4) Grid Filtering: Filter the grids based on the results of the grayscale analysis.
The pseudocode is shown in Table 1. If the grayscale range of a grid is less
than the RangeThreshold and the grayscale variance is less than the
VarThreshold, the grid is deemed unnecessary for feature detection. The
determination result w is expressed as:

W= false, Range, < RangeThreshold and Var, < VarThreshold
o true, otherwise @)

where wy indicates whether grid k needs feature detection, with true
representing yes and false representing no.

Table 1
Algorithm for Grid filter model
Input Feature analysis of the gray grid Rangex and Vark

Output Filter results for gray grid w
1 for i<—1 to m do
2: w = True
3: if (Rangex < RangeThreshold )&&( Vark < VarThreshold )
4. then w = False
5: end
6: Return w

5) Masking Process: Apply masking to the grids that do not require feature
detection (similar to the method for handling potential dynamic points in
dynamic environments). After processing, proceed with feature detection, as
shown in Fig. 3(c). For grids that require feature detection, proceed with
standard feature detection, as shown in Fig. 4.
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Fig. 4. Image grid filtering module decision framework diagram
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The effect of the image grid filtering module is shown in Fig. 3(d),
significantly improving computational efficiency in feature detection. The values
of RangeThreshold and VarThreshold affect image preprocessing: large values
fail to remove insignificant grids, while small values may filter out grids with
valid features. The selection of appropriate values will be discussed in Section
3.2.

2.3 Depth Filtering Module

The feature detection process is straightforward, but not all feature points
are suitable for pose estimation and matching. Two exceptional cases include
Useless Feature Points and Redundant Feature Points, as shown in Fig. 1. Using
high-quality features is essential for effective matching and pose estimation.

In the baseline system, we use an RGB-D camera as the external sensor to
acquire color and accurate depth information from the surrounding environment.
The depth filtering module, as shown in Fig. 5, processes the depth map to obtain
distance information for each feature point. It then eliminates useless and
redundant feature points, supplying high-quality features for tasks such as feature
matching and pose estimation in the tracking thread.
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Fig. 5. Adopting Deep Information and Camera Pose Tracking
First, we obtain the depth information of feature points based on their
coordinates in the image coordinate system, as shown in Fig. 6. To eliminate
useless feature points, the depth information d must meet the detection range
conditions of the RGB-D camera. The detection range constraint is as follows:
d.,<d<d._, 4)
where dmin and dmax are the RGB-D camera's minimum and maximum
detection distances, respectively. If the depth information d of a feature point is
not within this range, the feature point is considered useless and is eliminated.
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To address the redundant feature points shown in Figure 1, t we calculate
the distance between feature points using their 2D-pixel coordinates in the camera
coordinate system. As shown in Fig. 6(a), the distance L between feature point Fy
and feature point F2 is calculated as follows:

L:\/(ul_u2)2+(vl_v2)2 (5)
where (ug,v1) and (uz,v2) are the 2D pixel coordinates of feature points Fy
and F2 in the camera coordinate system, respectively.
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Fig. 6. Deep Filtering Principle Diagram

If the distance L between feature points F1 and F is sufficiently small, and
their depth information d; and d> are nearly identical, they can be considered
redundant feature points. To quantify redundant feature points, we define the
distance threshold PositionThreshold and depth threshold DepthThreshold as
follows:

1.PositionThreshold: When L is less than this threshold, the distance
between feature points F1 and F is considered sufficiently small.

2.DepthThreshold: When |di-d2| is less than this threshold, the depth
information of feature points F1 and F- is considered nearly identical.

Based on the above thresholds, feature points F1 and F2 can be considered
redundant if the following conditions are met:

L < PositionThreshold & & | d, —d, |< DepthThreshold (6)

The values of the PositionThreshold and DepthThreshold can be further
determined based on the type of feature points and the system's application
scenario. To avoid deleting valid feature points near the detection boundary, we
retain those points while only removing redundant feature points around the pixel
p, as shown in Fig. 6. Therefore, the PositionThreshold is set to 1.5, i.e.:

PositionThreshold =1.5 (7)

ORB-SLAM2 applications include UAV navigation, robot navigation,
autonomous driving, and industrial automation, typically requiring sub-meter
accuracy. In SLAM systems, the depth accuracy of RGB-D cameras is often in
meters, so the DepthThreshold is set to 0.1 meters, i.e.:
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DepthThreshold =0.1m (8)

This setting ensures that the depth filtering module effectively removes
redundant feature points with slight differences in depth information, enhancing
the system's accuracy and robustness of pose estimation and feature matching.

3. Experiments and Discussion

In this section, we validated the D-Fusion SLAM system's effectiveness
through experiments on a computer with a 2.30GHz Intel Xeon(R) Gold 5118
CPU, Quadro P4000 GPU, and 64GB of memory. We introduced the TUM
dataset, which includes various indoor scenes and motion patterns, serving as a
benchmark for SLAM evaluation. We analyzed the impact of the grayscale
threshold (RangeThreshold) and variance threshold (VarThreshold) in the grid
filtering module on pose estimation, determining their optimal values to enhance
feature detection efficiency and accuracy. Finally, we compared our D-Fusion
SLAM system with the baseline ORB-SLAM?2 framework using the Absolute
Trajectory Error (ATE) metric to measure the difference between estimated and
ground truth trajectories.

3.1 Dataset Introduction

The TUM RGB-D dataset is a new benchmark for evaluating SLAM
systems and is widely used for testing and validation in indoor scenes. Six
handheld SLAM scene video sequences were selected for this experiment, as

shown in Table 2.
Table 2
Datasets

Video Sequences Content and Function

freiburgl 360 (frel 360) It performed a 360-degree rotation within an office
environment to assess the system's robustness against
rotational motion.

freiburgl_floor (frel floor) Scanned the wooden floor of the office to validate the system's
capability to detect texture features.
freiburgl_desk (frel_desk) Scanned the four desks in the office to assess the system's
reliability in handling translational motion.
freiburgl_room (frel_room) It records the office scene to test the SLAM system's loop

closure detection capability. The video lasts 48.9 seconds and
features relatively fast motion.

freiburg2_desk (fre2_desk) It rotates around a desk with a video duration of 99.36 seconds
and moves relatively slowly.

freiburg3_long_office_househo Captured a loop-closure sequence featuring rich textures and
Id (fre3_long) intricate structures within the scene to validate the system's
performance in complex environments.
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The TUM dataset provides ground truth camera motion trajectories
captured at 100Hz, essential for evaluating the ATE of SLAM systems. Testing
D-Fusion SLAM across these six scenes enables a comprehensive assessment of
its performance in diverse environments.

3.2 The influence of the grey value threshold and variance threshold
on pose estimation

In this section, we analyze the impact of RangeThreshold and
VarThreshold on the tracking time and pose estimation accuracy of D-Fusion
SLAM using grid filtering. With the minimum threshold for detecting FAST
corners set to minThFAST = 7, we set the RangeThreshold to 14 to ensure that the
grayscale range within the grid meets the conditions for detecting FAST corners.

RangeThreshold =14 9)

Next, we will experiment with VarThreshold ranging from 1 to 10, using
tracking time and Absolute Pose Error (APE) as evaluation metrics. We selected
the frel_room and fre2_desk video sequences for analysis. To ensure reliable
results, we conducted five experiments on each sequence and averaged the
outcomes. The data obtained include timei, mean;, and rmse;, representing the
average tracking time, mean pose error, and root mean square error (RMSE) of
pose estimation at VVarThreshold=i. Next, we will proceed with a detailed analysis.

The timei As shown in Fig. 7, in the frel_room, the time; decreases only
when VarThreshold € {1,2}. As VarThreshold increases, the time; fluctuates
upward due to the need for continued feature point detection in many grids after
filtering. Conversely, in the fre2_desk experiments, increasing VarThreshold
consistently reduces the tracking time, improving the system's real-time
performance. In summary, higher variance thresholds may increase tracking time
in the fast-moving scenario of frel_room, while in the slower-moving scenario of
fre2_desk, they can significantly decrease tracking time.

—®— ORB-SLAM2-frel_room
—&— ORB-SLAM2-fre2_desk
—a&— frel_room
—v— fre2 desk

o 0042t x ~—

VarThreshold (pixel)

Fig. 7. Mean tracking time
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The meani and rmsei From Fig. 8(a) and Fig. 8(b), we observe that in the
frel_room video sequence, the RMSE of pose estimation initially decreases and
then improves as VarThreshold rises. Filtering out feature points with uniform
grayscale and less distinctive features reduces the error, with the minimum error
achieved at VarThreshold=5. However, further increases lead to significant
features being filtered out, making camera pose estimation more susceptible to
noise and reducing accuracy. In the fre2_desk video sequence, the mean error and
RMSE show little change with increasing VarThreshold due to slower camera
motion, which reduces disparities between adjacent frames and facilitates feature
matching. Notably, at VarThreshold=5 or 7, both mean error and RMSE decrease.
In conclusion, setting VarThreshold to 5 is optimal for improving the accuracy of
the VSLAM algorithm.

VarThreshold =5 (10)
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Fig. 8. Trajectory Error Comparison Chart

3.3 Experiments

Firstly, the parameters RangeThreshold and VarThreshold are introduced
into the D-Fusion SLAM system and compared with ORB-SLAMZ2. Using the
TUM dataset examples frel 360 and frel floor, we present the 3D trajectory
visual results. Fig. 9 and Fig. 10 display the projected camera motion trajectories
in the x-y and x-z planes for D-Fusion SLAM (blue lines) and ORB-SLAM?2 (red
lines), alongside the ground truth (grey dashed lines). Next, we analyze the errors
of the predicted trajectories compared to the ground truth, including translational
(xyz) and rotational (rpy) components. Detailed results are shown in Fig. 11 and
Fig. 12.

Analysis of Spatial Trajectory in frel 360 In Fig. 9, D-Fusion SLAM
shows a trajectory closer to the ground truth than ORB-SLAMZ2, demonstrating
higher accuracy and stability. Notably, in the green-highlighted area of Fig. 9(a),
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D-Fusion SLAM's predicted trajectory closely aligns with the ground truth,
despite minor deviations.
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-~ frel_360 groundtruth 22 ~-- frel_360 groundiruth
— D-Fusion SLAM Trajectory —— D-Fusion SLAM Trajectory
0.0 — ORB-SLAM2 Trajectory — ORB-SLAM2 Trajectory

-0.2

-0.4

y (m)

04 -02 00 02 04 0.6 0.8 -04 <02 0.0 0.2 0.4 0.6 0.8
x (m) x(m)

(a) x-y plane (b) x-z plane
Fig. 9. Predicted Spatial Trajectory Projection of frel_360

Analysis of Spatial Trajectory for frel floor As shown in Fig. 10, both
D-Fusion SLAM and ORB-SLAM2 trajectories are near the ground truth, with
overlaps indicating similar errors. However, in the green-highlighted area of Fig.
10(a), D-Fusion SLAM is more accurate. Additionally, Fig. 10(b) shows that D-
Fusion SLAM can track the ground truth where ORB-SLAM?2 fails, indicating
greater robustness in this sequence.
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i —— D-Fusion SLAM Trajectory —— D-Fusion SLAM Trajectory
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(a) x-y plane (b) x-z plane
Fig. 10. Predicted Spatial Trajectory Projection of frel floor
Analysis of Translational Component XYZ Errors Fig. 11 shows the
errors in the world coordinate system along the xyz axes for the discussed spatial
trajectories. Panels (a) and (b) correspond to frel 360 and frel-floor, respectively.
In Fig. 11(a), D-Fusion SLAM's translational errors are closer to the ground truth
in all directions, particularly in the highlighted green section, where it
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demonstrates reduced errors and improved localization. In Fig. 11(b), while most
errors overlap between D-Fusion SLAM and ORB-SLAM2, the non-overlapping
region (green boxed area) shows D-Fusion SLAM's trajectory variation closely
matching the ground truth, indicating greater precision and consistency in this

scenario.
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Fig. 11. Translational Component XYZ Error

Rotation component (rpy) error analysis Fig. 12 shows the rotational
errors of the trajectories in the world coordinate system, including roll, pitch, and
yaw, with panels (a) and (b) for frel 360 and frel_floor, respectively. In Fig.
12(a), the roll and pitch angles of D-Fusion SLAM closely overlap with the
ground truth, while ORB-SLAM2 exhibits significant errors, especially in the
highlighted green region where discrepancies are more pronounced. In Fig. 12(b),
D-Fusion SLAM's trajectory, though not perfectly aligned with the ground truth,
is closer than that of ORB-SLAM2, displaying smaller errors and higher accuracy,
particularly in the green-highlighted area.
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To further demonstrate D-Fusion SLAM's superiority, we provide visual
results comparing errors. Fig. 13 and Fig. 14 show the relative pose error (RPE)
between the trajectories from the ORB-SLAM2 and D-Fusion SLAM against the
ground truth trajectories for the frel_360 and frel_floor sequences. Fig. 15 and
Fig. 16 analyze RPE metrics, including mean error, median error, RMSE, and
standard deviation (std), confirming D-Fusion SLAM's advantages in accuracy
and stability.

In Fig. 13 and Fig. 14, the blue lines represent trajectories, while the grey
dashed lines indicate ground truth. The colored vertical bars show error
magnitudes at corresponding timestamps, with red indicating larger errors and
deeper blue indicating smaller errors. In Fig. 15 and Fig. 16, black lines represent
RPE where smaller values indicate more accurate predictions and more
fluctuations suggest better alignment with ground truth timestamps.

RPE for frel 360 In Fig. 13(a), ORB-SLAM2's maximum error is 0.297
meters, while D-Fusion SLAM's maximum is 0.112 meters, reflecting over a 50%
reduction. Both systems have minimum errors, but D-Fusion SLAM's trajectories
are overall closer to ground truth compared to ORB-SLAMZ2's more scattered
trajectories.
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Fig. 13. Predicted Trajectory Comparison of frel 360
RPE for frel_floor In Fig. 14, ORB-SLAMZ2 shows a maximum error of
0.054 meters versus D-Fusion SLAM's 0.032 meters, with both systems having a
minimum error of 0.001 meters. D-Fusion SLAM captures more timestamps and
camera poses, demonstrating its advantage in environmental information retrieval.
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Fig. 14. Predicted Trajectory Comparison of frel_floor
RPE analysis of frel_360 In Fig. 15(a), ORB-SLAMZ2's maximum RPE is
about 0.30 meters, while D-Fusion SLAM' is about 0.11 meters, with
significantly lower average and median RPE values for D-Fusion SLAM. D-
Fusion SLAM matches 262 timestamps compared to ORB-SLAM2's 141,
indicating better environmental information capture.
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Fig. 15. RPE Analysis of frel_360
RPE analysis of frel_floor In Fig. 16(a), ORB-SLAMZ2's maximum RPE
exceeds 0.05 meters, while D-Fusion SLAM's is around 0.03 meters, also showing
lower average and median RPE values. D-Fusion SLAM matches 135 timestamps
against ORB-SLAMZ2's 54, further highlighting its capability to capture more
environmental information, explaining the trajectory differences observed in Fig.
14,
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Fig. 16. RPE Analysis of frel_floor

D-Fusion SLAM exhibits smaller RPE than ORB-SLAMZ2, indicating
higher accuracy in predicting trajectories closer to the ground truth. Additionally,
D-Fusion SLAM shows more frequent error fluctuations, allowing it to match
more timestamps and gather environmental information, thus demonstrating
greater robustness. We provide quantitative evaluation metrics, including average
tracking time and maximum, minimum, mean, and RMSE of RPE. Each video
sequence was run ten times, and average values were calculated to minimize the
impact of system uncertainties. The overall results are presented in Table 3.

Table 3
RPE
Sequence frel 360 frel_floor frel_desk frel_room fre2_desk fre3_long
Time(s) | 00297741 | 0.02748794 | 0.03718386 | 0.03612249 | 0.04055405 | 0.04524937
Max(m) | 0.7518778 0.119234 01143055 | 0.2095349 | 0.0454511 | 0.0429191
5‘3&3,\;'2 Min(m) | 0.3736492 | 00289177 | 00186178 | 0.0278146 | 00118293 | 0.0059256
Mean(m) | 0.5065064 0.064056 00473497 | 0.0909519 | 0.0267483 | 0.0185017
Rmse(m) | 05177966 | 0.0671173 | 0.0512749 | 0.1005869 | 0.0274813 | 0.0197656
Time(s) | 00347389 | 0.0320578 | 0.03741437 | 0.03971084 | 0.04359422 | 0.04558183
Max(m) | 04622209 | 0.1082471 | 00897817 | 0.1920585 | 0.0435841 0.040376
ours Min(m) | 0.1809041 | 0.0165013 | 0.0128381 | 0.0220597 | 0.0109587 | 0.0058269
Mean(m) | 0.270993 00593027 | 0.0357424 | 0.0898052 | 0.0251579 | 0.0178062
Rmse(m) | 0.2779717 0.063894 0.0390499 | 0.0965865 | 0.0257948 | 0.0188213
Time(s) -16.67% -16.63% -0.62% -9.93% 75% 0.73%
Improvem
entofour | Max(m) 38.52% 9.21% 21.45% 8.34% 411% 5.93%
agg;?ﬁ;h Min(m) 51.58% 42.94% 31.04% 20.69% 7.36% 167%
ORB- [ Mean(m) | 46.50% 7.42% 2451% 1.26% 5.95% 3.76%
SLAM2 Rmse(m) | 46.32% 4.80% 23.84% 3.98% 6.14% 478%
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In the comparison experiments across six handheld video sequences, the
average tracking time of D-Fusion SLAM increased by 8.32% compared to ORB-
SLAM2. This increase is due to the addition of a depth filtering module alongside
grayscale image grid filtering, enabling the system to gather more environmental
information and increasing overall computation time. We also computed the
accuracy improvement of D-Fusion SLAM relative to ORB-SLAMZ2, as shown in
Table 3. The efficiency improvement calculation follows the formula:

|mp — |err0rD—Fusion—SLAM _]_‘Xloo% (ll)
errorORB—SLAM 2

As shown in Fig. 17, D-Fusion SLAM improved pose estimation accuracy
compared to ORB-SLAM2 across six video sequences, with the most significant
improvement in frel 360, exceeding 45%. Other sequences show varying
improvements: approximately 24% for frel desk, around 7% for frel floor and
fre2_desk, while frel_room and fre3_long exhibit slight increases, reflecting a
gradient improvement trend. A detailed analysis of the six sequences revealed
differences in camera movement speed and angular deviation. Specifically,
frel 360 has the fastest camera movement, followed by frel desk, with
frel_floor and fre2_desk at average speeds, while frel room and fre3 long are
relatively slower. D-Fusion SLAM effectively enhances pose estimation accuracy
during rapid movements by using grayscale image grid filtering and depth
filtering modules to eliminate redundant and irrelevant feature points, capturing
more valuable environmental information and reducing trajectory errors.

rel m
rel desk
red

improved (%)

- otz bz
= o

b

Max ! Min T Mean Ruse
APE

Fig. 17. Accuracy Improvement Diagram

4. Conclusions

This paper proposes a visual SLAM system optimized for feature detection
called D-Fusion SLAM. This method utilizes depth information from depth maps
to filter detected feature points, eliminating redundant features. We designed an
image preprocessing module based on grayscale variations to highlight the
image's most prominent and meaningful regions. Unlike existing feature
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optimization methods in SLAM, D-Fusion SLAM performs a comprehensive
analysis and processing of feature points by combining pixel distances in 2D
images with depth information in 3D space. This approach reduces computational
costs while improving localization accuracy. Experiments on the TUM public
dataset demonstrate that D-Fusion SLAM achieves higher localization accuracy
and robustness, particularly in challenging scenarios such as rapid camera
movements and changes in camera direction. Although the feature optimization
process slightly increases tracking time, it does not compromise the overall real-
time performance of the SLAM system.

D-Fusion SLAM also has the potential for further development into multi-
feature fusion SLAM or visual-LIDAR fusion SLAM, enabling richer
environmental and structural information acquisition to enhance localization
accuracy and adaptability in complex environments. In future work, we will
extend D-Fusion SLAM to incorporate higher-level geometric features, such as
line and plane features, to apply to dynamic environments for environmental
reconstruction and real-time localization.
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