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D-FUSION SLAM: A VSLAM SYSTEM OPTIMIZED BY 

INTEGRATING DEPTH INFORMATION AND RGBD 

FEATURE POINTS 

Qingchun ZHENG 1,2, Moudong WU 1,2, Peihao ZHU 1,2,3, Bin YANG1,2,      

Shubo LI 1,2 

This paper introduces D-Fusion SLAM, an advanced VSLAM system based 

on ORB-SLAM2. D-Fusion SLAM integrates depth information to enhance feature 

selection, aiming to improve accuracy and speed in visual SLAM applications. The 

system mainly comprises two modules: an image grid filtering module based on 

grayscale information and a feature selection module integrating depth information. 

These modules effectively eliminate redundant and useless features, ensuring high-

quality features for pose estimation. We tested D-Fusion SLAM on the TUM dataset 

and compared it with ORB-SLAM2. Experimental results demonstrate that D-Fusion 

SLAM outperforms ORB-SLAM2, significantly enhancing the system's accuracy and 

robustness. 

Keywords: Simultaneous Localization and Mapping, Depth Integration, RGB-D 

Camera, Feature Selection 

1. Introduction 

Visual SLAM (VSLAM) is a computer vision technology enabling real-

time localization and environment mapping using image data from visual sensors, 

without external maps[1]. It is widely used in robotic autonomous navigation[2] 

and unmanned systems[3], providing them with autonomy and environmental 

perception[4]. Thus, improving the speed and accuracy of VSLAM systems for 

quick and precise environmental information acquisition is essential. 

Two primary approaches enhance the VSLAM speed and accuracy[5]. The 

first is a hardware-based improvement, progressing from monocular to stereo and 

depth cameras, which allows for faster and more accurate environmental 

perception and map construction. Notable examples include the ORB-SLAM 

series by Mur-Artal R et al.: ORB-SLAM[6] for monocular cameras, ORB-

SLAM2[7] for stereo and depth cameras, and ORB-SLAM3[8], which integrates 

multi-sensor information including LiDAR. 
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The second approach to enhance VSLAM involves innovations in 

advanced geometric features based on environmental structures, such as points, 

lines, planes, and edges. ORB-SLAM and ORB-SLAM2[7] estimate camera poses 

using FAST corners and ORB features. Gomez-Ojeda et al.[9] integrate point and 

line features for pose estimation in low-texture environments, enhancing the 

SLAM robustness. Sun et al.[10] introduce the STING-SM method for plane 

matching, achieving complete 6-DoF camera pose estimation suitable for 

handheld cameras and mobile robots. Li et al.[11] utilize point and line features 

with depth cameras to improve field scene reconstruction in low-texture outdoor 

environments. Despite these advancements improving VSLAM accuracy, 

challenges like feature redundancy and computational speed remain. As shown in 

Fig. 1, after converting RGB images to grayscale, detected point and line features 

display a high level of redundancy. 

To address the issues above, researchers have proposed a series of 

improvements. Zhang et al.[12] proposed a concise ray-to-ray residual model to 

replace the popular point-to-line model, enhancing SLAM accuracy and 

robustness through line feature optimization. Yu et al.[13] employed a hypothesis 

testing framework to resolve rotational ambiguities arising when matching 

vanishing directions with 3D directions, improving camera pose estimation 

accuracy. Zhang et al.[14] developed TTT SLAM, a feature-based bathymetric 

SLAM framework that extracts and matches terrain gradient features from 

submaps, enhancing robustness and efficiency. Yang et al.[15] proposed a unified 

multi-feature framework for the mutual association of point-line-plane features, 

integrating them to improve environmental information utilization, positioning 

accuracy, and robustness. Yuan et al.[16] calculated the uncertainty of 3D position 

estimates of map points in depth measurements within the ORB-SLAM2 

framework, implementing selection strategies for keyframes and map points to 

achieve higher localization and mapping accuracy. 

 

Fig. 1. Common point features and line features detection 
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This paper introduces D-Fusion SLAM, a VSLAM algorithm that 

enhances point feature processing by integrating depth information from a depth 

camera. This approach allows for explicit analysis of 3D positions of feature 

points in unknown environments, filtering out abnormal and redundant features. 

Our research significantly improves VSLAM accuracy, with key contributions as 

follows: 

(1) Image Grid Filtering Module: We developed a grayscale-based image grid 

filtering module to obtain feature-rich images for detection. 

(2) Feature Selection Module: Our feature selection module integrates depth 

information, converting 2D feature points into 3D spatial points and 

improving their quality. 

(3) Experimental Validation: We validated D-Fusion SLAM's superiority in 

localization and mapping through experiments on the public TUM dataset, 

showing it outperforms the state-of-the-art ORB-SLAM2 system. 

The paper is organized as follows: Section 2 details the D-Fusion SLAM 

framework and modules; Section 3 discusses experimental parameter settings and 

results; Section 4 concludes with future research directions. 

2. System Overview 

This paper presents the D-Fusion SLAM algorithm by introducing a 

feature selection module that integrates depth information. Incorporating depth 

information enables the system to accurately generate 3D point clouds from 2D 

images, enhancing spatial understanding. To address the increased computational 

demand of the feature selection module, we propose an image grid filtering 

module based on grayscale information, which preprocesses images by masking 

indistinct areas, significantly improving the computational efficiency of the 

VSLAM system. The overall system framework is illustrated in Fig. 2. 

 
Fig. 2. System Overview Diagram 
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2.1 Grayscale Image Grid Filtering Module 

As shown in Fig. 3, during VSLAM experiments, performing feature 

detection grid by grid can become computationally burdensome due to some grids 

lacking significant features. To address this issue, we propose an image grid 

filtering module based on grayscale analysis. By comparing the grayscale range 

and variance within each grid, this module improves computational efficiency. 

The calculation process is as follows: 

1) Image Initialization: The RGB image input from the sensor is first 

converted into a grayscale image, and the grayscale value of each pixel is 

obtained. 

2) Grid Division: Based on the size of the grayscale image, the image is divided 

into multiple small grids, and the grayscale values of pixels within each grid 

are obtained. The divided grids are denoted as Dk, Dk+1…, as shown in Fig. 

3(a). 

 
Fig. 3. Image Grid Filtering Module Execution Steps Diagram 

3) Grid Grayscale Analysis: Use grayscale values to determine the overall 

feature significance of each grid. The specific steps are as follows: 

Grayscale Range Calculation: Calculate the grayscale range of each grid, 

as shown in Equation (1). A more extensive grayscale range indicates the grid has 

strong contrast, meaning its features are significant. 

k k kmax( ) min( )Range D D= −                                              (1) 

where Rangek is the grayscale range of grid k, and Dk represents the 

grayscale values of all pixels within grid k. 

Grayscale Variance Calculation: Calculate the grayscale variance of each 

grid, as shown in Equation(2). Variance reflects the degree of variation in 
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grayscale values within the image, with larger variance indicating more 

significant features within the grid. 

2
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where Vark is the grayscale variance of grid k, Nk is the number of pixels 

within grid k, Di,k is the grayscale value of the i-th pixel within grid k, and D is 

the mean grayscale value of grid k. 

4) Grid Filtering: Filter the grids based on the results of the grayscale analysis. 

The pseudocode is shown in Table 1. If the grayscale range of a grid is less 

than the RangeThreshold and the grayscale variance is less than the 

VarThreshold, the grid is deemed unnecessary for feature detection. The 

determination result w is expressed as: 

  and  ,

,
k

k kfalse
w

Range RangeThreshold Var Var

true otherwise

Threshold
= 


 

      (3) 

where wk indicates whether grid k needs feature detection, with true 

representing yes and false representing no. 
Table 1 

Algorithm for Grid filter model 

Input Feature analysis of the gray grid Rangek and Vark 

Output Filter results for gray grid w 

1: for i←1 to m do 

2: w = True 

3: if (Rangek < RangeThreshold )&&( Vark < VarThreshold ) 

4: then w = False 

5: end 

6: Return w 

5) Masking Process: Apply masking to the grids that do not require feature 

detection (similar to the method for handling potential dynamic points in 

dynamic environments). After processing, proceed with feature detection, as 

shown in Fig. 3(c). For grids that require feature detection, proceed with 

standard feature detection, as shown in Fig. 4. 

 
Fig. 4. Image grid filtering module decision framework diagram 
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The effect of the image grid filtering module is shown in Fig. 3(d), 

significantly improving computational efficiency in feature detection. The values 

of RangeThreshold and VarThreshold affect image preprocessing: large values 

fail to remove insignificant grids, while small values may filter out grids with 

valid features. The selection of appropriate values will be discussed in Section 

3.2. 

2.3 Depth Filtering Module 

The feature detection process is straightforward, but not all feature points 

are suitable for pose estimation and matching. Two exceptional cases include 

Useless Feature Points and Redundant Feature Points, as shown in Fig. 1. Using 

high-quality features is essential for effective matching and pose estimation. 

In the baseline system, we use an RGB-D camera as the external sensor to 

acquire color and accurate depth information from the surrounding environment. 

The depth filtering module, as shown in Fig. 5, processes the depth map to obtain 

distance information for each feature point. It then eliminates useless and 

redundant feature points, supplying high-quality features for tasks such as feature 

matching and pose estimation in the tracking thread. 

 
Fig. 5. Adopting Deep Information and Camera Pose Tracking 

First, we obtain the depth information of feature points based on their 

coordinates in the image coordinate system, as shown in Fig. 6. To eliminate 

useless feature points, the depth information d must meet the detection range 

conditions of the RGB-D camera. The detection range constraint is as follows: 

min maxd d d                                                                  (4) 

where dmin and dmax are the RGB-D camera's minimum and maximum 

detection distances, respectively. If the depth information d of a feature point is 

not within this range, the feature point is considered useless and is eliminated. 
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To address the redundant feature points shown in Figure 1, t we calculate 

the distance between feature points using their 2D-pixel coordinates in the camera 

coordinate system. As shown in Fig. 6(a), the distance L between feature point F1 

and feature point F2 is calculated as follows: 
2 2

1 2 1 2( ) ( )L u u v v= − + −                                          (5) 

where (u1,v1) and (u2,v2) are the 2D pixel coordinates of feature points F1 

and F2 in the camera coordinate system, respectively. 

 
Fig. 6. Deep Filtering Principle Diagram 

If the distance L between feature points F1 and F2 is sufficiently small, and 

their depth information d1 and d2 are nearly identical, they can be considered 

redundant feature points. To quantify redundant feature points, we define the 

distance threshold PositionThreshold and depth threshold DepthThreshold as 

follows: 

1.PositionThreshold: When L is less than this threshold, the distance 

between feature points F1 and F2 is considered sufficiently small. 

2.DepthThreshold: When |d1-d2| is less than this threshold, the depth 

information of feature points F1 and F2 is considered nearly identical. 

Based on the above thresholds, feature points F1 and F2 can be considered 

redundant if the following conditions are met: 

1 2&& | |PositionThreshold d d DepthThresholdL  −             (6) 

The values of the PositionThreshold and DepthThreshold can be further 

determined based on the type of feature points and the system's application 

scenario. To avoid deleting valid feature points near the detection boundary, we 

retain those points while only removing redundant feature points around the pixel 

p, as shown in Fig. 6. Therefore, the PositionThreshold is set to 1.5, i.e.: 

1.5PositionThreshold =                                         (7) 

ORB-SLAM2 applications include UAV navigation, robot navigation, 

autonomous driving, and industrial automation, typically requiring sub-meter 

accuracy. In SLAM systems, the depth accuracy of RGB-D cameras is often in 

meters, so the DepthThreshold is set to 0.1 meters, i.e.: 
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0.1mDepthThreshold =                                                 (8) 

This setting ensures that the depth filtering module effectively removes 

redundant feature points with slight differences in depth information, enhancing 

the system's accuracy and robustness of pose estimation and feature matching. 

3. Experiments and Discussion 

In this section, we validated the D-Fusion SLAM system's effectiveness 

through experiments on a computer with a 2.30GHz Intel Xeon(R) Gold 5118 

CPU, Quadro P4000 GPU, and 64GB of memory. We introduced the TUM 

dataset, which includes various indoor scenes and motion patterns, serving as a 

benchmark for SLAM evaluation. We analyzed the impact of the grayscale 

threshold (RangeThreshold) and variance threshold (VarThreshold) in the grid 

filtering module on pose estimation, determining their optimal values to enhance 

feature detection efficiency and accuracy. Finally, we compared our D-Fusion 

SLAM system with the baseline ORB-SLAM2 framework using the Absolute 

Trajectory Error (ATE) metric to measure the difference between estimated and 

ground truth trajectories. 

3.1 Dataset Introduction 

The TUM RGB-D dataset is a new benchmark for evaluating SLAM 

systems and is widely used for testing and validation in indoor scenes. Six 

handheld SLAM scene video sequences were selected for this experiment, as 

shown in Table 2. 
Table 2 

Datasets 

Video Sequences Content and Function 

freiburg1_360（fre1_360） It performed a 360-degree rotation within an office 

environment to assess the system's robustness against 

rotational motion. 

freiburg1_floor（fre1_floor） Scanned the wooden floor of the office to validate the system's 

capability to detect texture features. 

freiburg1_desk（fre1_desk） Scanned the four desks in the office to assess the system's 

reliability in handling translational motion. 

freiburg1_room（fre1_room） It records the office scene to test the SLAM system's loop 

closure detection capability. The video lasts 48.9 seconds and 

features relatively fast motion. 

freiburg2_desk（fre2_desk） It rotates around a desk with a video duration of 99.36 seconds 

and moves relatively slowly. 

freiburg3_long_office_househo

ld（fre3_long） 

Captured a loop-closure sequence featuring rich textures and 

intricate structures within the scene to validate the system's 

performance in complex environments. 
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The TUM dataset provides ground truth camera motion trajectories 

captured at 100Hz, essential for evaluating the ATE of SLAM systems. Testing 

D-Fusion SLAM across these six scenes enables a comprehensive assessment of 

its performance in diverse environments. 

3.2 The influence of the grey value threshold and variance threshold 

on pose estimation 

In this section, we analyze the impact of RangeThreshold and 

VarThreshold on the tracking time and pose estimation accuracy of D-Fusion 

SLAM using grid filtering. With the minimum threshold for detecting FAST 

corners set to minThFAST = 7, we set the RangeThreshold to 14 to ensure that the 

grayscale range within the grid meets the conditions for detecting FAST corners. 

14RangeThreshold =                                             (9) 

Next, we will experiment with VarThreshold ranging from 1 to 10, using 

tracking time and Absolute Pose Error (APE) as evaluation metrics. We selected 

the fre1_room and fre2_desk video sequences for analysis. To ensure reliable 

results, we conducted five experiments on each sequence and averaged the 

outcomes. The data obtained include timei, meani, and rmsei, representing the 

average tracking time, mean pose error, and root mean square error (RMSE) of 

pose estimation at VarThreshold=i. Next, we will proceed with a detailed analysis. 

The timei As shown in Fig. 7, in the fre1_room, the timei decreases only 

when VarThreshold∈ {1,2}. As VarThreshold increases, the timei fluctuates 

upward due to the need for continued feature point detection in many grids after 

filtering. Conversely, in the fre2_desk experiments, increasing VarThreshold 

consistently reduces the tracking time, improving the system's real-time 

performance. In summary, higher variance thresholds may increase tracking time 

in the fast-moving scenario of fre1_room, while in the slower-moving scenario of 

fre2_desk, they can significantly decrease tracking time. 

 

Fig. 7. Mean tracking time 
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The meani and rmsei From Fig. 8(a) and Fig. 8(b), we observe that in the 

fre1_room video sequence, the RMSE of pose estimation initially decreases and 

then improves as VarThreshold rises. Filtering out feature points with uniform 

grayscale and less distinctive features reduces the error, with the minimum error 

achieved at VarThreshold=5. However, further increases lead to significant 

features being filtered out, making camera pose estimation more susceptible to 

noise and reducing accuracy. In the fre2_desk video sequence, the mean error and 

RMSE show little change with increasing VarThreshold due to slower camera 

motion, which reduces disparities between adjacent frames and facilitates feature 

matching. Notably, at VarThreshold=5 or 7, both mean error and RMSE decrease. 

In conclusion, setting VarThreshold to 5 is optimal for improving the accuracy of 

the VSLAM algorithm. 

ar 5V Threshold =                                                        (10) 

 

Fig. 8. Trajectory Error Comparison Chart 

3.3 Experiments 

Firstly, the parameters RangeThreshold and VarThreshold are introduced 

into the D-Fusion SLAM system and compared with ORB-SLAM2. Using the 

TUM dataset examples fre1_360 and fre1_floor, we present the 3D trajectory 

visual results. Fig. 9 and Fig. 10 display the projected camera motion trajectories 

in the x-y and x-z planes for D-Fusion SLAM (blue lines) and ORB-SLAM2 (red 

lines), alongside the ground truth (grey dashed lines). Next, we analyze the errors 

of the predicted trajectories compared to the ground truth, including translational 

(xyz) and rotational (rpy) components. Detailed results are shown in Fig. 11 and 

Fig. 12. 

Analysis of Spatial Trajectory in fre1_360 In Fig. 9, D-Fusion SLAM 

shows a trajectory closer to the ground truth than ORB-SLAM2, demonstrating 

higher accuracy and stability. Notably, in the green-highlighted area of Fig. 9(a), 
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D-Fusion SLAM's predicted trajectory closely aligns with the ground truth, 

despite minor deviations. 

 
Fig. 9. Predicted Spatial Trajectory Projection of fre1_360 

Analysis of Spatial Trajectory for fre1_floor As shown in Fig. 10, both 

D-Fusion SLAM and ORB-SLAM2 trajectories are near the ground truth, with 

overlaps indicating similar errors. However, in the green-highlighted area of Fig. 

10(a), D-Fusion SLAM is more accurate. Additionally, Fig. 10(b) shows that D-

Fusion SLAM can track the ground truth where ORB-SLAM2 fails, indicating 

greater robustness in this sequence. 

 
Fig. 10. Predicted Spatial Trajectory Projection of fre1_floor 

Analysis of Translational Component XYZ Errors Fig. 11 shows the 

errors in the world coordinate system along the xyz axes for the discussed spatial 

trajectories. Panels (a) and (b) correspond to fre1_360 and fre1-floor, respectively. 

In Fig. 11(a), D-Fusion SLAM's translational errors are closer to the ground truth 

in all directions, particularly in the highlighted green section, where it 
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demonstrates reduced errors and improved localization. In Fig. 11(b), while most 

errors overlap between D-Fusion SLAM and ORB-SLAM2, the non-overlapping 

region (green boxed area) shows D-Fusion SLAM's trajectory variation closely 

matching the ground truth, indicating greater precision and consistency in this 

scenario. 

 
Fig. 11. Translational Component XYZ Error 

Rotation component (rpy) error analysis Fig. 12 shows the rotational 

errors of the trajectories in the world coordinate system, including roll, pitch, and 

yaw, with panels (a) and (b) for fre1_360 and fre1_floor, respectively. In Fig. 

12(a), the roll and pitch angles of D-Fusion SLAM closely overlap with the 

ground truth, while ORB-SLAM2 exhibits significant errors, especially in the 

highlighted green region where discrepancies are more pronounced. In Fig. 12(b), 

D-Fusion SLAM's trajectory, though not perfectly aligned with the ground truth, 

is closer than that of ORB-SLAM2, displaying smaller errors and higher accuracy, 

particularly in the green-highlighted area. 

 
Fig. 12. Rotational Component RPY Error 
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To further demonstrate D-Fusion SLAM's superiority, we provide visual 

results comparing errors. Fig. 13 and Fig. 14 show the relative pose error (RPE) 

between the trajectories from the ORB-SLAM2 and D-Fusion SLAM against the 

ground truth trajectories for the fre1_360 and fre1_floor sequences. Fig. 15 and 

Fig. 16 analyze RPE metrics, including mean error, median error, RMSE, and 

standard deviation (std), confirming D-Fusion SLAM's advantages in accuracy 

and stability. 

In Fig. 13 and Fig. 14, the blue lines represent trajectories, while the grey 

dashed lines indicate ground truth. The colored vertical bars show error 

magnitudes at corresponding timestamps, with red indicating larger errors and 

deeper blue indicating smaller errors. In Fig. 15 and Fig. 16, black lines represent 

RPE where smaller values indicate more accurate predictions and more 

fluctuations suggest better alignment with ground truth timestamps. 

RPE for fre1_360 In Fig. 13(a), ORB-SLAM2's maximum error is 0.297 

meters, while D-Fusion SLAM's maximum is 0.112 meters, reflecting over a 50% 

reduction. Both systems have minimum errors, but D-Fusion SLAM's trajectories 

are overall closer to ground truth compared to ORB-SLAM2's more scattered 

trajectories. 

 
Fig. 13. Predicted Trajectory Comparison of fre1_360 

RPE for fre1_floor In Fig. 14, ORB-SLAM2 shows a maximum error of 

0.054 meters versus D-Fusion SLAM's 0.032 meters, with both systems having a 

minimum error of 0.001 meters. D-Fusion SLAM captures more timestamps and 

camera poses, demonstrating its advantage in environmental information retrieval. 
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Fig. 14. Predicted Trajectory Comparison of fre1_floor 

RPE analysis of fre1_360 In Fig. 15(a), ORB-SLAM2's maximum RPE is 

about 0.30 meters, while D-Fusion SLAM's is about 0.11 meters, with 

significantly lower average and median RPE values for D-Fusion SLAM. D-

Fusion SLAM matches 262 timestamps compared to ORB-SLAM2's 141, 

indicating better environmental information capture. 

 
Fig. 15. RPE Analysis of fre1_360 

RPE analysis of fre1_floor In Fig. 16(a), ORB-SLAM2's maximum RPE 

exceeds 0.05 meters, while D-Fusion SLAM's is around 0.03 meters, also showing 

lower average and median RPE values. D-Fusion SLAM matches 135 timestamps 

against ORB-SLAM2's 54, further highlighting its capability to capture more 

environmental information, explaining the trajectory differences observed in Fig. 

14. 
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Fig. 16. RPE Analysis of fre1_floor 

D-Fusion SLAM exhibits smaller RPE than ORB-SLAM2, indicating 

higher accuracy in predicting trajectories closer to the ground truth. Additionally, 

D-Fusion SLAM shows more frequent error fluctuations, allowing it to match 

more timestamps and gather environmental information, thus demonstrating 

greater robustness. We provide quantitative evaluation metrics, including average 

tracking time and maximum, minimum, mean, and RMSE of RPE. Each video 

sequence was run ten times, and average values were calculated to minimize the 

impact of system uncertainties. The overall results are presented in Table 3. 
Table 3 

RPE 
Sequence fre1_360 fre1_floor fre1_desk fre1_room fre2_desk fre3_long 

 

 

 

ORB-
SLAM2 

 

Time(s) 0.0297741 0.02748794 0.03718386 0.03612249 0.04055405 0.04524937 

Max(m) 0.7518778 0.119234 0.1143055 0.2095349 0.0454511 0.0429191 

Min(m) 0.3736492 0.0289177 0.0186178 0.0278146 0.0118293 0.0059256 

Mean(m) 0.5065064 0.064056 0.0473497 0.0909519 0.0267483 0.0185017 

Rmse(m) 0.5177966 0.0671173 0.0512749 0.1005869 0.0274813 0.0197656 

 
 

 

 

Ours 

Time(s) 0.0347389 0.0320578 0.03741437 0.03971084 0.04359422 0.04558183 

Max(m) 0.4622209 0.1082471 0.0897817 0.1920585 0.0435841 0.040376 

Min(m) 0.1809041 0.0165013 0.0128381 0.0220597 0.0109587 0.0058269 

Mean(m) 0.270993 0.0593027 0.0357424 0.0898052 0.0251579 0.0178062 

Rmse(m) 0.2779717 0.063894 0.0390499 0.0965865 0.0257948 0.0188213 

 

Improvem

ent of our 
approach 

against 

ORB-

SLAM2 

Time(s) -16.67% -16.63% -0.62% -9.93% -7.5% -0.73% 

Max(m) 38.52% 9.21% 21.45% 8.34% 4.11% 5.93% 

Min(m) 51.58% 42.94% 31.04% 20.69% 7.36% 1.67% 

Mean(m) 46.50% 7.42% 24.51% 1.26% 5.95% 3.76% 

Rmse(m) 46.32% 4.80% 23.84% 3.98% 6.14% 4.78% 
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In the comparison experiments across six handheld video sequences, the 

average tracking time of D-Fusion SLAM increased by 8.32% compared to ORB-

SLAM2. This increase is due to the addition of a depth filtering module alongside 

grayscale image grid filtering, enabling the system to gather more environmental 

information and increasing overall computation time. We also computed the 

accuracy improvement of D-Fusion SLAM relative to ORB-SLAM2, as shown in 

Table 3. The efficiency improvement calculation follows the formula: 

usion

2

error
Imp 1 100%

error

D F SLAM

ORB SLAM

− −

−

= −                                      (11) 

As shown in Fig. 17, D-Fusion SLAM improved pose estimation accuracy 

compared to ORB-SLAM2 across six video sequences, with the most significant 

improvement in fre1_360, exceeding 45%. Other sequences show varying 

improvements: approximately 24% for fre1_desk, around 7% for fre1_floor and 

fre2_desk, while fre1_room and fre3_long exhibit slight increases, reflecting a 

gradient improvement trend. A detailed analysis of the six sequences revealed 

differences in camera movement speed and angular deviation. Specifically, 

fre1_360 has the fastest camera movement, followed by fre1_desk, with 

fre1_floor and fre2_desk at average speeds, while fre1_room and fre3_long are 

relatively slower. D-Fusion SLAM effectively enhances pose estimation accuracy 

during rapid movements by using grayscale image grid filtering and depth 

filtering modules to eliminate redundant and irrelevant feature points, capturing 

more valuable environmental information and reducing trajectory errors. 

 
Fig. 17. Accuracy Improvement Diagram 

4. Conclusions 

This paper proposes a visual SLAM system optimized for feature detection 

called D-Fusion SLAM. This method utilizes depth information from depth maps 

to filter detected feature points, eliminating redundant features. We designed an 

image preprocessing module based on grayscale variations to highlight the 

image's most prominent and meaningful regions. Unlike existing feature 
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optimization methods in SLAM, D-Fusion SLAM performs a comprehensive 

analysis and processing of feature points by combining pixel distances in 2D 

images with depth information in 3D space. This approach reduces computational 

costs while improving localization accuracy. Experiments on the TUM public 

dataset demonstrate that D-Fusion SLAM achieves higher localization accuracy 

and robustness, particularly in challenging scenarios such as rapid camera 

movements and changes in camera direction. Although the feature optimization 

process slightly increases tracking time, it does not compromise the overall real-

time performance of the SLAM system. 

D-Fusion SLAM also has the potential for further development into multi-

feature fusion SLAM or visual-LiDAR fusion SLAM, enabling richer 

environmental and structural information acquisition to enhance localization 

accuracy and adaptability in complex environments. In future work, we will 

extend D-Fusion SLAM to incorporate higher-level geometric features, such as 

line and plane features, to apply to dynamic environments for environmental 

reconstruction and real-time localization. 
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