

A NOTE ON PROPERTY \mathcal{F} AND APPROXIMATE BIPROJECTIVITY OF THE FOURIER ALGEBRA

Narjes Razi¹, Mehdi Rostami², Amir Sahami³

Suppose that G is a locally compact group. We show that if the Fourier algebra $A(G)$ has the property \mathcal{F} , then either $A(G)$ is pseudo-amenable or G is not amenable and for every open subgroup H in G , $A(H)$ has the property \mathcal{F} . This answer the question posed in [23] partially. Furthermore, we obtain the similar result for approximately biprojective Fourier algebra.

Keywords: Approximate biprojectivity, Property \mathcal{F} , Fourier algebra

MSC2020: 46M10, 46H25, 46M18

1. Introduction

Helemskii in [9, 10] introduced two new homological notions, namely biprojectivity and biflatness, for studying and analysing Banach algebras; see also [17]. He examined them for various Banach algebras, including the group algebra $L^1(G)$. In particular, he showed that $L^1(G)$ is biprojective if and only if G is compact [10, Theorem 5.13]. These properties are closely connected to the notions amenability and contractibility, as defined by Johnson [13]. Specifically, a Banach algebra A is contractible if and only if it is both biprojective and unital [11, Theorem VII.1.63]. Additionally, A is amenable if and only if it is biflat and possesses a bounded approximate identity [10, Theorem VII.2.20]. These concepts have been extensively explored in the context of various Banach algebras, including those linked to locally compact groups, Segal algebras, Fourier algebras and semigroup algebras; see [18, 24, 21] for further information. Furthermore, approximate biprojectivity with respect to a closed ideal in a Banach algebra introduced and studied in [19]. Biprojectivity of generalized module extension Banach algebras and second dual of Banach algebras had been studied in [4].

The Fourier algebra $A(G)$, introduced by P. Eymard [5], has been widely studied with regard to its homological and cohomological properties. When G is abelian, by the Fourier transform we may identify $A(G)$ with $L^1(\hat{G})$, where \hat{G} is the dual group of G . Significant contributions in this area were made by H. Leptin [15], B. E. Forrest [6], Ruan [16] and F. Ghahramani [7]. Leptin proved that a locally compact group G is amenable if and only if $A(G)$ admits a bounded approximate identity [15]. Forrest and Runde showed that $A(G)$ is amenable if and only if G is almost abelian, meaning that G contains an abelian subgroup of finite index [6, Theorem 2.3]. In a related result, Z.-J. Ruan demonstrated that $A(G)$ is operator amenable precisely when G is amenable [16]. Biprojectivity and biflatness of Fourier algebras were investigated by V. Runde in [18].

¹Department of Mathematics Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran, email: Razina@cfu.ac.ir

²Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran, e-mail (Corresponding Author): mross@aut.ac.ir

³Faculty of Basic sciences, Department of Mathematics, Ilam University, P.O.Box 69315-516, Ilam, Iran, e-mail: a.sahami@ilam.ac.ir

The notion of approximate biprojectivity was later introduced and studied by Y. Zhang [25]. A Banach algebra A is said to be approximately biprojective if there exists a net of bounded A -bimodule morphisms $\vartheta_\alpha : A \rightarrow A \hat{\otimes} A$ such that

$$\pi_A \circ \vartheta_\alpha(a) \longrightarrow a \quad (a \in A),$$

where $\pi_A : A \hat{\otimes} A \rightarrow A$ is the multiplication map defined by $\pi_A(a \otimes b) = ab$ and $\hat{\otimes}$ is the Banach space projective tensor product. This property has been further investigated in works such as [1, 22].

Recently, A. Sahami *et al.* introduced the concept of property \mathcal{F} , exploring its relationship with amenability. They showed that a unital Banach algebra is amenable if and only if it satisfies property \mathcal{F} [3, Corollary 3.4]. Sahami *et al.* in [23], studied the relation between Property \mathcal{F} with some other cohomological concepts. Also they investigated property \mathcal{F} for some classes of Banach algebras, such as semigroup algebras, triangular matrix algebras and θ -Lau product algebras. At the end of the paper, they asked a question on property \mathcal{F} for Fourier algebras.

In this paper, we study approximate biprojectivity and property \mathcal{F} concerning the Fourier algebra $A(G)$, where G is a locally compact group and we provide a partial response to the question raised in [23]. We prove that if $A(G)$ satisfies property \mathcal{F} , then either $A(G)$ is pseudo-amenable, or G is non-amenable and for every open subgroup $H \subseteq G$, the Fourier algebra $A(H)$ also satisfies property \mathcal{F} . A similar result is also established for the approximate biprojectivity of $A(G)$.

2. Some homological results among the Fourier algebras

In this section, we study property \mathcal{F} and approximate biprojectivity of the Fourier algebra $A(G)$.

Definition 2.1. A Banach algebra A has property \mathcal{F} if there is a not necessarily bounded net $(\rho_\alpha)_{\alpha \in I} \subseteq B(A, (A \hat{\otimes} A)^{**})$ of A -bimodule morphisms such that

$$\pi_A^{**} \circ \rho_\alpha(a) - \kappa_A(a) \longrightarrow 0 \quad (a \in A),$$

where $\kappa_A : A \longrightarrow A^{**}$ is the canonical embedding.

Lemma 2.1. Let A be a Banach algebra. If A has property \mathcal{F} then there is a not necessarily bounded net $(\rho_\alpha)_{\alpha \in I} \subseteq B((A \hat{\otimes} A)^*, A^*)$ of A -bimodule morphisms such that

$$\rho_\alpha \circ \pi_A^*(\varphi) - \varphi \longrightarrow 0 \quad (\varphi \in A^*).$$

Proof. Suppose that $(\rho_\alpha)_{\alpha \in I} \subseteq B(A, (A \hat{\otimes} A)^{**})$ is a net of A -bimodule morphisms such that

$$\pi_A^{**} \circ \rho_\alpha(a) - \kappa_A(a) \longrightarrow 0 \quad (a \in A).$$

We define $\tilde{\rho}_\alpha : (A \hat{\otimes} A)^* \longrightarrow A^*$ to be the restriction of ρ_α^* to $(A \hat{\otimes} A)^*$; that is,

$$\tilde{\rho}_\alpha = \rho_\alpha^* \circ \kappa_{(A \hat{\otimes} A)^*}.$$

Certainly, $\tilde{\rho}_\alpha$ is a net of A -bimodule morphisms and for every $a \in A$ and $\varphi \in A^*$, we have

$$\lim_{\alpha} \langle \tilde{\rho}_\alpha(\pi_A^*(\varphi)), a \rangle = \lim_{\alpha} \langle \rho_\alpha(a), \pi_A^*(\varphi) \rangle = \lim_{\alpha} \langle \pi_A^{**}(\rho_\alpha(a)), \varphi \rangle = \langle \varphi, a \rangle.$$

This completes the proof. \square

In what follows, for a subgroup $H \subseteq G$, we define the map $\eta_H : A(G) \rightarrow A(H)$ by $\eta_H(w) = \chi_H \cdot w$. According to [12, Theorem 1], this map η_H sends $A(G)$ onto $A(H)$, a result known as Herz's restriction theorem. This theorem serves as a fundamental tool in the analysis of the Fourier algebra. The map η_H enjoys the following properties:

- (i) η_H is an algebra homomorphism;
- (ii) η_H is continuous;

(iii) $\eta_H \circ \pi_{A(G)} = \pi_{A(H)} \circ (\eta_H \otimes \eta_H)$.

We also recall that a Banach algebra A is said to be pseudo-amenable if there exists a net $(m_\alpha) \subseteq A \hat{\otimes} A$ such that

$$a \cdot m_\alpha - m_\alpha \cdot a \rightarrow 0 \quad \text{and} \quad \pi_A(m_\alpha)a \rightarrow a \quad \text{for all } a \in A.$$

For further details, see [8]. In the sequel, Haar measure on H is the restriction of Haar measure on G to H .

Theorem 2.1. *Suppose that G is a locally compact group and $A(G)$ has property \mathcal{F} . Then one of the following holds:*

- (i) $A(G)$ is pseudo-amenable.
- (ii) G is not amenable and for every open subgroup H in G , $A(H)$ has property \mathcal{F} .

Proof. Since $A(G)$ has property \mathcal{F} , by Lemma 2.1 there exists a not necessarily bounded net $(\rho_\alpha)_{\alpha \in I} \subseteq B((A(G) \hat{\otimes} A(G)^*), A(G)^*)$ of $A(G)$ -bimodule morphisms such that

$$\rho_\alpha \circ \pi_{A(G)}^*(\varphi) - \varphi \rightarrow 0 \quad (\varphi \in A(G)^*).$$

Suppose that G is amenable. Then [15] implies that $A(G)$ has a bounded approximate identity which is central and we denote it by $(e_\lambda)_{\lambda \in \Lambda}$. Thus, for every $w \in A(G)$ we have

$$w \cdot \rho_\alpha^* \circ \kappa_{A(G)}(e_\lambda) - \rho_\alpha^* \circ \kappa_{A(G)}(e_\lambda) \cdot w = \rho_\alpha^* \circ \kappa_{A(G)}(w \cdot e_\lambda - e_\lambda \cdot w) = 0,$$

and for every $\varphi \in A(G)^*$

$$\begin{aligned} \lim_{\alpha} \lim_{\lambda} \langle \pi_{A(G)}^{**}(\rho_\alpha^*(\kappa_{A(G)}(e_\lambda))) \cdot w, \varphi \rangle &= \lim_{\alpha} \lim_{\lambda} \langle \rho_\alpha(\pi_{A(G)}^*(w \cdot \varphi)), e_\lambda \rangle \\ &= \lim_{\alpha} \langle \rho_\alpha(\pi_{A(G)}^*(\varphi)), w \rangle \\ &= \langle \varphi, w \rangle. \end{aligned}$$

Let $E = \Lambda \times I^\Lambda$ be directed by the product order, defined as

$$(\lambda_1, f_1) \leq_E (\lambda_2, f_2) \iff \lambda_1 \leq_\Lambda \lambda_2 \quad \text{and} \quad f_1 \leq_{I^\Lambda} f_2 \quad (\lambda_1, \lambda_2 \in \Lambda, f_1, f_2 \in I^\Lambda),$$

where I^Λ denotes the set of all functions from Λ into I , and $f_1 \leq_{I^\Lambda} f_2$ means that $f_1(\lambda) \leq_I f_2(\lambda)$ for every $\lambda \in \Lambda$. For each $\beta = (\lambda, (\alpha_{\lambda'})) \in E$, define

$$m_\beta = \rho_{\alpha_\lambda}^* \circ \kappa_{A(G)}(e_\lambda) \in (A(G) \hat{\otimes} A(G))^{**}.$$

Then for all $w \in A(G)$, we have

$$w \cdot m_\beta = m_\beta \cdot w.$$

Moreover, by the iterated limit theorem [14, p. 69], we may assume that

$$\pi_{A(G)}^{**}(m_\beta)w \longrightarrow \kappa_{A(G)}(w),$$

in the weak*-topology of $A(G)^{**}$. By Goldstein's theorem, we can approximate each m_β by elements in $A(G) \hat{\otimes} A(G)$, replacing the weak* convergence above with weak convergence. Then, by Mazur's lemma, it follows that $A(G)$ is pseudo-amenable; see [8, Proposition 2.3].

(ii) Assume that G is not amenable and H is an open subgroup of G . Since $A(G)$ has property \mathcal{F} , there is a not necessarily bounded net $(\rho_\alpha)_{\alpha \in I} \subseteq B(A(G), (A(G) \hat{\otimes} A(G))^{**})$ of $A(G)$ -bimodule morphisms such that

$$\pi_{A(G)}^{**} \circ \rho_\alpha(w) - \kappa_{A(G)}(w) \longrightarrow 0 \quad (w \in A(G)).$$

Define the map $\theta : A(H) \rightarrow A(G)$ by

$$\theta(u)(g) = \begin{cases} u(g) & g \in H, \\ 0 & g \notin H, \end{cases}$$

for $u \in A(H)$ and $g \in G$. Certainly, θ is an algebra continuous homomorphism [5]. Now, we can define a net $\mu_\alpha : A(H) \rightarrow (A(H) \hat{\otimes} A(H))^{**}$ by $\mu_\alpha = (\eta_H \otimes \eta_H)^{**} \circ \rho_\alpha \circ \theta$. On the other hand, we have the following diagram which commutes.

$$\begin{array}{ccc}
 A(H)^{**} & \xleftarrow{\pi_{A(H)}^{**}} & (A(H) \hat{\otimes} A(H))^{**} \\
 \uparrow \eta_H^{**} & & \uparrow (\eta_H \otimes \eta_H)^{**} \\
 A(G)^{**} & \xleftarrow{\pi_{A(G)}^{**}} & (A(G) \hat{\otimes} A(G))^{**}
 \end{array}$$

So we imply that

$$\pi_{A(H)}^{**} \circ (\eta_H \otimes \eta_H)^{**} = \eta_H^{**} \circ \pi_{A(G)}^{**}.$$

Since $\eta_H \circ \theta = id_{A(H)}$, for every $u \in A(H)$ we obtain

$$\begin{aligned}
 \lim_{\alpha} \pi_{A(H)}^{**} \circ \mu_\alpha(u) &= \lim_{\alpha} \pi_{A(H)}^{**} \circ (\eta_H \otimes \eta_H)^{**} \circ \rho_\alpha \circ \theta(u) \\
 &= \lim_{\alpha} \eta_H^{**} \circ \pi_{A(G)}^{**} \circ \rho_\alpha \circ \theta(u) \\
 &= \eta_H^{**} \circ \kappa_{A(G)} \circ \theta(u) \\
 &= \eta_H \circ \theta(u) = u.
 \end{aligned}$$

Let $u, v \in A(H)$, $w \in A(G)$ and $\Phi \in (A(H) \hat{\otimes} A(H))^*$. One can easily check that $\eta_H(w) \cdot u = \eta_H(w \cdot \theta(u))$ and $u \cdot \eta_H(w) = \eta_H(\theta(u) \cdot w)$ and this implies that $(\eta_H \otimes \eta_H)^*(\Phi \cdot u) = (\eta_H \otimes \eta_H)^*(\Phi) \cdot \theta(u)$ and $(\eta_H \otimes \eta_H)^*(u \cdot \Phi) = \theta(u) \cdot (\eta_H \otimes \eta_H)^*(\Phi)$. Therefore, we obtain

$$\begin{aligned}
 \langle \mu_\alpha(uv), \Phi \rangle &= \langle (\eta_H \otimes \eta_H)^{**} \circ \rho_\alpha \circ \theta(uv), \Phi \rangle \\
 &= \langle \rho_\alpha \circ \theta(uv), (\eta_H \otimes \eta_H)^*(\Phi) \rangle \\
 &= \langle \rho_\alpha(\theta(u)\theta(v)), (\eta_H \otimes \eta_H)^*(\Phi) \rangle \\
 &= \langle \theta(u) \cdot \rho_\alpha \circ \theta(v), (\eta_H \otimes \eta_H)^*(\Phi) \rangle \\
 &= \langle \rho_\alpha \circ \theta(v), (\eta_H \otimes \eta_H)^*(\Phi \cdot u) \rangle \\
 &= \langle (\eta_H \otimes \eta_H)^{**} \circ \rho_\alpha \circ \theta(v), \Phi \cdot u \rangle \\
 &= \langle \mu_\alpha(v), \Phi \cdot u \rangle \\
 &= \langle u \cdot \mu_\alpha(v), \Phi \rangle.
 \end{aligned}$$

Thus, $\mu_\alpha(uv) = u \cdot \mu_\alpha(v)$. Similarly, we may obtain $\mu_\alpha(uv) = \mu_\alpha(u) \cdot v$. Moreover, since the maps θ , ρ_α and η_H are continuous, therefore $(\mu_\alpha)_{\alpha \in I}$ is a net of continuous $A(H)$ -bimodule morphisms. Thus $A(H)$ has property \mathcal{F} . \square

Since approximate biprojectivity is a stronger condition than property \mathcal{F} , the conclusions of the aforementioned theorem also holds when $A(G)$ is approximately biprojective. Moreover, if $A(G)$ is approximately biprojective, this necessarily implies that G is discrete.

We also recall that a Banach algebra A is said to be pseudo-contractible if there exists a net $(m_\alpha) \subseteq A \hat{\otimes} A$ such that

$$a \cdot m_\alpha = m_\alpha \cdot a \quad \text{and} \quad \pi_A(m_\alpha)a \rightarrow a \quad \text{for all } a \in A.$$

For further information, see [8].

Corollary 2.1. *Assume that G is a locally compact group such that $A(G)$ is approximately biprojective. Then G is discrete and one of the following holds:*

- (i) $A(G)$ is pseudo-contractible.
- (ii) G is not amenable and for every subgroup H in G , $A(H)$ has property \mathcal{F} .

Proof. Suppose that $\varphi \in \Delta(A(G))$. Since $A(G)$ is approximately biprojective, $A(G)$ is left φ -contractible [20, Lemma 2.5]. Now, [2, Theorem 3.5] implies that G is discrete. Since approximate biprojectivity implies property \mathcal{F} , applying Theorem 2.1, either $A(G)$ is pseudo-amenable or G is not amenable and for every (open) subgroup H in G , $A(H)$ has property \mathcal{F} . If $A(G)$ is pseudo-amenable then it has a (central) approximate identity and so applying [8, Proposition 3.8] implies that $A(G)$ is pseudo-contractible. \square

3. Acknowledgments

The third author is thankful to Ilam university for their support.

4. Conclusions

In this paper we studied property two notions of \mathcal{F} and approximate biprojectivity for a class of Banach algebras, namely the Fourier algebras. As a main result, we show that if the Fourier algebra $A(G)$ has the property \mathcal{F} , then either $A(G)$ is pseudo-amenable or G is not amenable and $A(H)$ has the property \mathcal{F} for every open subgroup H in G . This partially addresses the question raised in [23].

REFERENCES

- [1] H. P. Aghababa and M. H. Sattari, Approximate biprojectivity and biflatness of some algebras over certain semigroups, *J. Iran. Math. Soc.* **1** (2020), no. 2, 145-155.
- [2] M. Alaghmandan, R. Nasr Isfahani and M. Nemat, Character amenability and contractibility of abstract Segal algebras, *Bull. Aust. Math. Soc.* **82** (2010), no. 2, 274-281
- [3] M. Askari-Sayah, A. Pourabbas and A. Sahami, Johnson pseudo-contractibility of certain Banach algebras and their nilpotent ideals, *Anal. Math.* **45** (2019), no. 3, 461-473.
- [4] M. Essmaili, A. Rejali and A. Salehi Marzijarani, Biprojectivity of generalized module extension and second dual of Banach algebras, *J. Algebra Appl.* **21** (2022), no. 4, Paper No. 2250070, 12 pp.
- [5] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, *Bull. Soc. Math. France* **92** (1964), 181-236.
- [6] B. E. Forrest and V. Runde, Amenability and weak amenability of the Fourier algebra, *Math. Z.* **250** (2005), no. 4, 731-744.
- [7] F. Ghahramani and R. Stokke, Approximate and pseudo-amenability of the Fourier algebra, *Indiana Univ. Math. J.* **56** (2007), no. 2, 909-930.
- [8] F. Ghahramani and Y. Zhang, Pseudo-amenable and pseudo-contractible Banach algebras, *Proc. Camb. Phil. Soc.* **142** (2007), no. 1, 111-123.
- [9] A. Ya. Helemskii, On a method for calculating and estimating the global homological dimensions of Banach algebras, *Mat. Sb.* **87** (129) (1972), 122-135; English transl. in *Math. USSR Sb.* **16** (1972).
- [10] A. Ya. Helemskii, The homology of Banach and topological algebras, Translated from the Russian by Alan West. Mathematics and its Applications (Soviet Series), 41. Kluwer Academic Publishers Group, Dordrecht, 1989.
- [11] A. Ya. Helemskii, Banach and Locally Convex Algebras, Clarendon Press, Oxford, 1993. (translated from the Russian)
- [12] C. Herz, Harmonic synthesis for subgroups, *Ann. Inst. Fourier (Grenoble)* **23** (1973), no. 3, 91-123.
- [13] B. E. Johnson, Cohomology in Banach algebras, *Mem. Amer. Math. Soc.*, **127** (1972).
- [14] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955.

[15] *H. Leptin*, Sur l'algèbre de Fourier d'un groupe localement compact, C. R. Acad. Sci. Paris, Sér. A-B **266** (1968), 1180-1182.

[16] *Z.-J. Ruan*, The operator amenability of $A(G)$, Amer. J. Math. **117** (1995), no. 6, 1449-1474.

[17] *V. Runde*, Amenable Banach algebras, A panorama. Springer Monographs in Mathematics. Springer-Verlag, New York, 2020.

[18] *V. Runde*, Biflatness and biprojectivity of the Fourier algebra, Arch. Math. **92** (2009), no. 5, 525-530.

[19] *A. Sahami, M. Rostami and M. Aj*, A notion of approximate biprojectivity for Banach algebras with respect to a closed ideal, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. **86** (2024), no. 1, 129-136.

[20] *A. Sahami and A. Bodaghi*, On approximately biprojective and approximately biflat Banach algebras, Filomat **37** (2023), no. 8, 2295-2302.

[21] *A. Sahami, M. Askari-Sayah, S. F. Shariati and M. Rostami*, A note on approximate biprojectivity of some semigroup algebras. Semigroup Forum **105** (2022), no. 2, 570-574.

[22] *A. Sahami and A. Pourabbas*, Approximate biprojectivity and ϕ -biflatness of certain Banach algebras, Colloq. Math. **145** (2016), no. 2, 273-284.

[23] *A. Sahami, S. F. Shariati and A. Bodaghi*, On amenable-like properties of some Banach algebras with applications to study their nilpotent ideals, J. Algebra Appl. (2025) 2550249. <https://doi.org/10.1142/S0219498825502494>.

[24] *E. Samei, N. Spronk and R. Stokke*, Biflatness and pseudo-amenability of Segal algebras, Canad. J. Math. **62** (2010), no. 4, 845-869.

[25] *Y. Zhang*, Nilpotent ideals in a class of Banach algebras, Proc. Amer. Math. Soc. **127** (1999), no. 11, 3237-3242.