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GEOMETRICAL FORM RECOGNITION USING “ONE-STEP-
SECANT” ALGORITHM IN CASE OF NEURAL NETWORK

Rodica CONSTANTINESCU?, Vasile LAZARESCU?, Radwan TAHBOUB?®

In acest articol ne-am propus si realizim recunoasterea formelor
geometrice: dreptunghi si elipsa, plecand de la un numar de puncte dat de pe
conturul acestora prin folosirea algoritmului ,,one step secant” in cazul
retelelor neurale. Primul pas este de a construi o retea neurald cu doud
straturi §i doi vectori de intrare. Primul strat are 20 neuroni, in timp ce al
doilea strat are doar doi neuroni. In al doilea rdnd am creat o bazi de
antrenament i o bazd de test, baze care au fost generate de functia ,,vand” in
Matlab 7.0. Fiecare bazd creatd contine 100 de forme: 50 dreptunghiuri si 50
elipse. Apoi am testat reteaua folosind eroarea medie patratica si algoritmul
,,One-step-secant”’.

The purpose of this paper is the recognition of geometrical shapes:
rectangle and ellipse by using the “one-step-secant” algorithm of neural
network. The first step is to build up a neural network with two layers and two
input vectors. The first layer has twenty neurons, while the second one includes
only two neurons. The second step is to create a training base and a test base
through generating “rand” function. Each base contains one hundred shapes:
fifty rectangles and fifty ellipses. The third step is testing the network by using
a performance function (MSE=Mean Squared Error) and “one-step-secant”
algorithm.
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1. Introduction

There is no universally accepted definition of a neural network. But,
perhaps, most people in the field would agree that a neural network is a network
of many simple processors (“units"), each possibly endowed with a small amount
of local memory. The units are connected by communication channels
("connections"), which usually carry numeric (as opposed to symbolic) data,
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encoded by various means. The units operate only on their local data and on the
inputs they receive via the connections. The restriction to local operations is often
relaxed during training [1], [2].

Neural network can be divided into three architectures, namely single
layer, multilayer network and competitive layer. In a net, the layers number can be
defined on the basis of a number of interconnected weights in a neuron. A single
layer network consists in only one layer of connection weights, whereas, a
multilayer network consists in more than one layer of connection weights. The
network also contains an additional layer called hidden layer. Multilayer networks
can be used to solve more complicated problems compared to single layer
network. Both of the network are also called feed-forward network where the
signal flows from the input units to the output units in a forward direction [2].

The inverse error propagation algorithm has been created through
generalization of a learning rule of Widrow-Hoff of multitask networks and
differential and nonlinear transferring functions. In this paper we used a variant of
the inverse error propagation algorithm.

Input vectors and corresponding “target” vectors are used to train the
network until this can approximate a function, associating input vectors with
specific output vectors, or classify the input vectors in a user mode specification.

Standard algorithm of inverse error propagation is related to the gradient
decrease. The notion of inverse propagation of error is similar to the manner in
which the gradient is computed for nonlinear multitask networks. There are
several implementations for the standard algorithm that are based on other
standard optimization techniques, like the conjugate gradient method or the
Newton method.

Networks with inverse training error propagation tend to offer reasonable
answers. This is happening in a suitable way, when input values which were not
seen before, are introduced. Usually, new sets of input values are leading to
similar outputs such as correct output (target output) for input vectors used in
training. Those are similar to the new sets. This generalization property allows
entertaining a network on a representative set of input/output pairs. It is also
conducting to satisfactory results without network training on all the other
possible input/output pairs.

2. Background

Training a neural network is, in most cases, an exercise in numerical
optimization of a usually nonlinear objective function ("objective function™ means
whatever function you are trying to optimize and is a slightly more general term
than "error function” in that it may include other quantities such as penalties for
weight decay.
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Methods of nonlinear optimization have been studied for hundreds of
years, and there is a huge literature on the subject in fields such as numerical
analysis, operational research, and statistical computing (e.g. [3], [4]). Masters in
[5] has a good elementary discussion of conjugate gradient and Levenberg-
Marquardt algorithms in the context of neural networks.

There is no single best method for nonlinear optimization. You need to
choose a method based on the characteristics of the problem to be solved. For
objective functions with continuous second derivatives (which would include
feed-forward nets with the most popular differentiable activation functions and
error functions), three general types of algorithms have been found to be effective
for most practical purposes:

- For a small number of weights, stabilized Newton and Gauss-Newton
algorithms, including various Levenberg-Marquardt and trust-region
algorithms, are efficient. The memory required by these algorithms is
proportional to the square of the number of weights.

- For a moderate number of weights, various quasi-Newton algorithms are
efficient. The memory required by these algorithms is proportional to the
square of the number of weights.

- For a large number of weights, various conjugate-gradient algorithms are
efficient. The memory required by these algorithms is proportional to the
number of weights.

In most applications, it is advisable to train several networks with different
numbers of hidden units. Rather than train each network, beginning with
completely random weights, it is usually more efficient to use constructive
learning. Constructive learning can be done with any of the conventional
optimization techniques or with the various "prop” methods, and can be very
effective at finding good local optima at less expense than full-blown global
optimization methods.

3. Method

This paper represents the first part of an extended project, which we desire
to attain. Thus, we intend to detect the geometrical shapes described by a person’s
movement through the air. However, to attain this, we have to firstly create a
portable device which could provide the necessary plots on the trajectory.

In this paper we used geometrical shapes in the xOy (bidimensional)
plane, i.e. we used the bidimensional case. The next step would be to extend these
to the xyz plane, for the tridimensional plane.

In this paper we propose the implementation of geometrical shape
recognition: rectangle and geom. ellipse, for a given number of points from the
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contour (outline). This paper starts from the concept of detection of the
geometrical shapes traced by one person through the air.

Quasi-Newton method involves generating a sequence of matrices G*!
that represents increasingly accurate approximations to the inverse Hessian (H ‘1).

Using only the first derivative information of E, the updated expression is as
follows:

T k. \. T (k)
G =G + % _(Gv:)cv;(kG()v + (VT G“‘)V)Mur (1)
where
p= Myﬁl) _ Mjk),
y= g(k+l) _ g(k),
G%y
£ 2)

"y VG

and T represents transpose of a matrix. The problem with this approach is the
requirement of computation and storage of the approximate Hessian matrix for
every iteration. The One-Step-Secant (OSS) is an approach to bridge the gap
between the conjugate gradient algorithm and the quasi-Newton (secant)
approach. The OSS approach doesn’t store the complete Hessian matrix; it
assumes that at each iteration the previous Hessian was the identity matrix. This
also has the advantage that the new search direction can be calculated without
computing a matrix inverse [2].

Newton's method is an alternative to the conjugate gradient methods for
fast optimization. The basic step of Newton's method is

Xew1 =X — Akilgk (3)

where 4, is the Hessian matrix (second derivatives) of the performance index at

the current values of the weights and biases. Newton's method often converges
faster than conjugate gradient methods. Unfortunately, it is complex and
expensive to compute the Hessian matrix for feed forward neural networks. There
is a class of algorithms that is based on Newton's method, but which doesn't
require calculation of second derivatives. These are called quasi-Newton (or
secant) methods. They update an approximate Hessian matrix at each iteration of
the algorithm. The update is computed as a function of the gradient.



Geometrical form recognition using “one-step-secant” algorithm in case of neural network 19

The quasi-Newton method that has been most successful is the Broyden,
Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm has been
implemented in the ,.trainbfg” routine. The BFGS algorithm is described in [6].

Since the BFGS algorithm requires more storage and computation in each
iteration than the conjugate gradient algorithms, there is need for a secant
approximation with smaller storage and computation requirements. The one step
secant (OSS) method is an attempt to bridge the gap between the conjugate
gradient algorithms and the quasi-Newton (secant) algorithms. This algorithm
does not store the complete Hessian matrix; it assumes that at each iteration, the
previous Hessian was the identity matrix. This has the additional advantage that
the new search direction can be calculated without computing a matrix inverse [1].

This algorithm requires more computation in each iteration and more
storage than the conjugate gradient methods, although it generally converges in
less iteration. The approximate Hessian must be stored, and its dimension is n*n,
where n is equal to the number of weights and biases in the network.

For very large networks it may be better to use resilient back-propagation
(Rprop) (in the ,trainrp” routine) or one of the conjugate gradient algorithms. For
smaller networks, however, ,trainbfg” (BFGS quasi-Newton back-propagation)
can be an efficient training function.

However, for complex networks, where number of synapse is great (large),
this algorithm is not very fast because it requires the calculation and the hoarding
Hessian approximate matrix. Full of view processed problem in which we have
twenty neurons on first layer and two input vectors, is requiring a secant
approximation with small requirements of calculation and hoarding. Therefore, in
this case we used One-Step-Secant algorithm.

General description of method:

To simulate the processing of the coordinate points taken from the
aforementioned device, rectangles and geom. ellipses have been generated in a
random mode. Knowing this and the fact that a person will not describe,
generally, perfect geometrical shapes, some assumptions were considered for
obtaining a real case:

- The shapes are traced anywhere in a specification area, angle in down left (for
geom. ellipse, angle in down left of rectangle what framing) full of random
coordinates with a uniform distribution (abscissa respective angle there is
between 0 and 100; likewise and ordinate), thus permitting a varied position of
the traced form, like in the real case, when tracing is made inside a room with
dimensions from specifications;

- The shapes are drawn anywhere inside a specified area, the left lower corner
(for geom. ellipse, the left lower corner of the rectangle which surrounds it)
having random coordinates with a uniform distribution (abscissa of the
respective corner is between 0 and 100; likewise the ordinate). Thus a varied
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positioning of the drawn shapes is possible, like in the real case, when the
tracing is done inside a room with specified dimensions;

- The dimensions of the shapes are generated randomly (again with an uniform
distribution, so as not to create preferential dimensions);

- Each coordinate of each point is affected by a uniform noise, thus, permitting
a tracing with imperfections, exactly like in the real case.

The project was realized in Matlab version 7.0 and it is based on the
notion of neural networks. The implementation of the algorithms specific to
neural networks was made with the use of the Neural Network Toolbox in Matlab.

Neural networks are composed of simple elements which operate in
parallel. These elements are inspired from the biological nervous systems. As in
nature, the function of network is determined in large by the connections between
elements. A neural network may be trained to realize certain function by setting
the values of the connections (synapses or weights) between elements. Usually,
the neural networks are set or trained, so that a certain set of input values would
lead to a value of expected output (a target).

Such a situation is presented in Fig. 1. The network is set through the
comparison between the output value and the target (the expected value), until the
output of network approaches the target, with a given offset. In general, many
such input/target pairs are used for training network.

Meural Network

— | including connections
(called weights)

Input between neurons Output

Compare

Adjust
weights

Fig. 1 - The comparison between the output value and the target

Along time neural networks have been trained to realize complex
functions in varied applications such as: shapes recognition (as in this case),
classification, speech and voice signal recognition, control systems, medical
imagistic and many others.

The domain of neural networks has a history of approximately five
decades, but has found solid application only in the last 20 years and continues to
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develop in an accelerated rhythm. Thus, the notion of neural network is
completely different from the traditional notions implied in areas such as control
systems or the optimization of the systems where the terminology (mathematical
statistics) and the designing procedures were settled and applied for many years.
Implementation procedure:

The first step is to build up a neural network with two layers and two input
vectors. The first input vector contains abscissa points, and the second one
contains ordinate points. Regarding the layers; the first one has twenty neurons,
while the second one includes only two neurons.

The second step is to create a training base and a test base using the “rand”
function. Each base contains one hundred shapes: fifty rectangles and fifty geom.
ellipses.

The third step is testing the network by using a performance function
(MSE=Mean Squared Error, where the error value is the amount by which the
value output by the network differs from the training value. For example, if we
required the network to output 0 and it output a 1, then Err = -1) and “one-step-
secant” algorithm. To assure the convergence towards the expected value while on
any training set we realize a “while” loop that iterates the network initialization.
The result of the testing made one the training base must be under the value le-5;
while for the test base is under the value le-4. These results are the errors that are
reasonable enough for a correct classification. Additional to these errors, the
function also shows a value in which the evolution parameters are stored during
the training. This is called epoch (An epoch is the presentation of the entire
training set to the neural network. For example, in the case of the AND function
an epoch consists of four sets of inputs being presented to the network (i.e. [0,0],
[0.1], [1,0], [1.1])).

The gradient of a function of two variables F(x, y) is defined as:

vr=2L5. 9 4)
ox oy

and can be thought of as a collection of vectors pointing in the direction of
increasing values of F. In Matlab, numerical gradients (differences) can be
computed for functions with any number of variables.

Algorithm “trainoss” [1] can train any network as long as its weight, net
input, and transfer functions have derivative functions. Back-propagation is used
to calculate derivatives of performance perf with respect to the weight and bias
variables X. Each variable is adjusted according to the following [9]:

X=X+a*dX (5)
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where dX is the search direction. The parameter is selected to minimize the
performance along the search direction. The line search function searchFcn is
used to locate the minimum point. The first search direction is the negative of the
gradient of performance. In succeeding iterations the search direction is computed
from the new gradient and the previous steps and gradients according to the
following formula:

dX =—gX+Ac*X_, +Bc*dgX (6)

step

where gX is the gradient, X is the change in the weights on the previous

iteration, and dgX is the change in the gradient from the last iteration. (For a

more detailed discussion of the one step secant algorithm see [7]).
Training stops when any of these conditions occur:
1. The maximum number of epochs (repetitions) is reached.
2. The maximum amount of time has been exceeded.
3. Performance has been minimized to the goal.
4. The performance gradient falls below min-grad.
5. Validation performance has increased more than max_fail times since the last
time it decreased (when using validation).

The program can be called through the function “rec_form”. This has a
facultative parameter which represents the number of points upon which the latter
training and recognition are made. The implicit value of this parameter is 48.

To be used for recognition, the trained network is used as a parameter for
the ,,sim” function which verifies the behavior of the network on a shape inserted
from the keyboard. If the function returns the value 0 1, the network has identified
the inserted shape with a rectangle; but if the returned value is 0 0, the network
has identified the inserted shape as being an ellipse.

Training the network is time consuming. It usually learns after several
epochs, depending on how large the network is. Thus, large network required
more training time compared to the smaller one. Basically, the network is trained
for several epochs and stopped after reaching the maximum epoch. For the same
reason minimum error tolerance is used provided that the differences between
network output and known outcome are less than the specified value. We could
also stop the training after the network meets certain stopping criteria. During
training the network might learn too much.

For this project during training, validation set is used instead of training
data set. After a few epochs the network is tested with the validation data. The
training is stopped as soon as the error on validation set increases rapidly higher
than the last time it was checked [8].
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4. Experimental results

In this paper we analyzed three cases. In first case, the performance has
met at epoch number 52 of 500 (500 is number maxim of epochs in our case), in
the second case the performance has obtained at epoch number 146 of 500 and the
third case the performance has met at epoch number 148 of 500. Results obtained
in those there cases analyzed in this article are:

In Table 1, 2 and 3 we have MSE and gradient at some epochs of those
analyzed, until met the performance.

Fig. 2 (a), (b) and (c) shows network when met the performance that is at
maximum epoch.

(a) Represent the first case;

(b) Represent the second case;

(c) Represent the third case.

Fig. 3 (a), (b) and (c) shows network after training. Fig. 4 (a), (b) and (c)
shows results obtained with this method.

For the first case we have the following results:

Table 1

The performance system after epoch number 52
Epoch MSE /1e-005 Gradient
0 of 500 0. 377322 0. 505532
25 of 500 0.0381433 0. 648829

50 of 500 | 7.70679e-005 0.0338334
52 0of 500 | 5.45577e-006 0.000132798

In first case the performance has met after epoch number 52.

Performance is 5 45577 e-006, Goal is 1e-005

Training-Blue Goal-Black Test-Red

1o
¥
1 D'ﬁ 1 1 1 1 1 1 1 1 1 1
o =) 10 1= 20 25 30 35 40 45 S0
Stop Training | 52 Epochs

Fig. 2 (a) Maximum epoch (in first case is 52)
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Fig. 2 (b) MSE after training networks in first case
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Fig. 2 (c) Results obtained after training network in the first case

For the second case we have:

Table 2
The performance system met after epoch number 146
Epoch MSE /1e-005 Gradient
0 of 500 0.511977 0.568587
25 of 500 0.0560792 0.16273
50 of 500 0.00763521 0.132888
75 of 500 0.000238334 0.000582092
100 of 500 0.000123981 0.000801856
125 of 500 2.34438e-005 5.7238e-005
146 of 500 9.38845e-006 5.50573e-005

In second case the performance has met after epoch number 146.
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Performance is 9 38545e-006, Soal is 1e-005
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Fig. 3 (a) Maximum epoch (in second case is 146)
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Fig. 3 (b) MSE after training networks in second case
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Fig. 3 (c) Results obtained after training network in second case

For the third case we have:
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Table 3
The performance system met after epoch number 148
Epoch MSE /1e-005 Gradient
0 of 500 0.292855 0.511591
25 of 500 0.029315 0.275339
50 of 500 0.00040364 0.00105794
75 of 500 1.58091e-005 3.21924e-005
100 of 500 1.53045e-005 4.51943e-005
125 of 500 1.50264e-005 3.37123e-005
141 of 500 2.71875e-006 1.39385e-005

In third case the performance has met after epoch number 148.

Training- e GoakBlack Test-Red

Performance is 2 71875e-006, Goal is 1e-005

20 40

B0 80

148 Epochs

100

Fig. 4 (a) Maximum epoch (in third case is 148)
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Fig. 4 (b) MSE after training networks in third case
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Fig. 4 (c) Results obtained after training network in third case
5. Conclusions

For this project, the conjugate gradient algorithm reaches a similar
performance in a shorter time comparable with “one-step-secant” method, with
the difference that in some of the training cases the program blocks during the
training time. Also, sometimes during the training the error “Divide by zero”
arises. Therefore, one-step-secant algorithm is a fast enough algorithm that may
perform training without blockage during the running time of the program.

One-Step-Secant method representing a compromise solution between
conjugate gradient algorithms (methods with requirements low calculation) and
quasi-Newton algorithms and this method no stocking complete Hessian matrix,
but suppose that at each iteration previous Hessian matrix is identity matrix. This
thing have supplementary advantage that new pursuit direction can be calculating
without calculating inverse matrix, so in the case of Quasi-Newton algorithms.

This methodology may offer a helpful support for designing different
geometrical shapes in many applications of current interest.

On the other hand, there are some points that should be improved in
further work, such as improving the network algorithm, enhancing the
generalization ability, etc.

If the values of the performance function on training set is over 1e-5 value
and on test set is over 1e-4, our program would be blocked.

Helped by this program, we'll obtain the best results using the values of
text fore mentioned.

In the future we intend to develop this application for more values of the
performance function.

In the near days to come, we will get new and more comprehensive results
for the performance function. Also we will extend the functionality of our
algorithms so as to be able to make online plot of geometrical shapes with the use
of adequate portable devices.
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