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GEOMETRICAL FORM RECOGNITION USING “ONE-STEP-
SECANT” ALGORITHM IN CASE OF NEURAL NETWORK 

Rodica CONSTANTINESCU1, Vasile LAZARESCU2, Radwan TAHBOUB3 

În acest articol ne-am propus să realizăm recunoaşterea formelor 
geometrice: dreptunghi şi elipsă, plecând de la un număr de puncte dat de pe 
conturul acestora prin folosirea algoritmului „one step secant” în cazul 
reţelelor neurale. Primul pas este de a construi o reţea neurală cu două 
straturi şi doi vectori de intrare. Primul strat are 20 neuroni, în timp ce al 
doilea strat are doar doi neuroni. În al doilea rând am creat o bază de 
antrenament şi o bază de test, baze care au fost generate de funcţia „rand” în 
Matlab 7.0. Fiecare bază creată conţine 100 de forme: 50 dreptunghiuri şi 50 
elipse. Apoi am testat reţeaua folosind eroarea medie pătratică şi algoritmul 
„one-step-secant”. 

   
The purpose of this paper is the recognition of geometrical shapes: 

rectangle and ellipse by using the “one-step-secant” algorithm of neural 
network. The first step is to build up a neural network with two layers and two 
input vectors. The first layer has twenty neurons, while the second one includes 
only two neurons. The second step is to create a training base and a test base 
through generating “rand” function. Each base contains one hundred shapes: 
fifty rectangles and fifty ellipses. The third step is testing the network by using 
a performance function (MSE=Mean Squared Error) and “one-step-secant” 
algorithm.  
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  1. Introduction 

 
There is no universally accepted definition of a neural network. But, 

perhaps, most people in the field would agree that a neural network is a network 
of many simple processors ("units"), each possibly endowed with a small amount 
of local memory. The units are connected by communication channels 
("connections"), which usually carry numeric (as opposed to symbolic) data, 
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encoded by various means. The units operate only on their local data and on the 
inputs they receive via the connections. The restriction to local operations is often 
relaxed during training [1], [2].  

Neural network can be divided into three architectures, namely single 
layer, multilayer network and competitive layer. In a net, the layers number can be 
defined on the basis of a number of interconnected weights in a neuron. A single 
layer network consists in only one layer of connection weights, whereas, a 
multilayer network consists in more than one layer of connection weights. The 
network also contains an additional layer called hidden layer. Multilayer networks 
can be used to solve more complicated problems compared to single layer 
network. Both of the network are also called feed-forward network where the 
signal flows from the input units to the output units in a forward direction [2]. 

The inverse error propagation algorithm has been created through 
generalization of a learning rule of Widrow-Hoff of multitask networks and 
differential and nonlinear transferring functions. In this paper we used a variant of 
the inverse error propagation algorithm.  

Input vectors and corresponding “target” vectors are used to train the 
network until this can approximate a function, associating input vectors with 
specific output vectors, or classify the input vectors in a user mode specification.  

Standard algorithm of inverse error propagation is related to the gradient 
decrease. The notion of inverse propagation of error is similar to the manner in 
which the gradient is computed for nonlinear multitask networks. There are 
several implementations for the standard algorithm that are based on other 
standard optimization techniques, like the conjugate gradient method or the 
Newton method. 

Networks with inverse training error propagation tend to offer reasonable 
answers. This is happening in a suitable way, when input values which were not 
seen before, are introduced. Usually, new sets of input values are leading to 
similar outputs such as correct output (target output) for input vectors used in 
training. Those are similar to the new sets. This generalization property allows 
entertaining a network on a representative set of input/output pairs. It is also 
conducting to satisfactory results without network training on all the other 
possible input/output pairs.  
 
  2. Background 

 
Training a neural network is, in most cases, an exercise in numerical 

optimization of a usually nonlinear objective function ("objective function" means 
whatever function you are trying to optimize and is a slightly more general term 
than "error function" in that it may include other quantities such as penalties for 
weight decay. 
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Methods of nonlinear optimization have been studied for hundreds of 
years, and there is a huge literature on the subject in fields such as numerical 
analysis, operational research, and statistical computing (e.g. [3], [4]). Masters in 
[5] has a good elementary discussion of conjugate gradient and Levenberg-
Marquardt algorithms in the context of neural networks. 

There is no single best method for nonlinear optimization. You need to 
choose a method based on the characteristics of the problem to be solved. For 
objective functions with continuous second derivatives (which would include 
feed-forward nets with the most popular differentiable activation functions and 
error functions), three general types of algorithms have been found to be effective 
for most practical purposes:  

 - For a small number of weights, stabilized Newton and Gauss-Newton 
algorithms, including various Levenberg-Marquardt and trust-region 
algorithms, are efficient. The memory required by these algorithms is 
proportional to the square of the number of weights.   

 - For a moderate number of weights, various quasi-Newton algorithms are 
efficient. The memory required by these algorithms is proportional to the 
square of the number of weights.  

 - For a large number of weights, various conjugate-gradient algorithms are 
efficient. The memory required by these algorithms is proportional to the 
number of weights.  

In most applications, it is advisable to train several networks with different 
numbers of hidden units. Rather than train each network, beginning with 
completely random weights, it is usually more efficient to use constructive 
learning. Constructive learning can be done with any of the conventional 
optimization techniques or with the various "prop" methods, and can be very 
effective at finding good local optima at less expense than full-blown global 
optimization methods.  
 

3. Method 
 

This paper represents the first part of an extended project, which we desire 
to attain. Thus, we intend to detect the geometrical shapes described by a person’s 
movement through the air. However, to attain this, we have to firstly create a 
portable device which could provide the necessary plots on the trajectory. 

In this paper we used geometrical shapes in the xOy (bidimensional)  
plane, i.e. we used the bidimensional case. The next step would be to extend these 
to the xyz plane, for the tridimensional plane.    

In this paper we propose the implementation of geometrical shape 
recognition: rectangle and geom. ellipse, for a given number of points from the 
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contour (outline). This paper starts from the concept of detection of the 
geometrical shapes traced by one person through the air.  

Quasi-Newton method involves generating a sequence of matrices ( )kG  
that represents increasingly accurate approximations to the inverse Hessian ( )1−H . 
Using only the first derivative information of E, the updated expression is as 
follows: 
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and T represents transpose of a matrix. The problem with this approach is the 
requirement of computation and storage of the approximate Hessian matrix for 
every iteration. The One-Step-Secant (OSS) is an approach to bridge the gap 
between the conjugate gradient algorithm and the quasi-Newton (secant) 
approach. The OSS approach doesn’t store the complete Hessian matrix; it 
assumes that at each iteration the previous Hessian was the identity matrix. This 
also has the advantage that the new search direction can be calculated without 
computing a matrix inverse [2]. 

Newton's method is an alternative to the conjugate gradient methods for 
fast optimization. The basic step of Newton's method is  

 
kkkk gAxx 1

1
−
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where kA  is the Hessian matrix (second derivatives) of the performance index at 
the current values of the weights and biases. Newton's method often converges 
faster than conjugate gradient methods. Unfortunately, it is complex and 
expensive to compute the Hessian matrix for feed forward neural networks. There 
is a class of algorithms that is based on Newton's method, but which doesn't 
require calculation of second derivatives. These are called quasi-Newton (or 
secant) methods. They update an approximate Hessian matrix at each iteration of 
the algorithm. The update is computed as a function of the gradient. 
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The quasi-Newton method that has been most successful is the Broyden, 
Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm has been 
implemented in the „trainbfg” routine. The BFGS algorithm is described in [6].  

Since the BFGS algorithm requires more storage and computation in each 
iteration than the conjugate gradient algorithms, there is need for a secant 
approximation with smaller storage and computation requirements. The one step 
secant (OSS) method is an attempt to bridge the gap between the conjugate 
gradient algorithms and the quasi-Newton (secant) algorithms. This algorithm 
does not store the complete Hessian matrix; it assumes that at each iteration, the 
previous Hessian was the identity matrix. This has the additional advantage that 
the new search direction can be calculated without computing a matrix inverse [1]. 

This algorithm requires more computation in each iteration and more 
storage than the conjugate gradient methods, although it generally converges in 
less iteration. The approximate Hessian must be stored, and its dimension is n*n, 
where n is equal to the number of weights and biases in the network.  

For very large networks it may be better to use resilient back-propagation 
(Rprop) (in the „trainrp” routine) or one of the conjugate gradient algorithms. For 
smaller networks, however, „trainbfg” (BFGS quasi-Newton back-propagation) 
can be an efficient training function. 

However, for complex networks, where number of synapse is great (large), 
this algorithm is not very fast because it requires the calculation and the hoarding 
Hessian approximate matrix. Full of view processed problem in which we have 
twenty neurons on first layer and two input vectors, is requiring a secant 
approximation with small requirements of calculation and hoarding. Therefore, in 
this case we used One-Step-Secant algorithm. 
General description of method: 

To simulate the processing of the coordinate points taken from the 
aforementioned device, rectangles and geom. ellipses have been generated in a 
random mode. Knowing this and the fact that a person will not describe, 
generally, perfect geometrical shapes, some assumptions were considered for 
obtaining a real case: 

- The shapes are traced anywhere in a specification area, angle in down left (for 
geom. ellipse, angle in down left of rectangle what framing) full of random 
coordinates with a uniform distribution (abscissa respective angle there is 
between 0 and 100; likewise and ordinate), thus permitting a varied position of 
the traced form, like in the real case, when tracing is made inside a room with  
dimensions from specifications; 

- The shapes are drawn anywhere inside a specified area, the left lower corner 
(for geom. ellipse, the left lower corner of the rectangle which surrounds it) 
having random coordinates with a uniform distribution (abscissa of the 
respective corner is between 0 and 100; likewise the ordinate). Thus a varied 
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positioning of the drawn shapes is possible, like in the real case, when the 
tracing is done inside a room with specified dimensions; 

- The dimensions of the shapes are generated randomly (again with an uniform 
distribution, so as not to create preferential dimensions); 

- Each coordinate of each point is affected by a uniform noise, thus, permitting 
a tracing with imperfections, exactly like in the real case. 

The project was realized in Matlab version 7.0 and it is based on the 
notion of neural networks. The implementation of the algorithms specific to 
neural networks was made with the use of the Neural Network Toolbox in Matlab. 

Neural networks are composed of simple elements which operate in 
parallel. These elements are inspired from the biological nervous systems. As in 
nature, the function of network is determined in large by the connections between 
elements. A neural network may be trained to realize certain function by setting 
the values of the connections (synapses or weights) between elements. Usually, 
the neural networks are set or trained, so that a certain set of input values would 
lead to a value of expected output (a target). 

Such a situation is presented in Fig. 1. The network is set through the 
comparison between the output value and the target (the expected value), until the 
output of network approaches the target, with a given offset. In general, many 
such input/target pairs are used for training network. 

 

 
Fig. 1 - The comparison between the output value and the target 

  
Along time neural networks have been trained to realize complex 

functions in varied applications such as: shapes recognition (as in this case), 
classification, speech and voice signal recognition, control systems, medical 
imagistic and many others. 

The domain of neural networks has a history of approximately five 
decades, but has found solid application only in the last 20 years and continues to 
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develop in an accelerated rhythm. Thus, the notion of neural network is 
completely different from the traditional notions implied in areas such as control 
systems or the optimization of the systems where the terminology (mathematical 
statistics) and the designing procedures were settled and applied for many years. 
Implementation procedure: 

The first step is to build up a neural network with two layers and two input 
vectors. The first input vector contains abscissa points, and the second one 
contains ordinate points. Regarding the layers; the first one has twenty neurons, 
while the second one includes only two neurons. 

The second step is to create a training base and a test base using the “rand” 
function. Each base contains one hundred shapes: fifty rectangles and fifty geom. 
ellipses.  

The third step is testing the network by using a performance function 
(MSE=Mean Squared Error, where the error value is the amount by which the 
value output by the network differs from the training value. For example, if we 
required the network to output 0 and it output a 1, then Err = -1) and “one-step-
secant” algorithm. To assure the convergence towards the expected value while on 
any training set we realize a “while” loop that iterates the network initialization. 
The result of the testing made one the training base must be under the value 1e-5; 
while for the test base is under the value 1e-4. These results are the errors that are 
reasonable enough for a correct classification. Additional to these errors, the 
function also shows a value in which the evolution parameters are stored during 
the training. This is called epoch (An epoch is the presentation of the entire 
training set to the neural network. For example, in the case of the AND function 
an epoch consists of four sets of inputs being presented to the network (i.e. [0,0], 
[0,1], [1,0], [1,1])). 

The gradient of a function of two variables ( )yxF ,  is defined as:   
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and can be thought of as a collection of vectors pointing in the direction of 
increasing values of F . In Matlab, numerical gradients (differences) can be 
computed for functions with any number of variables.  

Algorithm “trainoss” [1] can train any network as long as its weight, net 
input, and transfer functions have derivative functions. Back-propagation is used 
to calculate derivatives of performance perf with respect to the weight and bias 
variables X. Each variable is adjusted according to the following [9]:  

 
dXaXX *+=                                                                                  (5) 
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where dX  is the search direction. The parameter is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of the 
gradient of performance. In succeeding iterations the search direction is computed 
from the new gradient and the previous steps and gradients according to the 
following formula:  
 

dgXBcXAcgXdX step ** ++−=                                                      (6) 
 

where gX  is the gradient, stepX  is the change in the weights on the previous 
iteration, and dgX  is the change in the gradient from the last iteration. (For a 
more detailed discussion of the one step secant algorithm see [7]). 

Training stops when any of these conditions occur:  
1. The maximum number of epochs (repetitions) is reached.  
2. The maximum amount of time has been exceeded.  
3. Performance has been minimized to the goal.  
4. The performance gradient falls below min-grad.  
5. Validation performance has increased more than max_fail times since the last 

time it decreased (when using validation). 
The program can be called through the function “rec_form”. This has a 

facultative parameter which represents the number of points upon which the latter 
training and recognition are made. The implicit value of this parameter is 48. 

To be used for recognition, the trained network is used as a parameter for 
the „sim” function which verifies the behavior of the network on a shape inserted 
from the keyboard. If the function returns the value 0 1, the network has identified 
the inserted shape with a rectangle; but if the returned value is 0 0, the network 
has identified the inserted shape as being an ellipse.  

Training the network is time consuming. It usually learns after several 
epochs, depending on how large the network is. Thus, large network required 
more training time compared to the smaller one. Basically, the network is trained 
for several epochs and stopped after reaching the maximum epoch. For the same 
reason minimum error tolerance is used provided that the differences between 
network output and known outcome are less than the specified value. We could 
also stop the training after the network meets certain stopping criteria. During 
training the network might learn too much. 

For this project during training, validation set is used instead of training 
data set. After a few epochs the network is tested with the validation data. The 
training is stopped as soon as the error on validation set increases rapidly higher 
than the last time it was checked [8]. 
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4. Experimental results  
 

In this paper we analyzed three cases. In first case, the performance has 
met at epoch number 52 of 500 (500 is number maxim of epochs in our case), in 
the second case the performance has obtained at epoch number 146 of 500 and the 
third case the performance has met at epoch number 148 of 500. Results obtained 
in those there cases analyzed in this article are: 

In Table 1, 2 and 3 we have MSE and gradient at some epochs of those 
analyzed, until met the performance. 

Fig. 2 (a), (b) and (c) shows network when met the performance that is at 
maximum epoch. 

(a) Represent the first case; 
(b) Represent the second case; 
(c) Represent the third case. 
 Fig. 3 (a), (b) and (c) shows network after training. Fig. 4 (a), (b) and (c) 

shows results obtained with this method. 
For the first case we have the following results: 

       Table 1 
The performance system after epoch number 52 

Epoch MSE /1e-005 Gradient 
0 of 500 0. 377322 0. 505532 

25 of 500 0. 0381433 0. 648829 
50 of 500 7.70679e-005 0.0338334 
52 of 500 5.45577e-006 0.000132798 

In first case the performance has met after epoch number 52.  
 

 
 

Fig. 2 (a) Maximum epoch (in first case is 52) 
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Fig. 2 (b) MSE after training networks in first case 
 

 
 

Fig. 2 (c) Results obtained after training network in the first case 
 

For the second case we have: 
            Table 2 

The performance system met after epoch number 146 
Epoch MSE /1e-005 Gradient 

0 of 500 0.511977 0.568587 
25 of 500 0.0560792 0.16273 
50 of 500 0.00763521 0.132888 
75 of 500 0.000238334 0.000582092 
100 of 500 0.000123981 0.000801856 
125 of 500 2.34438e-005 5.7238e-005 
146 of 500 9.38845e-006 5.50573e-005 

 
In second case the performance has met after epoch number 146. 
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Fig. 3 (a) Maximum epoch (in second case is 146) 
 

 
 

Fig. 3 (b) MSE after training networks in second case 
 

 
 

Fig. 3 (c) Results obtained after training network in second case 
 

For the third case we have: 
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            Table 3 
The performance system met after epoch number 148 

Epoch MSE /1e-005 Gradient 
0 of 500 0.292855 0.511591 
25 of 500 0.029315 0.275339 
50 of 500 0.00040364 0.00105794 
75 of 500 1.58091e-005 3.21924e-005 

100 of 500 1.53045e-005 4.51943e-005 
125 of 500 1.50264e-005 3.37123e-005 
141 of 500 2.71875e-006 1.39385e-005 

 
In third case the performance has met after epoch number 148. 
 

 

 
 

Fig. 4 (a) Maximum epoch (in third case is 148) 
 

 
 

Fig. 4 (b) MSE after training networks in third case 
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Fig. 4 (c) Results obtained after training network in third case 

 
5. Conclusions 

 
For this project, the conjugate gradient algorithm reaches a similar 

performance in a shorter time comparable with “one-step-secant” method, with 
the difference that in some of the training cases the program blocks during the 
training time. Also, sometimes during the training the error “Divide by zero” 
arises. Therefore, one-step-secant algorithm is a fast enough algorithm that may 
perform training without blockage during the running time of the program. 

One-Step-Secant method representing a compromise solution between 
conjugate gradient algorithms (methods with requirements low calculation) and 
quasi-Newton algorithms and this method no stocking complete Hessian matrix, 
but suppose that at each iteration previous Hessian matrix is identity matrix. This 
thing have supplementary advantage that new pursuit direction can be calculating 
without calculating inverse matrix, so in the case of Quasi-Newton algorithms. 

This methodology may offer a helpful support for designing different 
geometrical shapes in many applications of current interest. 

On the other hand, there are some points that should be improved in 
further work, such as improving the network algorithm, enhancing the 
generalization ability, etc. 

If the values of the performance function on training set is over 1e-5 value 
and on test set is over 1e-4, our program would be blocked. 

Helped by this program, we'll obtain the best results using the values of 
text fore mentioned. 

In the future we intend to develop this application for more values of the 
performance function. 

In the near days to come, we will get new and more comprehensive results 
for the performance function. Also we will extend the functionality of our 
algorithms so as to be able to make online plot of geometrical shapes with the use 
of adequate portable devices. 
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