

GEOMETRICAL FORM RECOGNITION USING “ONE-STEP-SECANT” ALGORITHM IN CASE OF NEURAL NETWORK

Rodica CONSTANTINESCU¹, Vasile LAZARESCU², Radwan TAHBOUB³

În acest articol ne-am propus să realizăm recunoașterea formelor geometrice: dreptunghi și elipsă, plecând de la un număr de puncte dat de pe conturul acestora prin folosirea algoritmului „one step secant” în cazul rețelelor neurale. Primul pas este de a construi o rețea neurală cu două straturi și doi vectori de intrare. Primul strat are 20 neuroni, în timp ce al doilea strat are doar doi neuroni. În al doilea rând am creat o bază de antrenament și o bază de test, baze care au fost generate de funcția „rand” în Matlab 7.0. Fiecare bază creată conține 100 de forme: 50 dreptunghiuri și 50 elipse. Apoi am testat rețeaua folosind eroarea medie pătratică și algoritmul „one-step-secant”.

The purpose of this paper is the recognition of geometrical shapes: rectangle and ellipse by using the “one-step-secant” algorithm of neural network. The first step is to build up a neural network with two layers and two input vectors. The first layer has twenty neurons, while the second one includes only two neurons. The second step is to create a training base and a test base through generating “rand” function. Each base contains one hundred shapes: fifty rectangles and fifty ellipses. The third step is testing the network by using a performance function (MSE=Mean Squared Error) and “one-step-secant” algorithm.

Keywords: Neural Network, Epoch, MSE.

1. Introduction

There is no universally accepted definition of a neural network. But, perhaps, most people in the field would agree that a neural network is a network of many simple processors ("units"), each possibly endowed with a small amount of local memory. The units are connected by communication channels ("connections"), which usually carry numeric (as opposed to symbolic) data,

¹ Lecturer, Dept. of Applied Electronics and Informatics Engineering, University “Politehnica” of Bucharest, Romania, email: constantinescu.rodica@gmail.com.

² Professor, Dept. of Applied Electronics and Informatics Engineering, University “Politehnica” of Bucharest, Romania, email: vl@elia.pub.ro.

³ Lecturer, Dept. ECE, Palestine Polytechnic University, and Director, Friends of Fwazi Kawash Information Technology Center of Excellence, Hebron, Palestine, email: radwanrt@yahoo.com

encoded by various means. The units operate only on their local data and on the inputs they receive via the connections. The restriction to local operations is often relaxed during training [1], [2].

Neural network can be divided into three architectures, namely single layer, multilayer network and competitive layer. In a net, the layers number can be defined on the basis of a number of interconnected weights in a neuron. A single layer network consists in only one layer of connection weights, whereas, a multilayer network consists in more than one layer of connection weights. The network also contains an additional layer called hidden layer. Multilayer networks can be used to solve more complicated problems compared to single layer network. Both of the network are also called feed-forward network where the signal flows from the input units to the output units in a forward direction [2].

The inverse error propagation algorithm has been created through generalization of a learning rule of Widrow-Hoff of multitask networks and differential and nonlinear transferring functions. In this paper we used a variant of the inverse error propagation algorithm.

Input vectors and corresponding "target" vectors are used to train the network until this can approximate a function, associating input vectors with specific output vectors, or classify the input vectors in a user mode specification.

Standard algorithm of inverse error propagation is related to the gradient decrease. The notion of inverse propagation of error is similar to the manner in which the gradient is computed for nonlinear multitask networks. There are several implementations for the standard algorithm that are based on other standard optimization techniques, like the conjugate gradient method or the Newton method.

Networks with inverse training error propagation tend to offer reasonable answers. This is happening in a suitable way, when input values which were not seen before, are introduced. Usually, new sets of input values are leading to similar outputs such as correct output (target output) for input vectors used in training. Those are similar to the new sets. This generalization property allows entertaining a network on a representative set of input/output pairs. It is also conducting to satisfactory results without network training on all the other possible input/output pairs.

2. Background

Training a neural network is, in most cases, an exercise in numerical optimization of a usually nonlinear objective function ("objective function" means whatever function you are trying to optimize and is a slightly more general term than "error function" in that it may include other quantities such as penalties for weight decay.

Methods of nonlinear optimization have been studied for hundreds of years, and there is a huge literature on the subject in fields such as numerical analysis, operational research, and statistical computing (e.g. [3], [4]). Masters in [5] has a good elementary discussion of conjugate gradient and Levenberg-Marquardt algorithms in the context of neural networks.

There is no single best method for nonlinear optimization. You need to choose a method based on the characteristics of the problem to be solved. For objective functions with continuous second derivatives (which would include feed-forward nets with the most popular differentiable activation functions and error functions), three general types of algorithms have been found to be effective for most practical purposes:

- For a small number of weights, stabilized Newton and Gauss-Newton algorithms, including various Levenberg-Marquardt and trust-region algorithms, are efficient. The memory required by these algorithms is proportional to the square of the number of weights.
- For a moderate number of weights, various quasi-Newton algorithms are efficient. The memory required by these algorithms is proportional to the square of the number of weights.
- For a large number of weights, various conjugate-gradient algorithms are efficient. The memory required by these algorithms is proportional to the number of weights.

In most applications, it is advisable to train several networks with different numbers of hidden units. Rather than train each network, beginning with completely random weights, it is usually more efficient to use constructive learning. Constructive learning can be done with any of the conventional optimization techniques or with the various "prop" methods, and can be very effective at finding good local optima at less expense than full-blown global optimization methods.

3. Method

This paper represents the first part of an extended project, which we desire to attain. Thus, we intend to detect the geometrical shapes described by a person's movement through the air. However, to attain this, we have to firstly create a portable device which could provide the necessary plots on the trajectory.

In this paper we used geometrical shapes in the xOy (bidimensional) plane, i.e. we used the bidimensional case. The next step would be to extend these to the xyz plane, for the tridimensional plane.

In this paper we propose the implementation of geometrical shape recognition: rectangle and geom. ellipse, for a given number of points from the

contour (outline). This paper starts from the concept of detection of the geometrical shapes traced by one person through the air.

Quasi-Newton method involves generating a sequence of matrices $G^{(k)}$ that represents increasingly accurate approximations to the inverse Hessian (H^{-1}). Using only the first derivative information of E, the updated expression is as follows:

$$G^{(k+1)} = G^{(k)} + \frac{pp^T}{p^T v} - \frac{(G^k v)v^T G^{(k)}}{v^T G^{(k)} v} + (v^T G^{(k)} v) uu^T \quad (1)$$

where

$$\begin{aligned} p &= w^{(k+1)} - w^{(k)}, \\ v &= g^{(k+1)} - g^{(k)}, \\ u &= \frac{p}{p^T v} - \frac{G^{(k)} v}{v^T G^{(k)} v} \end{aligned} \quad (2)$$

and T represents transpose of a matrix. The problem with this approach is the requirement of computation and storage of the approximate Hessian matrix for every iteration. The One-Step-Secant (OSS) is an approach to bridge the gap between the conjugate gradient algorithm and the quasi-Newton (secant) approach. The OSS approach doesn't store the complete Hessian matrix; it assumes that at each iteration the previous Hessian was the identity matrix. This also has the advantage that the new search direction can be calculated without computing a matrix inverse [2].

Newton's method is an alternative to the conjugate gradient methods for fast optimization. The basic step of Newton's method is

$$x_{k+1} = x_k - A_k^{-1} g_k \quad (3)$$

where A_k is the Hessian matrix (second derivatives) of the performance index at the current values of the weights and biases. Newton's method often converges faster than conjugate gradient methods. Unfortunately, it is complex and expensive to compute the Hessian matrix for feed forward neural networks. There is a class of algorithms that is based on Newton's method, but which doesn't require calculation of second derivatives. These are called quasi-Newton (or secant) methods. They update an approximate Hessian matrix at each iteration of the algorithm. The update is computed as a function of the gradient.

The quasi-Newton method that has been most successful is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm has been implemented in the „trainbfg” routine. The BFGS algorithm is described in [6].

Since the BFGS algorithm requires more storage and computation in each iteration than the conjugate gradient algorithms, there is need for a secant approximation with smaller storage and computation requirements. The one step secant (OSS) method is an attempt to bridge the gap between the conjugate gradient algorithms and the quasi-Newton (secant) algorithms. This algorithm does not store the complete Hessian matrix; it assumes that at each iteration, the previous Hessian was the identity matrix. This has the additional advantage that the new search direction can be calculated without computing a matrix inverse [1].

This algorithm requires more computation in each iteration and more storage than the conjugate gradient methods, although it generally converges in less iteration. The approximate Hessian must be stored, and its dimension is $n \times n$, where n is equal to the number of weights and biases in the network.

For very large networks it may be better to use resilient back-propagation (Rprop) (in the „trainrp” routine) or one of the conjugate gradient algorithms. For smaller networks, however, „trainbfg” (BFGS quasi-Newton back-propagation) can be an efficient training function.

However, for complex networks, where number of synapse is great (large), this algorithm is not very fast because it requires the calculation and the hoarding Hessian approximate matrix. Full of view processed problem in which we have twenty neurons on first layer and two input vectors, is requiring a secant approximation with small requirements of calculation and hoarding. Therefore, in this case we used One-Step-Secant algorithm.

General description of method:

To simulate the processing of the coordinate points taken from the aforementioned device, rectangles and geom. ellipses have been generated in a random mode. Knowing this and the fact that a person will not describe, generally, perfect geometrical shapes, some assumptions were considered for obtaining a real case:

- The shapes are traced anywhere in a specification area, angle in down left (for geom. ellipse, angle in down left of rectangle what framing) full of random coordinates with a uniform distribution (abscissa respective angle there is between 0 and 100; likewise and ordinate), thus permitting a varied position of the traced form, like in the real case, when tracing is made inside a room with dimensions from specifications;
- The shapes are drawn anywhere inside a specified area, the left lower corner (for geom. ellipse, the left lower corner of the rectangle which surrounds it) having random coordinates with a uniform distribution (abscissa of the respective corner is between 0 and 100; likewise the ordinate). Thus a varied

positioning of the drawn shapes is possible, like in the real case, when the tracing is done inside a room with specified dimensions;

- The dimensions of the shapes are generated randomly (again with an uniform distribution, so as not to create preferential dimensions);
- Each coordinate of each point is affected by a uniform noise, thus, permitting a tracing with imperfections, exactly like in the real case.

The project was realized in Matlab version 7.0 and it is based on the notion of neural networks. The implementation of the algorithms specific to neural networks was made with the use of the Neural Network Toolbox in Matlab.

Neural networks are composed of simple elements which operate in parallel. These elements are inspired from the biological nervous systems. As in nature, the function of network is determined in large by the connections between elements. A neural network may be trained to realize certain function by setting the values of the connections (synapses or weights) between elements. Usually, the neural networks are set or trained, so that a certain set of input values would lead to a value of expected output (a target).

Such a situation is presented in Fig. 1. The network is set through the comparison between the output value and the target (the expected value), until the output of network approaches the target, with a given offset. In general, many such input/target pairs are used for training network.

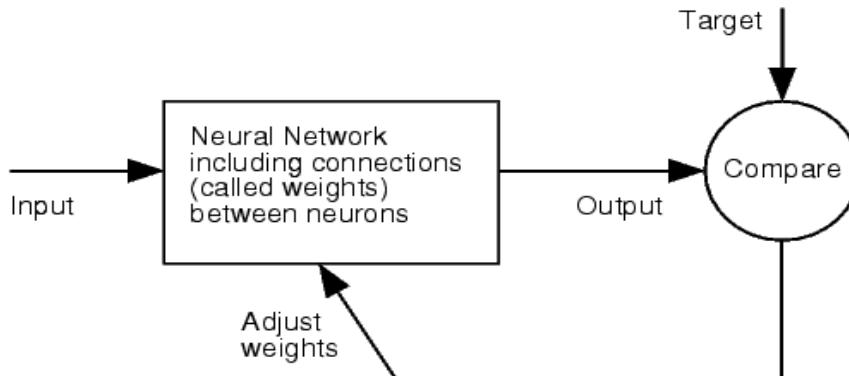


Fig. 1 - The comparison between the output value and the target

Along time neural networks have been trained to realize complex functions in varied applications such as: shapes recognition (as in this case), classification, speech and voice signal recognition, control systems, medical imagistic and many others.

The domain of neural networks has a history of approximately five decades, but has found solid application only in the last 20 years and continues to

develop in an accelerated rhythm. Thus, the notion of neural network is completely different from the traditional notions implied in areas such as control systems or the optimization of the systems where the terminology (mathematical statistics) and the designing procedures were settled and applied for many years.

Implementation procedure:

The first step is to build up a neural network with two layers and two input vectors. The first input vector contains abscissa points, and the second one contains ordinate points. Regarding the layers; the first one has twenty neurons, while the second one includes only two neurons.

The second step is to create a training base and a test base using the “rand” function. Each base contains one hundred shapes: fifty rectangles and fifty geom. ellipses.

The third step is testing the network by using a performance function (MSE=Mean Squared Error, where the error value is the amount by which the value output by the network differs from the training value. For example, if we required the network to output 0 and it output a 1, then Err = -1) and “one-step-secant” algorithm. To assure the convergence towards the expected value while on any training set we realize a “while” loop that iterates the network initialization. The result of the testing made one the training base must be under the value 1e-5; while for the test base is under the value 1e-4. These results are the errors that are reasonable enough for a correct classification. Additional to these errors, the function also shows a value in which the evolution parameters are stored during the training. This is called epoch (An epoch is the presentation of the entire training set to the neural network. For example, in the case of the AND function an epoch consists of four sets of inputs being presented to the network (i.e. [0,0], [0,1], [1,0], [1,1])).

The gradient of a function of two variables $F(x, y)$ is defined as:

$$\nabla F = \frac{\partial F}{\partial x} \hat{i} + \frac{\partial F}{\partial y} \hat{j} \quad (4)$$

and can be thought of as a collection of vectors pointing in the direction of increasing values of F . In Matlab, numerical gradients (differences) can be computed for functions with any number of variables.

Algorithm “trainoss” [1] can train any network as long as its weight, net input, and transfer functions have derivative functions. Back-propagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following [9]:

$$X = X + a * dX \quad (5)$$

where dX is the search direction. The parameter is selected to minimize the performance along the search direction. The line search function searchFcn is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous steps and gradients according to the following formula:

$$dX = -gX + Ac * X_{step} + Bc * dgX \quad (6)$$

where gX is the gradient, X_{step} is the change in the weights on the previous iteration, and dgX is the change in the gradient from the last iteration. (For a more detailed discussion of the one step secant algorithm see [7]).

Training stops when any of these conditions occur:

1. The maximum number of epochs (repetitions) is reached.
2. The maximum amount of time has been exceeded.
3. Performance has been minimized to the goal.
4. The performance gradient falls below min-grad.
5. Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

The program can be called through the function “rec_form”. This has a facultative parameter which represents the number of points upon which the latter training and recognition are made. The implicit value of this parameter is 48.

To be used for recognition, the trained network is used as a parameter for the „sim” function which verifies the behavior of the network on a shape inserted from the keyboard. If the function returns the value 0 1, the network has identified the inserted shape with a rectangle; but if the returned value is 0 0, the network has identified the inserted shape as being an ellipse.

Training the network is time consuming. It usually learns after several epochs, depending on how large the network is. Thus, large network required more training time compared to the smaller one. Basically, the network is trained for several epochs and stopped after reaching the maximum epoch. For the same reason minimum error tolerance is used provided that the differences between network output and known outcome are less than the specified value. We could also stop the training after the network meets certain stopping criteria. During training the network might learn too much.

For this project during training, validation set is used instead of training data set. After a few epochs the network is tested with the validation data. The training is stopped as soon as the error on validation set increases rapidly higher than the last time it was checked [8].

4. Experimental results

In this paper we analyzed three cases. In first case, the performance has met at epoch number 52 of 500 (500 is number maxim of epochs in our case), in the second case the performance has obtained at epoch number 146 of 500 and the third case the performance has met at epoch number 148 of 500. Results obtained in those there cases analyzed in this article are:

In Table 1, 2 and 3 we have MSE and gradient at some epochs of those analyzed, until met the performance.

Fig. 2 (a), (b) and (c) shows network when met the performance that is at maximum epoch.

- (a) Represent the first case;
- (b) Represent the second case;
- (c) Represent the third case.

Fig. 3 (a), (b) and (c) shows network after training. Fig. 4 (a), (b) and (c) shows results obtained with this method.

For the first case we have the following results:

Table 1
The performance system after epoch number 52

Epoch	MSE /1e-005	Gradient
0 of 500	0. 377322	0. 505532
25 of 500	0. 0381433	0. 648829
50 of 500	7.70679e-005	0.0338334
52 of 500	5.45577e-006	0.000132798

In first case the performance has met after epoch number 52.

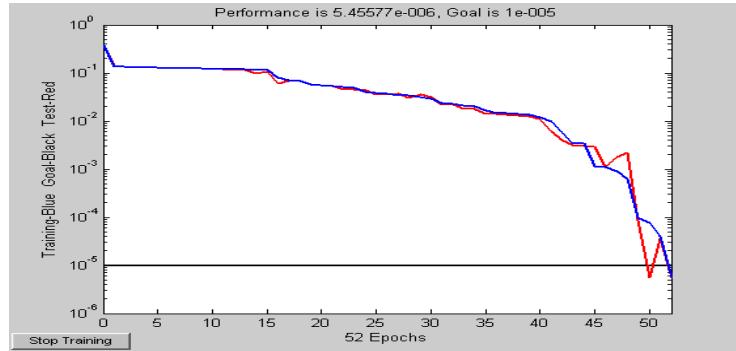


Fig. 2 (a) Maximum epoch (in first case is 52)

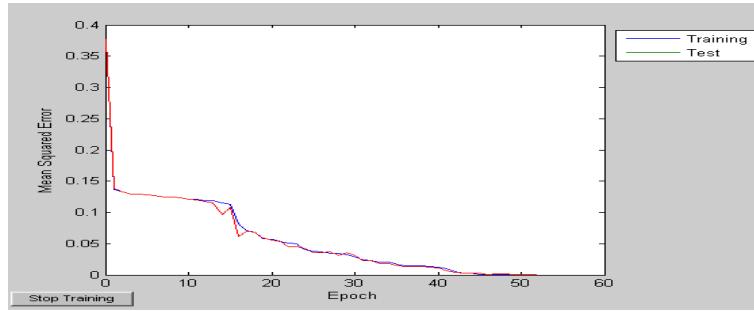


Fig. 2 (b) MSE after training networks in first case

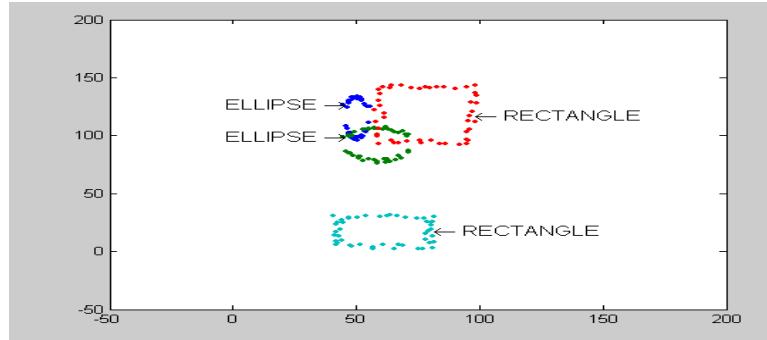


Fig. 2 (c) Results obtained after training network in the first case

For the second case we have:

Table 2
The performance system met after epoch number 146

Epoch	MSE /1e-005	Gradient
0 of 500	0.511977	0.568587
25 of 500	0.0560792	0.16273
50 of 500	0.00763521	0.132888
75 of 500	0.000238334	0.000582092
100 of 500	0.000123981	0.000801856
125 of 500	2.34438e-005	5.7238e-005
146 of 500	9.38845e-006	5.50573e-005

In second case the performance has met after epoch number 146.

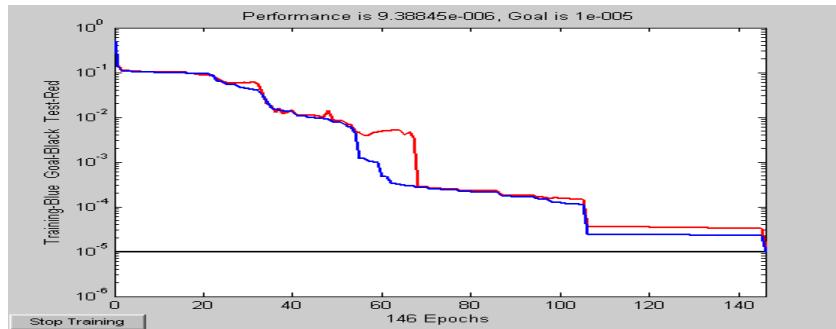


Fig. 3 (a) Maximum epoch (in second case is 146)

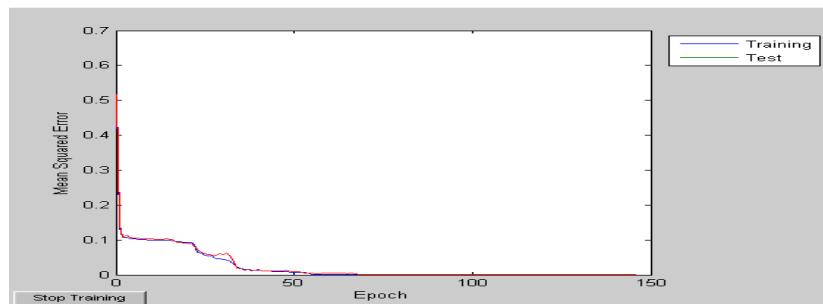


Fig. 3 (b) MSE after training networks in second case

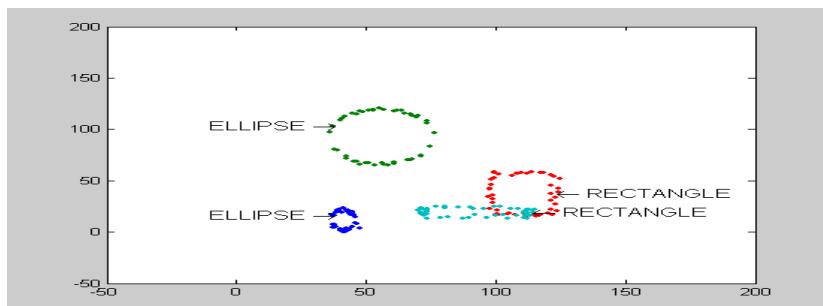


Fig. 3 (c) Results obtained after training network in second case

For the third case we have:

Table 3
The performance system met after epoch number 148

Epoch	MSE /1e-005	Gradient
0 of 500	0.292855	0.511591
25 of 500	0.029315	0.275339
50 of 500	0.00040364	0.00105794
75 of 500	1.58091e-005	3.21924e-005
100 of 500	1.53045e-005	4.51943e-005
125 of 500	1.50264e-005	3.37123e-005
141 of 500	2.71875e-006	1.39385e-005

In third case the performance has met after epoch number 148.

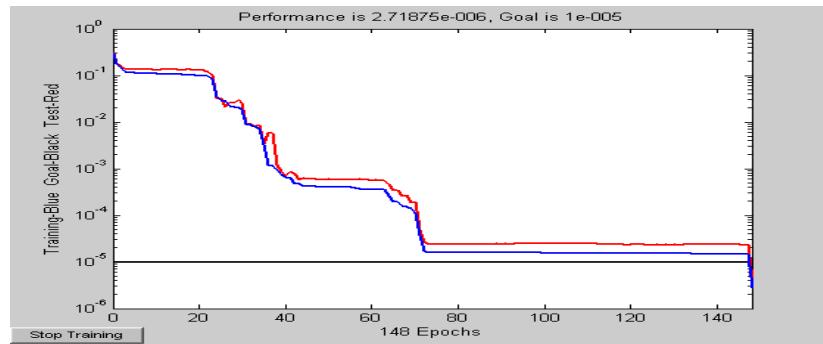


Fig. 4 (a) Maximum epoch (in third case is 148)

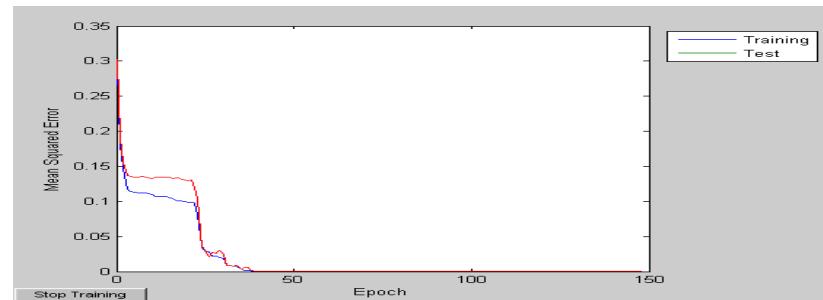


Fig. 4 (b) MSE after training networks in third case

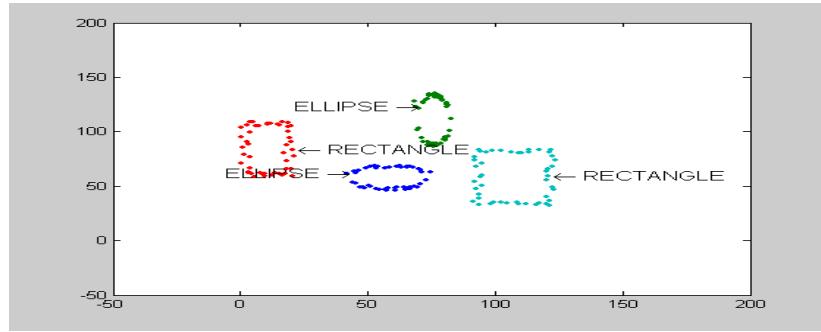


Fig. 4 (c) Results obtained after training network in third case

5. Conclusions

For this project, the conjugate gradient algorithm reaches a similar performance in a shorter time comparable with “one-step-secant” method, with the difference that in some of the training cases the program blocks during the training time. Also, sometimes during the training the error “Divide by zero” arises. Therefore, one-step-secant algorithm is a fast enough algorithm that may perform training without blockage during the running time of the program.

One-Step-Secant method representing a compromise solution between conjugate gradient algorithms (methods with requirements low calculation) and quasi-Newton algorithms and this method no stocking complete Hessian matrix, but suppose that at each iteration previous Hessian matrix is identity matrix. This thing have supplementary advantage that new pursuit direction can be calculating without calculating inverse matrix, so in the case of Quasi-Newton algorithms.

This methodology may offer a helpful support for designing different geometrical shapes in many applications of current interest.

On the other hand, there are some points that should be improved in further work, such as improving the network algorithm, enhancing the generalization ability, etc.

If the values of the performance function on training set is over 1e-5 value and on test set is over 1e-4, our program would be blocked.

Helped by this program, we'll obtain the best results using the values of text fore mentioned.

In the future we intend to develop this application for more values of the performance function.

In the near days to come, we will get new and more comprehensive results for the performance function. Also we will extend the functionality of our algorithms so as to be able to make online plot of geometrical shapes with the use of adequate portable devices.

R E F E R E N C E S

- [1] ***Matlab Help – Neural Network Toolbox
- [2] *Bishop C. M.*, Neural Networks for Pattern Recognition, Oxford Press, 1995.
- [3] *Bertsekas, D. P.* (1995), Nonlinear Programming, Belmont, MA: Athena Scientific, ISBN 1-886529-14-0.
- [4] *Bertsekas, D. P. and Tsitsiklis, J. N.* (1996), Neuro-Dynamic Programming, Belmont, MA: Athena Scientific, ISBN 1-886529-10-8.
- [5] *Masters, T.* (1995) Advanced Algorithms for Neural Networks: A C++ Sourcebook, NY: John Wiley and Sons, ISBN 0-471-10588-0
- [6] *Dennis, J.E., and R.B. Schnabel*, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, 1983.
- [7] *Battiti, R.*, First and second order methods for learning: Between steepest descent and Newton's method, Neural Computation, **Vol. 4**, No. 2, 1992, pp. 141-166.
- [8] *Prechelt, L.* (1998). Early Stopping-but when? Neural Networks: Tricks of the trade, (pp. 55-69). Retrieved March 28, <http://www.ipd.ira.uka.de/~prechelt>, 2002.
- [9] *C. Aykanat, K. Oflazer, R. Tahboub.* "Parallel Implementation of the Back-propagation Algorithm on Hypercube Systems, in Proceedings of the NATO Advanced Study Institute on Parallel and Distributed Computing, (Springer Verlag), Ankara, Turkey, July 1991.