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MODELING OF NONLINEAR SYSTEM FOR A HYDRAULIC
PROCESS

Vasile CALOFIR!

This paper deals with the model design of a nonlinear plant which consists of
a three open coupled tanks and a collecting reservoir. Through these tanks, water is
pumped by means of two pumps and several valves. New contributions are brought
by the author to the design of nonlinear model of the plant.

The plant represents a suitable research benchmark for studying hydraulic
processes, control and fault tolerant strategies that can be applied. Also this plant
has many applications in power plants and petro-chemical industry. The article
presents the design and validation of a nonlinear and respectively a linear model of
the plant, used for control and optimization purpose.
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1. Introduction

Systems with three open tanks are frequently met in water treatment plant
that is an important part of any power plan, in petro-chemical industry, in systems
of aircraft fuel tanks, in the case of boilers in paper industry, the filter water and
many other areas. Many processes can be modeled as systems with three open
reservoirs [1]. In such systems, liquid is pumped, stored in tanks, and then
pumped/discharged in other reservoirs by means of pumps and valves.

When the objective is to maintain a precise constant water level in such
tanks, the design of appropriate controllers can be accomplished by knowing the
mathematical model of the plant. Designing a mathematical model of the
controlled plant can be achieved by means of analytical and experimental
identification techniques. In case of using analytical models, mathematical models
are obtained by applying the laws that describe functionality of the process
(energy conservation law, the impulse conservation law, etc.) taking into account
the characteristic of each process. In general, mathematical models obtained by
means of analytical techniques are complex, nonlinear and often time-varying
[2,7].

The complexity of the mathematical model is a result of a trade-off
between the desired accuracy and the cost of the implementation. It is clear that a
more accurate model will lead to a complex one which is hard to be implemented
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and simulated. Today, based on the powerful computing systems, we are able to
simulate with dedicated software products (such as Matlab/Simulink[3],
Mathematica[4], etc) very complex mathematical models. The problem still arises
when dealing with model based control designs [5] or fault detection and
diagnosis method [10]. In this case the available algorithms are based on simpler
models (the vast majority on linear models).

On the other hand the linear models and some class of nonlinear models
are obtained by simplifying the initial hypotheses. All these simplifications aid the
design of control strategies but bring some reduction of the designed
performances. This is often the case when a designed controller is accompanied
with restricted operating ranges in order to guarantee a level of performance.
Often these solutions are cheaper and are based on simpler and classical designs.

As today the control research community is concerned with control
strategies of nonlinear models, it is of actual interest to insist on nonlinear
modeling of plant systems.

The plant discussed here, for which a model is proposed, is a process with
two inputs and three outputs (MIMO). The main feature of these systems is that
multiple inputs generate multiple outputs with strong interactions between
variables [2,7].

2. System modeling and model validation

Mathematical models of dynamic processes are primarily obtained by
either theoretical/physical modeling or experimentally by the means of
identification methods. For theoretical modeling, also called theoretical analysis
or modeling by first principles, the model is set up on the basis of mathematically
formulated laws of nature [2,7]. The theoretical modeling always begins with
simplifying assumptions about the process, which simplifies the calculations or
enables them with a tolerable expenditure.

By summarizing the basic equations of all process elements, one receives a
system of ordinary and/or partial differential equations of the process. This leads
to a theoretical model with a certain structure and certain parameters, if it can be
solved explicitly. Frequently, this model is extensive and complicated, so it must
be simplified for further application [11].

The simplifications are made by linearization, reduction of the model
order or approximation of systems with distributed parameters by lumped
parameters when limiting on fixed locations. The first steps of these

? Searching in the IEEEXplore Database after “control” in title, abstract and keywords after year
2000 till present one retrieves 37.132 papers. Within these papers 7.037 (= 20%) contains
references to “nonlinear” term.
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simplifications can be already made by simplifying assumptions while stating the
basic equations.

But also if the set of equations cannot be solved explicitly, the individual
equations supply important hints for the model structure. So, balance equations
are always linear and some phenomenological equations are linear in wide areas.
The constitutive equations often introduce nonlinear relations.

During experimental modeling, which is referred to as identifications, one
obtains the mathematical model of a process from measurements. Here, one
always proceeds from a priori knowledge, which was gained, from the theoretical
analysis or from preceding measurements. Then, input and output signals are
measured and evaluated by means of identification methods in such a way that the
relation between the input and the output signal is expressed in a mathematical
model. The input signals can be naturally operating signals (occurring in the
system) or artificially introduced test signals. The result of the identification is an
experimental model.

The theoretical and experimental models can be compared, providing both
types of modeling. If the models do not agree, then one can conclude from the
type and size of the differences which particular steps of the theoretical or
experimental modeling have to be re-evaluated.

Theoretical and experimental modeling mutually completes them. The
theoretical model contains the functional description between the physical data of
the process and its parameters. Therefore, one will use this model, if the process is
to be favorably designed with regard to dynamical behavior or if the process
behavior has to be simulated before construction. The experimental model on the
other hand, contains parameters as numeric values whose functional relation with
the physical basic data of the process remains unknown. In many cases, the real
dynamic behavior can be described more exactly or it can be determined at
smaller expenditure by experimentally obtained models, which better suited to the
adjustment of the feedback controller, the prediction of signals or for fault
detection [6].

3. Process plant description

The experimental plant considered in this paper consists of three identical
cylindrical tanks with equal cross-sectional area A (Fig.1) and a collectiong
reservoir.

These three tanks are interconnected through two cylindrical pipes of the
same cross-sectional area, denoted S, and have the outflow coefficients az;3 azs;.
The nominal outflow located at tank T, has the same cross-sectional area as the
coupling pipe between the cylinders with outflow coefficient azy,
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Fig 1. Structure of the plant

Two pumps driven by DC motors supply the first and last tanks. Pumps
flow rates (Q1 and Q) are defined by flow per rotation.

A digital/analog converter is used in the control path of each pump. The
maximum flow rate for pump i is denoted Qimax The out flowing liquid is collected
in a reservoir, which supplies the Pumps 1 and 2.

A piezoresistive differential pressure sensor carries out the necessary level
measurement. Three transducers provide voltage signal levels. The variable hj,
denotes the level in tank j and Hmax denotes the highest possible liquid level. In
case the liquid level of T; or T exceeds this value the corresponding pump will be
switched off automatically.

For the purpose of simulating leaks each tank additionally has a circular
opening with the cross section S and manually adjustable valve. The following
pipe ends in the reservoir.

Table 1.
Parameters values of three-tanks system
Variable Symbol Value

Section of cylinder A 0.0154 m*
Section of pipes S 5%10-5 m*

Supplying flow rates Qimax 100 ml/s

Flow rates between tanks Qi13, Q3 , Qyp variable
Outflow coefficients azs, azsy , aZy see Table 2

Maximum level Himax 0.63

The connection of the plant with a PC is assured by two acquisition cards :
”Humusoft MF624” for Pump 1 and level transducers and “National Instruments
PCI-6503” which controls the electro valves. The real-time interface is configured
by using Matlab/Simulink.
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Fig 2. Control Interface in Simulink

By means of this interface, the values of level sensors, which are placed in
each one of the three tanks (Tank 1, Tank 2, Tank 3) are acquired, in real-time
manner. In the Simulink interface these level are represented in an animated way.

4. The model design of the plant

In this section the nonlinear and respective the linear model of the plant is
derived. The novelty in these designs is related to the identification of the outflow
coefficients, which are often skipped in similar papers which deals with the same
problem [1],[8].

4.1 Nonlinear model

The three tank system model from Fig. 1 is written using the mass balance
equation. The system can be expressed by next equations.

dh, 3 B
AT =Q0-Qu(®) (1)
dh, B B
AE - Ql}(t) Q32 (t) (2)
A%=Q2(t)+Q32(t)—Qm(t) 3)
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where Qjj represents the water flow rate from tank i to j, i, j = 1, 2, 3, which,
according to Torricelli’s rule is given by

Q, () =az;S sgn(Ah(t)),/2gAh; (1) 4)
where Ah;(t) =h;(t)—h;(t) and Qo represents the outflow rate described as

follows :
Quo (1) =az,,S/2gh, (1) (5)
The numerical values of the plant parameters are listed in Table 1 and

Table 2.

Appling Torricelli’s rule the following equations are obtained for all flow
rates:

Qi5(t) =az,;S sgn (h,(t) — hy(1)) /29 (h,(H) - hy(D)) (6)
Q,,(t) =az,,S sgn (h,(H) — h, (1) 29 (h, ()~ h, (D)) 7
on (t) = azzos\/ 2gh2 (t) (8)

For computing the nonlinear model it was considered that Pump 1 is
opened and Pump 2 is closed. In this case the flow levels respect the condition
h; <h; <h,.

4.1.1 Computing the outflow coefficients
The outflow coefficients were calculated using at equilibrium the
Torricelli’s rule. At equilibrium, levels variation is 0, that is:
dh,, _ O;the —0; dh,, 0 )
dt dt dt
so, from equations (1), (2) and (3), the next relations for computing az coefficients
are in use:

Q

aZB B S\/zg(hle _h3e) (10)
_ Q
o = S\/zg(h3e _h2e) (11)
az __ 9

0= 12
Sy29(h,,) (2

These relations have been evaluated in the control interface and from the
obtained values the next table has been filled depending on the level of Q;.
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Table 2
Outflow coefficients
Outflow cofficients azp;3 az3, azyg
0 m*/s<Q,<25e-6 m’/s 0.46 0.44 0.9
25¢-6 m’/s < Q;<35e-6 m’/s 0.45 0.43 0.726
35e-6 m’/s < Q;<100e-6 m’/s 0.485 0.485 0.79

Nonlinear model for this process is described by the next differential
equations:

dn 1
d_tIZZ(Ql_aZ”S 2g(h, —h,) (13)
dh, 1
1 (ar,5\290h, ) - a2,5,29(h, ) (149
dn, 1
OI_tz:K(az3281/2g(h3—hz)—azzos 2gh, (15)

The nonlinear model described by relations (13)-(15) was simulated with
the model build in Matlab/Simulink.

4.1.2. Validation of the nonlinear model

Nonlinear model validation was done by comparing the evolution of the
real system with the evolution of nonlinear model at the same step inputs. These
two trajectories were placed in the same scope (Fig. 3), using the same units, and
as can be seen the equivalents trajectories are about the same, hence the nonlinear
model follows the real one.
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Fig. 3. The command and the responses of the real and simulated process
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4.2. Linear model

The linear model is obtained from the nonlinear one, commonly by using
the linearization method. The expansion in Taylor’s series around the equilibrium
point is a very effective approximation of the non-linear model only for some
minor deviation of state variables from the equilibrium point [7], [9]. If the
previous nonlinear model is valid for all range of the input variables, this model
will be restricted.

Let Xcq, Ueq be the equilibrium points of the system Eq. (13,14,15), i.e.

%, = f(x,m,1) (16)
where
AX = X = X, AU=U—U,, (17)

eq
are the small differences for the state vector and the input vector, respectively.
Assuming that

Ax=x—xeq=5c—f(xeq,ueq,t) (18)
and expanding in Taylor’s series the right side of Eq. (13,14,15), respectively

neglecting the terms of order higher than first, we obtain the approximation of this
equation in the form of the following linear equation

Ax = AAx + BAu (19)
Usually the Eq. (19) is written in the linear state space representation:
x(t) = Ax(t)+ Bu(t) (20)
where,
A= a ,B= o (21)
ax X=Xgq au X=X¢q

The steady state operating data of the Three-tank system is given in Table
1. The state space model of the three tank system around the operating point is
given next:

x=Ax+Bu
(22)
y=Cx+Du
Q] hl

] - input system Yy = [h j - output system

2

hl
X=|h, | - states system U= [
h, ?

Linearization of the nonlinear model is made around the equilibrium point,
Ue =(Q1e;Q2e), which means that after a sufficiently long time, if we applying the
command u, =(Q1¢;Q2¢), the system will reach equilibrium.
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We note the equilibrium output system with h;¢; hye si hse. The output is in
equilibrium when their variation in time is zero, with other words when the levels
derivative in rapport with time is zero:

dh dh dh

le _ 0, 2e — 0’ 3e — 0 (23)

dt dt dt

dh
A dtle =Q1e_Ql3 =0

dh
A dtk :Qla_Qsz =0 <
dh

A?% = Q20+Q32 - on =0

Q.= aZl3S\/2g(hle - hse)
az,;S, /2g(hle - h3e) =az,,S, /2g(h3e - hZe) =
az,,S./2gh,, =Q,, +az,,S, /2g(h3e — hZQ)

2
hle _h3e = (&] L
az,,S ) 2g

2

hSe _hZe = & i (24)

az,,S ) 2g

2
N _(Q%+QR]_L

2¢ T

az,,S 2g

For input flows Ue = (4.503e-5m%s, Oe-5m°/s) we obtain levels of
equilibrium y.=(0.4177,0.0662,0,2420)

By using partial derivatives for linearization, the next system equations are
obtained:

dx, 1 V29 V29
—L=—(- ——— X, +az,S————X 25
dt A( 13 2 hle _ hse 1 + 13 _ h3 3 +Qle) ( )

dx 1 V29 V20 30 s V20 L0 )6

le e

29
—((-az,,S az,,S
dt A ( * 2\/h3e - hZe ? 2\/2g|’]2e 2 hSe - h2e
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o _1 (az,;S —F—— *’2gxl—az S, —/——— Vzgx2+

R 32%n
dt A 2 hle - h3e h3e - h2e
2 2
t(azs,— Y9 azs N9y 27)
2 < h2e 2 hle - h3e
In the end, the matrices that define relations from equation (22) are:
Matrix A
_321357@ 0 321387@
hle - h3e 2 hle _h3e
1 0 —az.,,S @ —az,,S \/g az SL
32 20’ 32
A 2\/h3e - hze 2\/h2e 2 h3e - hZe
azlSSﬁ azﬁﬁ -az,,S J2e -az,,S J2e
2 hlc - h}c 2 h3c - hzc 2\/h3c - h20 2\/hlc - h3c
Matrix B Matrix C Matrix D
1/A 0 1 0 0
0 1/A [0 ) Oj (0)
0 0

4.3. Validation of the linear model

In order to validate the linear model a series of simulations were
conducted. In Fig. 5 and 6 the step responses of a linear system are compared with
the responses of the nonlinear model. The model is valid if the values of the
outputs at equilibrium coincide for linear and nonlinear model.

By applying the command ue = (4.2e-5m°/s, Oe-5m%s) for nonlinear
system and for linear system, the results are given in Fig. 5 :

|—h1lin h2lin — h3lin hinel — h2nel — h3nel ----comanda

hilin, h2lin, h3lin, hinel, h2nel, hanel, comanda [%]

] 500 000 1500 2500 3000 500 4000

Tlnfiuga[s]
Fig 5. The responses of nonlinear system and linear system
when the command is u, = (4.2e-5m3/s, 0e-Sm3/s)
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Applying the command U = (4.8e-5m*/s, Oe-5m?/s) for nonlinear system
and for linear system we obtained results in Fig. 6.
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Fig 8. The responses nonlinear system and linear system
when the command is u, = (4.8e-5m’/s, Oe-5m’/s)

As can be seen in the graphs in Fig. 5 and 6 answer the two representations
(linear and nonlinear) for a simulation time of 4000 sec is about the same.

In conclusion, for a variation of command Au = 0.3e-5m3/s the linear
system is valid.

5. Conclusion

In this paper 1 have proposed and designed two models (linear and
respectively nonlinear) that can be used for the control design of a three tank
system. The three tank system can be used as a benchmark for various industrial
processes found in power plant and petro-chemical industry. The novelty of this
paper is related to the identification of the outflow coefficients, which are often
skipped in similar papers.

The necessity of those models rises from the controller design issue. The
linear model is simple and suitable to design simple and classical control
algorithms. The validity of such model is restricted to control inputs close to the
values set for linear model design. The nonlinear model is more complex and
gives no restriction on the control input. This model is more accurate and
designing model based control solutions represents a more difficult task.

The nonlinear model was developed by using the equilibrium and balance
equations for all flow rates. Implementation was realized in Matlab/Simulink tool
and set on real process equipment.

The simulation and experiment results of the proposed models show a
good description of the real process. The obtained model offers a good basis for
future tasks in modeling, optimization, or in process control.
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