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MODELING OF NONLINEAR SYSTEM FOR A HYDRAULIC 
PROCESS 

Vasile CALOFIR1 

This paper deals with the model design of a nonlinear plant which consists of 
a three open coupled tanks and a collecting reservoir. Through these tanks, water is 
pumped by means of two pumps and several valves. New contributions are brought 
by the author to the design of nonlinear model of the plant. 

The plant represents a suitable research benchmark for studying hydraulic 
processes, control and fault tolerant strategies that can be applied. Also this plant 
has many applications in power plants and petro-chemical industry. The article 
presents the design and validation of a nonlinear and respectively a linear model of 
the plant, used for control and optimization purpose.  
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1. Introduction 

Systems with three open tanks are frequently met in water treatment plant 
that is an important part of any power plan, in petro-chemical industry, in systems 
of aircraft fuel tanks, in the case of boilers in paper industry, the filter water and 
many other areas. Many processes can be modeled as systems with three open 
reservoirs [1]. In such systems, liquid is pumped, stored in tanks, and then 
pumped/discharged in other reservoirs by means of pumps and valves. 

When the objective is to maintain a precise constant water level in such 
tanks, the design of appropriate controllers can be accomplished by knowing the 
mathematical model of the plant. Designing a mathematical model of the 
controlled plant can be achieved by means of analytical and experimental 
identification techniques. In case of using analytical models, mathematical models 
are obtained by applying the laws that describe functionality of the process 
(energy conservation law, the impulse conservation law, etc.) taking into account 
the characteristic of each process. In general, mathematical models obtained by 
means of analytical techniques are complex, nonlinear and often time-varying 
[2,7]. 

The complexity of the mathematical model is a result of a trade-off 
between the desired accuracy and the cost of the implementation.  It is clear that a 
more accurate model will lead to a complex one which is hard to be implemented 
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and simulated. Today, based on the powerful computing systems, we are able to 
simulate with dedicated software products (such as Matlab/Simulink[3], 
Mathematica[4], etc) very complex mathematical models. The problem still arises 
when dealing with model based control designs [5] or fault detection and 
diagnosis method [10]. In this case the available algorithms are based on simpler 
models (the vast majority on linear models).  

On the other hand the linear models and some class of nonlinear models 
are obtained by simplifying the initial hypotheses. All these simplifications aid the 
design of control strategies but bring some reduction of the designed 
performances. This is often the case when a designed controller is accompanied 
with restricted operating ranges in order to guarantee a level of performance. 
Often these solutions are cheaper and are based on simpler and classical designs. 

As today the control research community is concerned with control 
strategies of nonlinear models2 it is of actual interest to insist on nonlinear 
modeling of plant systems. 

The plant discussed here, for which a model is proposed, is a process with 
two inputs and three outputs (MIMO). The main feature of these systems is that 
multiple inputs generate multiple outputs with strong interactions between 
variables [2,7]. 

2. System modeling and model validation 

Mathematical models of dynamic processes are primarily obtained by 
either theoretical/physical modeling or experimentally by the means of 
identification methods. For theoretical modeling, also called theoretical analysis 
or modeling by first principles, the model is set up on the basis of mathematically 
formulated laws of nature [2,7]. The theoretical modeling always begins with 
simplifying assumptions about the process, which simplifies the calculations or 
enables them with a tolerable expenditure.  

By summarizing the basic equations of all process elements, one receives a 
system of ordinary and/or partial differential equations of the process. This leads 
to a theoretical model with a certain structure and certain parameters, if it can be 
solved explicitly. Frequently, this model is extensive and complicated, so it must 
be simplified for further application [11]. 

The simplifications are made by linearization, reduction of the model 
order or approximation of systems with distributed parameters by lumped 
parameters when limiting on fixed locations. The first steps of these 
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simplifications can be already made by simplifying assumptions while stating the 
basic equations.  

But also if the set of equations cannot be solved explicitly, the individual 
equations supply important hints for the model structure. So, balance equations 
are always linear and some phenomenological equations are linear in wide areas. 
The constitutive equations often introduce nonlinear relations. 

During experimental modeling, which is referred to as identifications, one 
obtains the mathematical model of a process from measurements. Here, one 
always proceeds from a priori knowledge, which was gained, from the theoretical 
analysis or from preceding measurements. Then, input and output signals are 
measured and evaluated by means of identification methods in such a way that the 
relation between the input and the output signal is expressed in a mathematical 
model. The input signals can be naturally operating signals (occurring in the 
system) or artificially introduced test signals. The result of the identification is an 
experimental model. 

The theoretical and experimental models can be compared, providing both 
types of modeling. If the models do not agree, then one can conclude from the 
type and size of the differences which particular steps of the theoretical or 
experimental modeling have to be re-evaluated. 

Theoretical and experimental modeling mutually completes them. The 
theoretical model contains the functional description between the physical data of 
the process and its parameters. Therefore, one will use this model, if the process is 
to be favorably designed with regard to dynamical behavior or if the process 
behavior has to be simulated before construction. The experimental model on the 
other hand, contains parameters as numeric values whose functional relation with 
the physical basic data of the process remains unknown. In many cases, the real 
dynamic behavior can be described more exactly or it can be determined at 
smaller expenditure by experimentally obtained models, which better suited to the 
adjustment of the feedback controller, the prediction of signals or for fault 
detection [6]. 
 

3. Process plant description 

The experimental plant considered in this paper consists of three identical 
cylindrical tanks with equal cross-sectional area A (Fig.1) and a collectiong 
reservoir. 

These three tanks are interconnected through two cylindrical pipes of the 
same cross-sectional area, denoted S, and have the outflow coefficients az13, az32. 
The nominal outflow located at tank T2 has the same cross-sectional area as the 
coupling pipe between the cylinders with outflow coefficient az20.  
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Fig 1.  Structure of the plant 

 
Two pumps driven by DC motors supply the first and last tanks. Pumps 

flow rates (Q1 and Q2) are defined by flow per rotation. 
A digital/analog converter is used in the control path of each pump. The 

maximum flow rate for pump i is denoted Qimax The out flowing liquid is collected 
in a reservoir, which supplies the Pumps 1 and 2.  

A piezoresistive differential pressure sensor carries out the necessary level 
measurement. Three transducers provide voltage signal levels. The variable hj, 
denotes the level in tank j and Hmax denotes the highest possible liquid level. In 
case the liquid level of T1 or T2 exceeds this value the corresponding pump will be 
switched off automatically. 

For the purpose of simulating leaks each tank additionally has a circular 
opening with the cross section S and manually adjustable valve. The following 
pipe ends in the reservoir. 

Table 1.  
Parameters values of three-tanks system 

Variable Symbol Value 
Section of cylinder 

Section of pipes 
Supplying flow rates 

Flow rates between tanks 
Outflow coefficients 

Maximum level 

A 
S 

Qimax 
Q13 , Q32 , Q20 
az13, az32 , az20 

hjmax 

0.0154 m2 
5*10-5 m2 
100 ml/s 
variable 

see Table 2 
0.63  

 
The connection of the plant with a PC is assured by two acquisition cards : 

”Humusoft MF624” for Pump 1 and level transducers and ”National Instruments 
PCI-6503” which controls the electro valves. The real-time interface is configured 
by using Matlab/Simulink. 
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Fig 2.  Control Interface in Simulink 

 
By means of this interface, the values of level sensors, which are placed in 

each one of the three tanks (Tank 1, Tank 2, Tank 3) are acquired, in real-time 
manner. In the Simulink interface these level are represented in an animated way.  

 
4. The model design of the plant 

In this section the nonlinear and respective the linear model of the plant is 
derived. The novelty in these designs is related to the identification of the outflow 
coefficients, which are often skipped in similar papers which deals with the same 
problem [1],[8].  

 

4.1 Nonlinear model 

The three tank system model from Fig. 1 is written using the mass balance 
equation. The system can be expressed by next equations.  

    

 1
1 13( ) ( )dhA Q t Q t

dt
= −  (1) 

 3
13 32( ) ( )dhA Q t Q t

dt
= −  (2) 

 2
2 32 20( ) ( ) ( )dhA Q t Q t Q t

dt
= + −  (3) 
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where Qij represents the water flow rate from tank i to j, i, j = 1, 2, 3, which, 
according to Torricelli’s rule is given by 

 ( )( )  ( ) 2 ( )ij ij ijQ t az S sgn h t g h t= Δ Δ  (4) 

where ( ) ( ) ( )ij i jh t h t h tΔ = −  and Q20 represents the outflow rate described as 
follows : 

 20 20 2( ) 2 ( )Q t az S gh t=  (5) 
 

The numerical values of the plant parameters are listed in Table 1 and 
Table 2. 

Appling Torricelli’s rule the following equations are obtained for all flow 
rates:  

 ( ) ( )13 13 1 3 1 3( )  ( ) ( ) 2 ( ) ( )Q t az S sgn h t h t g h t h t= − −  (6) 

 ( ) ( )32 32 3 2 3 2( )  ( ) ( ) 2 ( ) ( )Q t az S sgn h t h t g h t h t= − −  (7) 

 20 20 2( ) 2 ( )Q t az S gh t=  (8) 
For computing the nonlinear model it was considered that Pump 1 is 

opened and Pump 2 is closed. In this case the flow levels respect the condition     
h1 < h3 < h2. 

 
4.1.1 Computing the outflow coefficients 
The outflow coefficients were calculated using at equilibrium the 

Torricelli’s rule. At equilibrium, levels variation is 0 , that is: 

 1 2 30; 0; 0e e edh dh dh
dt dt dt

= = =  (9) 

so, from equations (1), (2) and (3), the next relations for computing az coefficients 
are in use: 

 1
13

1 32 ( )e e

Qaz
S g h h

=
−

 (10) 

 1
32

3 22 ( )e e

Qaz
S g h h

=
−

 (11) 

 1
20

22 ( )e

Qaz
S g h

=  (12) 

 
These relations have been evaluated in the control interface and from the 

obtained values the next table has been filled depending on the level of Q1.  
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Table 2 
Outflow coefficients 

Outflow cofficients az13 az32 az20 
0 m3/s<Q1≤25e-6 m3/s 0.46 0.44 0.9 

25e-6  m3/s < Q1≤35e-6  m3/s 0.45 0.43 0.726 
35e-6  m3/s < Q1≤100e-6 m3/s 0.485 0.485 0.79 

 

Nonlinear model for this process is described by the next differential 
equations: 

 1
1 13 1 3

1 ( 2 ( )dh Q az S g h h
dt A

= − −  (13) 

 3
13 1 3 32 3 2

1 ( 2 ( ) 2 ( )dh az S g h h az S g h h
dt A

= − − −  (14) 

 2
32 3 2 20 2

1 ( 2 ( ) 2dh az S g h h az S gh
dt A

= − −  (15) 

The nonlinear model described by relations (13)-(15) was simulated with 
the model build in Matlab/Simulink.  

 
4.1.2. Validation of the nonlinear model  
Nonlinear model validation was done by comparing the evolution of the 

real system with the evolution of nonlinear model at the same step inputs. These 
two trajectories were placed in the same scope (Fig. 3), using the same units, and 
as can be seen the equivalents trajectories are about the same, hence the nonlinear 
model follows the real one.  

   

 Fig.  3. The command and the responses of the real and simulated process 
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4.2. Linear model 

The linear model is obtained from the nonlinear one, commonly by using 
the linearization method. The expansion in Taylor’s series around the equilibrium 
point is a very effective approximation of the non-linear model only for some 
minor deviation of state variables from the equilibrium point [7], [9]. If the 
previous nonlinear model is valid for all range of the input variables, this model 
will be restricted.   

Let xeq, ueq be the equilibrium points of the system Eq. (13,14,15), i.e. 
 
  (16) 

where      
 ,eq eqx x x u u uΔΔ = − = −  (17) 

are the small differences for the state vector and the input vector, respectively. 
Assuming that 

  (18) 
and expanding in Taylor’s series the right side of Eq. (13,14,15), respectively 
neglecting the terms of order higher than first, we obtain the approximation of this 
equation in the form of the following linear equation  

  (19) 
 

Usually the Eq. (19) is written in the linear state space representation: 
  (20) 

where, 

 
eq

eq

x x

u u

f, B
ueq

eq

x x

u u

fA
x = =

= =

∂ ∂
= =
∂ ∂

 (21) 

The steady state operating data of the Three-tank system is given in Table 
1. The state space model of the three tank system around the operating point is 
given next: 

  (22) 

1

2

3

h
x h

h

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 -  states system   1

2

Q
u

Q
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  - input system  1

2

h
y

h
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 - output system 

Linearization of the nonlinear model is made around the equilibrium point,                     
ue =(Q1e;Q2e), which means that after a sufficiently long time, if we applying the 
command ue =(Q1e;Q2e), the system will reach equilibrium. 
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We note the equilibrium output system with h1e; h2e si h3e. The output is in 
equilibrium when their variation in time is zero, with other words when the levels 
derivative in rapport with time is zero: 

 1e 2e 3edh dh dh0, 0, 0
dt dt dt

= = =  (23) 

 

1e
1e 13

3e
13 32

2e
2e 32 20

dhA Q Q 0
dt

dhA Q Q 0
dt

dhA Q Q Q 0
dt

+

⎧ = − =⎪
⎪
⎪ = − = ⇔⎨
⎪
⎪ = − =⎪⎩

 

( )
( ) ( )

( )

1e 13 1e 3e

13 1e 3e 32 3e 2e

20 2e 2e 32 3e 2e

Q az S 2g h h

az S 2g h h az S 2g h h

az S 2gh Q az S 2g h h

⎧ = −
⎪
⎪ − = − ⇔⎨
⎪

= + −⎪⎩

 

 

2

1e
1e 3e

13

2

1e
3e 2e

32

2

2e 1e
2e

20

Q 1h h
az S 2g

Q 1h h
az S 2g

Q Q 1h
az S 2g

⎧ ⎛ ⎞
− =⎪ ⎜ ⎟

⎪ ⎝ ⎠
⎪

⎛ ⎞⎪ − =⎨ ⎜ ⎟
⎝ ⎠⎪

⎪
⎛ ⎞+⎪ = ⎜ ⎟⎪ ⎝ ⎠⎩

 (24) 

For input flows ue = (4.503e-5m3/s, 0e-5m3/s) we obtain levels of 
equilibrium ye=(0.4177,0.0662,0,2420) 

By using partial derivatives for linearization, the next system equations are 
obtained: 

 1
13 1 13 3 1

1 3 1 3

2 21 ( )
2 2 e

e e e e

g gdx az S x az S x Q
dt A h h h h

= − + +
− −

 (25) 

 

2
32 20 2 32 3 2

3 2 2 3 2

2 2 21 (( )
2 2 2 2

)e
e e e e e

g g gdx az S az S x az S x Q
dt A h h gh h h

= − − + +
− −

 (26) 

   



120                                                                 Vasile Calofir 

13 1
3 2

3
23

1 3
2

1 ( 2 2
2 2n

e e e e

dx
dt A

g gaz S x az S x
h h h h

−
−

= +
−

 

 3 1 3
3 2 1 3

2 2( ) )
2 2n n

e e e e

g gaz S az S x
h h h h

+ − −
− −

       (27) 

 
In the end, the matrices that define relations from equation (22) are:  
Matrix A 

13 13
1e 3e 1e 3e

32 20 32
3e 2e 2 3e 2e

13 3 32 13
1e 3e 3e 2e 3e 2e 1e 3e

2g 2gaz S 0 az S
2 h h 2 h h

2g 2g 2g1 0 az S az S az S
A 2 h h 2 h 2 h h

2g 2g 2g 2gaz S az S az S az S
2 h h 2 h h 2 h h 2 h h

e

⎛ ⎞
−⎜ ⎟

− −⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟− −
⎜ ⎟
⎜ ⎟

− −⎜ ⎟− − − −⎝ ⎠

 

 
Matrix B                        Matrix C                   Matrix D 

1 / A 0
0 1 / A
0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

           1 0 0
0 1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

                             ( )0  

4.3. Validation of the linear model 

In order to validate the linear model a series of simulations were 
conducted. In Fig. 5 and 6 the step responses of a linear system are compared with 
the responses of the nonlinear model. The model is valid if the values of the 
outputs at equilibrium coincide for linear and nonlinear model.  

By applying the command ue = (4.2e-5m3/s, 0e-5m3/s) for nonlinear 
system and for linear system, the results are given in Fig. 5 : 

 

 
Fig 5. The responses of nonlinear system and linear system 

when the command is ue = (4.2e-5m3/s, 0e-5m3/s) 
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Applying the command ue = (4.8e-5m3/s, 0e-5m3/s) for nonlinear system 
and for linear system we obtained results in Fig. 6. 

 

 
Fig 8. The responses nonlinear system and linear system 

when the command is ue = (4.8e-5m3/s, 0e-5m3/s) 
 

As can be seen in the graphs in Fig. 5 and 6 answer the two representations 
(linear and nonlinear) for a simulation time of 4000 sec is about the same. 

In conclusion, for a variation of command Δu = 0.3e-5m3/s the linear 
system is valid. 

 
5. Conclusion 
 
In this paper I have proposed and designed two models (linear and 

respectively nonlinear) that can be used for the control design of a three tank 
system. The three tank system can be used as a benchmark for various industrial 
processes found in power plant and petro-chemical industry. The novelty of this 
paper is related to the identification of the outflow coefficients, which are often 
skipped in similar papers. 

The necessity of those models rises from the controller design issue. The 
linear model is simple and suitable to design simple and classical control 
algorithms. The validity of such model is restricted to control inputs close to the 
values set for linear model design. The nonlinear model is more complex and 
gives no restriction on the control input. This model is more accurate and 
designing model based control solutions represents a more difficult task.  

The nonlinear model was developed by using the equilibrium and balance 
equations for all flow rates. Implementation was realized in Matlab/Simulink tool 
and set on real process equipment.   

The simulation and experiment results of the proposed models show a 
good description of the real process. The obtained model offers a good basis for 
future tasks in modeling, optimization, or in process control. 
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