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WAVELETS, PROPERTIES OF THE SCALAR FUNCTIONS 

C. PANĂ*  

Pentru a contrui o undină convenabilă Ψ este necesară şi suficientă o 
analiză multirezoluţie. Analiza multirezoluţie este legată de funcţia de scalare. În 
acest articol prezentăm câteva proprietăţi ale funcţiei de scalare aplicând 
transformarea Fourier. Alegerea undinei Ψ este esenţială. Problema este de a 
adapta Ψ la o anumită clasă de semnale, de exemplu semnale vocale sau muzicale. 

To build a convenient wavelet Ψ  a multiresolution analysis is necessary and 
sufficient. The multiresolution analysis is connected  to the scalar function. In this 
article / paper we present some properties of the scalar function applying the 
Fourier transform. The choice of the wavelet Ψ  is essential. The problem is to 
adapt Ψ  to a certain class of signals, for example vocal or musical signals. 
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Introduction   

These problems have a special role in questions regarding the processing 
of signals in real time and the identification, optimization and the control of the 
most diverse systems. 

In this paper we determine a scalar function 2Lϕ∈ , 0Vϕ∈  so that the 
string (2 )t nϕ −  is a sampling string. 

 
 
1. Preliminaries 
We recall that a wavelet :Ψ →\ ^  is a function from 1 2L L∩  such that 

ˆ (0) 0Ψ =  and Ψ , Ψ̂  satisfy  the following decreasing-type conditions: 

  1( ) (1 )t C t ε− −Ψ ≤ ⋅ +  , 1ˆ ( ) (1 ) , 0C εω ω ε− −Ψ ≤ + > . 

To determineΨ , any signal with finite energy 2f L∈  has a decomposition 
of the type  
 

2

2
, ,( ) , ( )a b a bf t C f t a da db−

Ψ= Ψ Ψ∫
\

  (1) 
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by the Calderon’s formula. Such a decomposition is interpreted in this 
way: the signal f  is an overlapping of “blocks of building” 

1/ 2
, ( )a b

t bt a
a

− −⎛ ⎞Ψ = Ψ⎜ ⎟
⎝ ⎠

, ,a b∈\ , 0a ≠ , b real parameters each well located 

in time and frequency. 

For example if 
2

2( ) (1 )exp
2
tt t

⎛ ⎞
Ψ = − −⎜ ⎟⎜ ⎟

⎝ ⎠
 then , ( )a b tΨ  is concentrated in 

2 , 2b a b a⎡ − + ⎤⎣ ⎦ , and 
n

( )
2

2
, 2 exp

2
a b

ωω πω
⎛ ⎞

Ψ = − −⎜ ⎟⎜ ⎟
⎝ ⎠

 is concentrated in the 

“crown” 1 4
4

a aω≤ ≤ . 

By portioning the domain of integration of the plane a bO  , we can obtain  
some algorithms for  applications of the reconstruction formula (1). 

To do this, consider a network in the plane abO , 

taking 2 , 2 , ,j ja b k j k− −= = ⋅ ∈] . Moreover we can choose the wavelet Ψ  such  

that , ,j k a bΨ = Ψ   to form an orthogonal basis for 2L .  

Instead of integral representation (1) there is another representation of  f : 

 
,

( ) , ( )jk jk
j k

f t f t= Ψ ⋅Ψ∑   (2) 

 , where the convergence of series is in the space 2L , endowed with the 
usual norm. 

 
To build a convenient wavelet Ψ , a multiresolution analysis is necessary 

and sufficient. To be more specific, we start from the scalar function 2Lϕ∈  with 
ˆ(0) 0ϕ =  so that ( ) (2 )n

n
x c x nϕ ϕ= −∑  and ( ) (2 )n

n
x d x nϕΨ = −∑ . Then, for any 

2f L∈  it follows, 

 ( ) lim 2 ( ) (2 )p p
p

f t f x x t dxϕ
∞

→∞ −∞

= ⋅ ⋅ −∫   ( 2’ ) 
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In particular, the integrals 2 ( ) (2 )p pf x x k dxϕ
∞

−∞

⋅ −∫  can be approximated 

through the samples ( / 2 )pf k  . 

By recurrent relations one can elaborate an algorithm for the computations 

of the scalar products / 2, 2 ( ) (2 )j j
jkf f x x k dx

∞

−∞

Ψ = Ψ ⋅ −∫  and for the calculus 

of the scalars , jkf ϕ . Such algorithms can be seen in the theory of sub-banda 

filtration. 

We remind that a multiresolution in 2L  is a rising string ( )m mV ∈]  of 

closed linear subspaces of 2L  so that 1m mV V +⊂  for any m∈] ;   the reunion of 

subspaces mV  is supposed to be dense in 2L  and the intersection is reduced to the 
null subspace. 

Moreover we assume that 1( ) (2 )m mf t V f t V +∈ ⇔ ∈  and there exists a 

function 2Lϕ∈  called the scalar function  of the multiresolution analysis, such 

that ( ),t n nϕ − ∈]  is an orthonormal  basis in 0V , then { }2 (2 ) ,t n nϕ − ∈]  

form an orthonormal basis for 1V ; as 1Vϕ∈ , ( ) 2 (2 )k
k

t c t kϕ ϕ= −∑  with 

2
k

k
c < ∞∑ . This relation is called the dilation in time equation for ϕ ; in 

frequency it follows (under the hypothesis 2 1L Lϕ∈ ∩ ) 

0
1ˆ ˆ ˆ( ) exp

2 2 2 22k
k

c ik mω ω ω ωϕ ω ϕ ϕ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ . 

where 0
1exp

2 2 2k
k

m c ikω ω⎛ ⎞ ⎛ ⎞= − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ . 

We wish to determine a wavelet Ψ  so that ( ),t n nΨ − ∈]  to be an 
orthonormal basis in 0W , where 0W  is the orthogonal complement of 0V  in 1V  , 

1 0 0V V W= ⊕ . If such a wavelet is determined then ( ) m∀  fixed ( )mn nΨ  is an 

orthonormal basis in mW . 
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Because 2
m

m
L W

∈
= ⊕

]
,( m

m
W

∈
⊕
]

 is dense in 2L ) it results that the family 

with two indices mnΨ , ,m n∈]  forms an orthonormal basis for 2L . 

It is known that ( )tΨ  is defined by:  

1( ) 2 ( 1) (2 )k
k

k
t c t kϕ−Ψ = − −∑  or, if 1 2L LΨ∈ ∩ , then 

0ˆ ( ) exp
2 2 2

i mω ω ωω π ϕ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Ψ = − + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. 

2. Examples 

1) A classic example is represented by the scalar function Hϕ  and the 
wavelet HΨ  of Haar  

1, [0,1)
( )

0,
if t

t
otherwise

ϕ
∈⎧

= ⎨
⎩

 ;     )

11, 0,
2

1( ) 1, ,1
2

0,

t

t t

otherwise

⎧ ⎡ ⎞∈⎪ ⎟⎢ ⎠⎣⎪
⎪⎪ ⎡Ψ = − ∈⎨ ⎢⎣⎪
⎪
⎪
⎪⎩

 

 
Another classic example is the Shannon pair, 

where sin( ) ( 0); (0) 1tt t
t
πϕ ϕ

π
= ≠ = . 

Developping such a function 0V  with respect to the Hilbert base 

( )( ) nt nϕ ∈− ]  is exactly the classic formula of sampling of Shannon. 

 
2) It is also known Meyer’s wavelet ( )tϕ  defined by 
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21,
3

ˆ( ) 3 2 4cos 1 ,
2 2 3 3

r

πω

ϕ ω ωπ π πω
π

⎧ ≤⎪
⎪= ⎨ ⎛ ⎞⎛ ⎞⎪ − < ≤⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

, 1 2L Lϕ∈ ∩ , where ( )r x  is a 

function kC  so that 
0, 0

( )
1, 1

for x
r x

for x
≤⎧

= ⎨ ≥⎩
  and  ( ) (1 ) 1r x r x+ − = . 

 We propose to determine a scalar function 2Lϕ∈ , 0Vϕ∈  such that the 
string (2 )t nϕ −  is a sampling string for 0f V∈   that is for any 0f V∈  ,  

 ( )( ) 2
2n

nf t f t nϕ
∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑
]

 , (3) 

  the convergence  being in 2L . 
 
In particular, 

 ( )( ) 2
2n

nt t nϕ ϕ ϕ
∈

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑
]

  (3’) 

If 1 2L Lϕ∈ ∩ , then, applying the Fourier operator, one obtains: 

1ˆ ˆ( ) exp
2 2 2 2n

n ni ωϕ ω ϕ ω ϕ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ . 

 
3. Theorem 1 
 
Let 0Vϕ∈  be a fixed scalar function. 
The following statements are equivalent: 
a) for any 0f V∈ , we have 

2 1
( ) (2 )

2k

kf t f t kϕ
∈ +

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑
]

 (the convergence is in 2L ); 

b) 
2 1

( ) (2 )
2j

jt t jϕ ϕ ϕ
∈ +

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑
]

  (in 2L ) 

 
Proof: (a)⇒ (b) is obvious, since 0Vϕ∈ . 
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(b)⇒ (a). Since ( )( ) nt nϕ ∈− ]  is an orthonormal base in 2
0L V⊃ , 0f V∈ , 

we have: 
( ) ( )n

n
f t t nβ ϕ

∈
= −∑

]
, where  

 
22

n
n

fβ
∈

= < ∞∑
]

 (4) 

On the other hand, from (b) we have: 

2 1
( ) (2 2 )

2j

jt n t n jϕ ϕ ϕ
∈ +

⎛ ⎞− = − −⎜ ⎟
⎝ ⎠

∑
]

, where 2

2 1 2j

jϕ
∈ +

⎛ ⎞ < ∞⎜ ⎟
⎝ ⎠

∑
]

 

One obtains 
: 2

2 1
( ) (2 2 )

2

k n j
n

n j

jf t t n jβ ϕ ϕ
= +

∈ ∈ +

⎛ ⎞⎛ ⎞⎜ ⎟= − − =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑
] ]

2 1 2 1
(2 ) (2 )

2 2n n
n k k n

k kn t k t k nβ ϕ ϕ ϕ β ϕ
∈ ∈ + ∈ + ∈

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦
∑ ∑ ∑ ∑
] ] ] ]

( )
(4)

2 1
2

2k

kt k fϕ
∈ +

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∑
]

. 

The convenient grouping of terms in the series in the computation from 
above is permitted, since the series is absolutely convergent in 2L , because t  is 
commutative convergent (sumable). Precisely, we have: 

2 1 2 1

1(2 )
2 2 2n n

n n
k k

k kn t k nβ ϕ ϕ β ϕ
∈ ∈

∈ + ∈ +

⎛ ⎞ ⎛ ⎞− − = − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
] ]
] ]

  

Thus 
2 1

( ) (2 ) ( )
2 n

k n

kf t f t k t nϕ β ϕ
∈ + ∈

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

∑ ∑
] ]

 

both series being convergent in 2L . It follows: 
2 2 2 2

2 1 2 1

1
2 2 2n

k n k

k kf f fβ
∈ + ∈ ∈ +

⎛ ⎞ ⎛ ⎞= ⋅ = < ∞⇒ < ∞⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑
] ] ]

. 

The proof is complete. 
 



Wavelets, properties of the scalar functions 

 

33

 

Remark  a) The implication (b) ⇒ (a) says that we can “know” f  

somehow, only knowing the samples ,
2
kf k⎛ ⎞ ∈⎜ ⎟

⎝ ⎠
] , k odd integer, if this is 

possible for the scalar function ϕ . 

b) It is well known that the convergence of a sequence of functions in pL , 
1 p≤ < ∞ , implies the pointwise convergence almost everywhere of a 
subsequence. In our case, the sequence is the sequence of the partial sums of the 

series ( )
2 1

2 , ( 2)
2k

kf t k pϕ
∈ +

⎛ ⎞ − =⎜ ⎟
⎝ ⎠

∑
]

. 

 
4. Theorem 2 
 
Assume that  

 
( ) ( )

1/ 2
ˆ u x dx

ω π
ω π

ϕ ω
+

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ , where  1( )u L∈ \   (5) 

supp [ ],u ε ε⊂ −   where 0 ε π< < .  

Let � �
1( ) : ( 4 ),

k
kϕ ω ϕ ω π ω

∈
= + ∈∑

]
\ .  The following statements are 

equivalent: 

(a) ( ) ( )1ˆ ˆ ˆ
2
ωϕ ω ϕ ω ϕ ⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠

, ( ) �suppω ϕ∀ ∈  

(b) ( )ˆ ˆ1, supp
2
ωϕ ω ϕ⎛ ⎞ = ∀ ∈⎜ ⎟
⎝ ⎠

 

Proof   
From supp [ ],u ε ε⊂ −  and by the assumption (5), one can deduce that 

ˆsupp [ , ]ϕ π ε π ε⊂ − − + .This leads to: 

 supp ( ) ( )1̂ 4 1 , 1 4
k

k kϕ ε π ε π
∈

⊂ − − + + −⎡ ⎤⎣ ⎦
]
∪ . 

 These facts imply: [ ]1̂ ˆ ˆsupp supp supp ,ϕ ϕ ϕ π ε π ε∩ ⊂ ⊂ − − +  and, for 

1̂ ˆsupp suppω ϕ ϕ∈ ∩ , only one of the terms of the sum ( )1̂ϕ ω  is nonzero, and this 

term is equal to ( )ϕ̂ ω . To prove (a) ⇒  (b) , observe that 
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1ˆ ˆsupp suppω ϕ ω ϕ∈ ⇒ ∈ , hence ( ) ( )
( )

1ˆ ˆ ˆ ˆ0 1 supp
2

a ωϕ ω ϕ ω ϕ ω ϕ⎛ ⎞= ≠ ⇒ = ∀ ∈⎜ ⎟
⎝ ⎠

, i.e. 

(b). 

(b) ⇒  (a) is obvious. The proof is complete. 

Example Let 
1, [0,1)

( )
0,

x
u x

otherwise
∈⎧

= ⎨
⎩

. 

 Let ( ) ( ) ( )
1/ 2 1/ 2

[0,1)ˆ : u x dx x dx
ω π ω π
ω π ω π

ϕ ω χ
+ +

− −
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫  

 

( )

( )

1/ 2

1/ 2

, 1
1,1

1 , 1
0, otherwise

ω π π ω π
π ω π

ω π π ω π

⎧ + − ≤ < −
⎪

− ≤ ≤⎪
= ⎨
⎪ − + < < +
⎪
⎩

 (6) 

 

Thus  ˆsupp [ ,1 ]ϕ π π= − +  and 

[ ]1ˆ ˆsupp , 1 , 1
2 2 2 2 2
ω π π ωω ϕ π π ϕ⎡ ⎤ ⎛ ⎞∈ ⇔ ∈ − + ⊂ − ⇒ =⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

 by (6). 

It follows that (a) holds for any [ ],1ω π π∈ − + . 
 

Conclusion  

Instead of looking for a sampling function f  in 0V , this can be searched in 

1V  and its recovery can be done through samples
2
nf ⎛ ⎞

⎜ ⎟
⎝ ⎠

, where n∈]  are odd 

integers. 

R E F E R E N C E S  

1 I. Daubechies – Ten lectures on wavelets, SIAM, 1992 
2. Y. Meyer – Ondeletts et operateurs, Ed. Herman, 1990 
3. G. Walter – Wavelet subspaces with an oversampling property, Indag.  Math.,  4, 499 – 507, 

1993  
4. W. Rudin – Analiză reală şi complexă. Ediţia a treia. Fundaţia Theta, Bucureşti, 1999 
 


