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CONTRIBUTIONS TO THE STUDY OF THE PASSING
THROUGH THE RESONANCE OF THE LINEAR SYSTEMS
HAVING A FINITE NUMBER OF DEGREES OF FREEDOM

C-tin ION', Elena Elvira ION?, G. C. ION?

In aceastd lucrare se va studia problema regimului tranzitoriu, in conditiile
legii de variatie liniara a frecventei fortelor perturbatoare, a unui sistem multimasa.
Ecuatiile diferentiale care descriu miscarea sistemului elastic studiat vor fi reduse
la ecuatii de ordinul doi. O astfel de reducere se poate realiza prin doud moduri de
considerare a fortelor de rezistentd corespunzadtoare ipotezelor lui Fogot si ale lui
E.S. Sorokin. Se va ardta ca in cazul problemelor liniare utilizarea modului de
rezolvare a lui Sorokin este mai indicatd decdt utilizarea modului de reprezentare a
fortelor de frecare ca forte de vdscozitate, forte ce sunt proportionale cu viteza de
deformare.

The unsteady passing of a multi-mass system under the law of linear
variation of disturbance forces frequency will be studied in this paper. The
differential equations, which describe the motion of the studied elastic system, will
be reduced to the quadratic equations. Such a reduction may be achieved by two
ways of considering the resistance forces corresponding to the Fogot’s and
E.S.Sorokin’s hypothesis. In the case of linear problems, it will be shown that the
application of Sorokin’s solving way is more indicated than the representation way
of friction forces as viscous forces, which are proportional to the deformation speed.

Keywords: absorption coefficient, disturbing moment, viscous damping,
resonance.

1. Introduction

The unsteady passing of a multi-mass system will be studied under the law
of linear variation of disturbance forces frequency. The differential equations,
which describe the motion of the studied elastic system, will be reduced to the
quadratic equations analyzed in the paper [1]. Such a reduction may be achieved
by two ways of considering the resistance forces corresponding to the Fogot’s and
E.S.Sorokin’s hypothesis [2]. In the case of linear materials, it will be shown that
the application of Sorokin’s solving way is more indicated than the representation
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way of friction forces as viscous forces, which are proportional to the deformation
speed.

This consideration is explained not only by means of a good
correspondence of Sorokin’s hypothesis with experimental data but also by means
of a reduced calculation volume.

2. Fogot’s hypotheses method

The general form of the differential equations of the n-freedom degrees
systems oscillations is
n
D (@i +budr +cixqi)=0is i= (1,
k=1
where ay, by, ¢j; are constant values while ¢,(¢), Q;(¢) are the coordinates and

n) (1)

generalized forces, respectively.
By accepting the initial conditions:

x;(p) = 4;(t); Fi(p)—> 0;¢) (2)
there results from (1) the symbolical form
: 2
Z(aikp +bikp+cik)'xk(p)=Fi(p)- i=(1,n) (3)

k=1
Solving the system (3) one obtains:

g gpn o

where A(p) is the determinant of the system while A;;(p), Aja(2), ... » Ay(p)

are the complementary determinants corresponding to the i column elements.
If A( p) admits only complex roots with negative real part:

P, :—%,uj+ikj, P :—%yj—ikj, (j=1,_n) (i=\/—_1) (5)

1 . : L
than —— can be broken up into simple fractions in the form

Ap)
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1 L yjp+o;
A( ) = 5 / / 5 (6)
P} j=1p” +ujp+o;
where:
z 1 1
2 J 2
w5 = +kisyi=— +——;
! 7)) Ay
Pj Dj , d
O;j=— —r—\+— ; Allp)=—oI]Alp)].
iy st o) st
If the relation (7) is introduced
n
vi(p)=r;p+;) Y ™
and by means of the relation (6), the relation (4) becomes
- yy(p)
xi(p)= 25— , (8)
j=1P T HipTO;
or
n
xi(p)= 2.2 (p). ©)

where every term can be considered as an image of solving the quadratic

differential equations

ézij(f)Jfﬂjé;ij(f)wa]Z'é’ij(f):(Pij(f),

that is
Z;i(p) = i (t): wii(p)—> 05 ().

If the initial conditions are null, the equations (10) become
1
—*#-O—T) ,
;i (e)= J-gplj 2™ sink (1 -7)dr,
kj 0

(10)

(11)

(12)
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while
1
" 4 —f,uj(t—r) ) o —
q;(t)= Z;J.goy(r)-e 2 sink ;(r—7)dr. z=(1,n) (13)
J=1"70
If the system is operated by generalized forces varying according to the
law
. Ektz

Oi (1) = Qo exp| =1+ — |, (14)

the integral (13) is reduced to probability integrals with the complex argument

)= LN > j;[w(uj)+ )l )5 -

(15)

where

3. Sorokin’s method

The differential equations system is easily obtained from the forced
oscillation equations (1), ignoring the resistance forces and introducing instead of

the E elasticity modulus the complex modulus in the form (1 Ti %)E where WV is
V4
an energy absorption coefficient. Thus, it is obtained
c Y
Z{ajk-qk+(1ii-2—jcjk-qk}=gj(z), (16)
k=1 4

or in the symbolical form
n

$ ot (120 Leu | )= R)i=0)

k=1
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Unlike the previous case, the determinant A(s) of this system has real roots

81, £8,, ... 5,
where

A (18)
1+;. ¥
27

Thus the calculation of a lot of roots simplifies. For each S value two p values
correspond. From (18) one obtained

_ /4 . - v .
p] —[—g'i‘l}gj, p] —[—g—ljsj'

Removing p;, p; which has no material meaning and considering

1+i Y ~1+i Y one obtained from (17)

27 A
1< Fi(p)
- , 19
AGS) Z:: X (19)
whereKzliil.
Vs

Since the roots equation A(S)=0 are +S|, £S5, ... +5,, its breaking

up @ into simple fractions will be
1 2 Y mS + Om
— 3= ) (20)
NS 2 52
1 1 1 1
in which y,, = — +— ; 0, =S - -— .
" A(Sm) A(_Sm) " m|:A(Sm) A(_Sm)}

Since A(S) is an S even function, there results that:
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28
AN(-S)=-A'(S), =0,9, = o
() ==815). 7 =0. 6y =2
Further, we noted
n
l//mj Z I’l,j=1,l’l (21)
If (20) is introduced into (19), there results
n
Vi (p) 1
x;\p)= —, (22)
i) mZ—IS 2oy K
or
i Wi (p) "
xj(p)=-2 — == 2" Zui(p)- (23)
m=1 p? +S,f1(lil//j m=1
2
From (23) one obtains
Cmy 1)+ [l + i%}&% o (0)= 0y 0). (24)
The final solution is
L ! _lsm U
ZSL [omi(2)-e 47 o) sinS,,(t—7)dr, (25)
m=1 0
where (26) was introduced
P ()< vy (0)= 5 ZA,k p). (mj=1n) (6

In the case of the two methods, the similarity between the solutions (26)
and solutions (13) is noted.
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4. Application in the case of the passing through the resonance of a
three — mass system that performs twist oscillations.

If the case of the viscous damping is considered, the differential equations
system will be

J161 + by (¢ — 92 )+ ci1(op —9y)=0
J2@s +bi(9y — 1)+ ba(p2 —3)+c1 (02 —01)+ a2 —93)=my (t), (27)
J3¢3 + by (3 — @ )+ ca (@3 — ) =0

where J; — inertia moments of the wheels; ¢ ; — elasticity coefficient of the shaft
sector j, my(¢) disturbing moment acting on the mass 2; b ; — damping coefficient

in the j sector; @ ) rotation angle (figure 1).

T2, @2
T ¢4 AT\ ma(®) I3, @3
bl: C-l ' b23 02
Fig. 1.

If we denote ¢, — ¢ =y |; @) — @3 =y,, after several calculations, the
symbolical form becomes:

My(p) p*+ap+d

vi(p)= 7, Ap) o
_My(p) p*+ayp+dy
P (p) J A(p) .

There will be introduced initial null conditions and the notations
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J3‘ _Jl. _J3‘ J1‘ A .(29)
Al(p)=(p=p1)-(p-Dp1); Ma(p)=(p-p2) (p-P2)

P1, P1» P2, Dp — associate complex roots of the equation A(p)zO
given by the relations (5).

Further, the coordinate y (t) is calculated; thus solution (28) has the form

My(p) | 4 N A4 P S 4 } (30.2)
Ja p—-p1 P—pP1 P—DP2 P—P2

v1(p)=

where

2

_pi tayp) +dp _P%+azpz+d2

= Ay == : (30,b)
2iky - Ay (py) 2iky - Ay (py)

while A4, 4, are associated with 4; and 4, .
The expression m, ()

2
my (1) = my exp{— z%] : 31)

is introduced into (30) and having the new variables u;=x;+iy;,

vi=xi iy, i= (1,2) one obtained

)= (1—z->\/§[Alw(vl>—zlw(uwzww—zzw(uz>]exp[—i“2J.oz)

T2, 2
The variables x;, y;, x'j , y'j are determined by means of the relations

‘ h . hj
xjZhjlj(gj—l)ﬁL?J,yj=_hj’1](§j_1)+71 (jzﬁ) (33)
hj. )

. h .
xXj = —hﬂj(”fj)—?],y'j = hﬂj(”fj)—?
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5. Numerical application

The calculation of the system non-steady process is performed having the
numerical data J;| = 19,6Nms2 , Jp = 1,96Nms2 , Jy = 3,92Nms2 , by =14,7Nms ,
by =19,6Nms, ¢; =382-10"Nm, ¢, =88,2-10*Nm, &=7491s"2. The
following equation is obtained for determining the roots

p* +2325p% +8,95048-10° p? +34,9375-10% p +585-10°% = 0. (b)

The relations (5) are applied and one obtains

 =2448s71  k =26657" ©

. c
1y =20,802s"  ky =908s7!
The expressions of the coefficients given by (30,b) are:
24k =—0,425-1073 —i-0,2046

(d).

2d4yky =0,145-1072 —i-0,7953
The dynamic coefficient4, will be determined using the relation

4 = l/ll—s(:) , where
Y1
L S KL S ©)
J2 (Jl +J2 +J3)-Cl
In tables 1 and 2, the W(Z) probability integrals values are given for
different values of time (&, = &t/k; ).

Table 1
5 w(uy) w(v) w(u,) w(vy)
0.9 0,2009 - 10,1518 | 0,0092—:0,0092 | 0,0070—i0,0070 | 0,0041 — 0,0042
1,0 0,9207 +i0,0705 | 0,0092—i0,0092 | 0,0077—i0,0075 | 0,0041 —i0,0042
1,05 02461 +i1,7392 | 0,0089—0,0090 | 0,0079—i0,0076 | 0,0041 —i0,0041
1,07 212643 +i1,3160 | 0,0089—i0,0090 | 0,0079—i0,0076 | 0,0040—i0,0041
1,10 20,1902 —i1,1245 | 0,0087—i0,0088 | 0,0082—i0,0079 | 0,0040—i0.0041
1,107 0,6178 —i0,8109 | 0,0086—i0,0086 | 0,0082—i0,0079 | 0.0040 —i0,0041
1,135 20,8912 +i0,9513 | 0,0086—i0,0086 | 0.,0082—i0,0079 | 0,0040—i0.0041
115 0,8454 +i0,5058 | 0,0085—i0,0085 | 0,0083—i0,0080 | 0,0040 — i0,0040
1,157 0,5289 — i0,6601 | 0,0085—i0,0085 | 0,0083—i0,0080 | 0.0040 — i0,0040
1,177 -0,6647 +i0,8417 | 0,0084—i0,0084 | 0,0084—i0,0081 | 0,0039 - i0,0040
1,20 07450 +i0,1182 | 0,0082—i0,0082 | 0.0085—i0,0082 | 0.0039 — i0,0040
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Table 2

S W(uy) "
33282 0.2433 + 10,0754
3,4135 0,4715 + i0,2332 1/\

20
3.4477 02953 + 10,5384 W/\ 7 \
. 2
3,4545 0,2119 + i0,5803 10 / Y/ &\
3,5210 -0,1152 + i0,1689 /
0 -

3,5484 -0,1016 + 10,2979 08 1.0 12 34 &
3,5705 -0,0941 + i0,0731 Fig. 2.

By varying &, from 0.975 to 1.046, the system is in the area of the second
resonance (&) is modified accordingly from 3.3282 to 3.5705). During that time
the influence of the functions W (u;), W(v;) and W(v,) is unimportant, they
have sizes of degrees W (u;)~—0,0075+0,0075i, W(v;)=0,0040-(1-i),
W(vy)=0,0027-(1-1).

Besides, and from the tables 1 and 2, as well, there results that, in the area
(f) of the first resonance, W (i) has the most important value while in the area of
the second resonance, it is the magnitude of 7 (i, ) which has the most important

value. In this way it is confirmed the thesis often used in practical calculations
that at the moment when the resonance has a certain natural frequency, the forms
of the non-resonance vibrations (with values of the natural frequency differing a
lot from the resonance frequency) have a small influence on the magnitude of the
amplitude of the system resonance vibrations. The charts of the dynamic
coefficient A; when passing through the first and the second resonance (figure 2)

show the existence of the same characteristics as in case of the passing through
the resonance of the linear system having one freedom degree: overlying and
reducing the highest amplitude, strokes attenuation aspect etc. By considering the
frictions according to Sorokin, the system of equations will have the form

J19 +(1iil}’1(¢1 —0y)=0,
2

Jor¢ +(1ii2ljcl(¢z —¢1)+(1iiljcz(¢z —p3)=my(t), (34
T 2w

J3¢3 +(1iiljcz(¢’3 —0,)=0,
27
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or it will be in the symbolic form under null initial conditions (after introducing
VI=Q1 =02, W2 =02—03,)

52 o) L) 00

T Ty J KJ
1 2 2 2 (35)
€1 ¢ €2 1
-— —+—=-S =—M ,
7 ‘//I(P)+{ 5t jl//z(p) o 2(p)
where §2 :—pz/K, K=1tiy/2rx.
Solving the system (35) with respect to ( p), one obtained
My(p) [(ea 2
= =-8|, 36
l//l(p) KJ, -A(S) (']3 (36)
or
M B B C C
l//](p):_ 2(p)( 1 + 2 + 1 + 2 j, (37)
K]z S—Sl S+S1 S—Sz S+Sz

where £ 5, (j = 1,2) are the roots of the equation A(s) = 0, while B,, B,,C,,C, are
given by

1 Cz 2 1 C2 2
Bj=—By=——|=-87|,C;=—CH =———| =-S5 |. (38
: 2 A'(Sl)(Js 1j : ? A'(Sz)(h 2J C9

Before obtaining the final form, (37) is written under the form

M 28B 28,C
vilp)= j(p)'£ oot o J
2 p +SiK p +S5K
or
M A A A A
Wl(P)=— 2(P).£ | . 2 n 2 j’ (39)
J2 p—pP1 P—-pP1 P—-P2 P—D2

where
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A, =iB,; A, =iC,; A,, A, areconjugate with 4, and 4,

Moo M % . (40)
Pj:_jﬂkj’pj:_?j_’k/’ﬂ/:ESf’kj:Sj’J:(l’z)

The results (30) and (39) are the same. Thus, the solving way of (30) will
be the same if we introduce the coefficients (40) into (30). Unlike the previous
case, instead of a fourth-power equation there is obtained a biquadratic equation

Jyr+J Ji+Jy+J
s(s)=s*—s2 a( +J2)+02( 2+J3) vopey D2 Y3 g g
Ji-Jn Jo - J3 Ji-JpJ3

In the general case, A(S) is an S even function, because the determinant of

the equation A(S)=0 can be two-times reduced. As noted above, there is one
more characteristic given by the fact that the roots £5; (j =1.23...) are real (R)

and not associate complex. All these simplify very much the calculations. The
absorption coefficient of the vibrations power is chosen using the condition of

coefficients coincidence = 2£S1 =2,4485s!. There are found the roots
7
S; =266.45s1, S, =907,75s"" and then v /27 =0,9188-1072.

The coefficients (40) will be
2kyA4; =0,00145-0,2046i, 2k A> =0,00166 —0,7953i . (h)
For the studied case, in figure 2 it is shown only a curve (3) for passing
through the second resonance. As a result of choosing the coefficient y, the

passing curves through the first resonance are practically overlapping for both
cases.

6. Conclusions

As we expected, the maximum of the curve (3) is higher than the one of
the curve (2). The explanation is that the friction forces considered in this study
do not depend on the vibration frequency. They have remained smaller than the
forces, which are proportional with the distortion speed within vibrations with
higher frequency. In the same time, the maximum of the dynamic coefficient of
the first resonance is higher than the two maximum of the second resonance. That
happens in the case of the constant amplitude m( of the disturbing moment.

When m(, depends on frequency, then the relation between the maximum value of

the coefficient A; is changed and may result that the maximum amplitude of
vibrations in the second resonance is higher than the first one. Thus, for example
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2
with m, (t):mo(kﬁj exp[—i %e‘tz j and with other similar conditions, the
2

maximum coefficients will be A;, = 2,34 for the first resonance and A;; =19,35
for the second one.
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