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ON THE BILINEAR DYNAMICAL SYSTEMS
Alina NITA', Ana NITA*

In acest articol, se dau solutii aproximative pentru anumite clase de sisteme
dinamice descrise in ecuatiile (1) si (5) de mai jos. Solutiile lor sunt cautate in clase
de functii constante pe portiuni, de exemplu, functii Walsh sau exponentiale discrete.
In lucrare se utilizeazd unele concepte tehnice de algebrd liniard, cum sunt
produsele Kronecker sau pseudosolutiile studiate in [3]. In partea secundd este
studiat un sistem liniar nesingular (6) dat in [1].

In this paper one gives explicit approximative solutions of some classes of
dynamical systems described in the equations (1) and (5) below. Their solutions are
checked in some classes of functions which are constant on pieces, like the Walsh
functions or the discrete exponentials;, some practical tools of linear algebra
(e.g. Kronecker tensor products, pseudosolutions, etc.) are systematically used.
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1. Introduction

Consider a dynamical system with command, where the state parameters
x,(8),x,(t),...,x,(t) verify some relations of the form

n P n )4
X', (t):z al.jxj(t)+z “1{2 p;k)xjj+z b,u,, (1)
Jj=1 k=1 Jj=1 k=1

1<i<n, the coefficients a pi(].k) , b, , being real or complex constants.

Such a system is called bilinear, with the command parameters u, (¢),..u, (¢) .
We now introduce the following matricial notations:
x = (X, %, 0%, 5 U= (ul,uz,...,up)T;
A=(a;), 1<i,j<n; B=(by), 1<i<n,1<k<p and
PO=(p;®); 1<i,j<n,1<k<p.
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Keeping these into account, the system (1) can be equivalently written as
follows:

P
x'= Ax+ Z u, - PPx+Bu.

k=1

p
Moreover, putting P= Z u, . P (a nxn matrix), one finally obtains:
k=1

x'=(A+P)x+Bu (1)
In the case when P’ =0 for any 1<k < p, one obtains the classical case
of the linear systems with command.

2. Solving the system (1)

Fix a number N>>1, N =2* and let T = {O,l,...,N—l} be considered as a

set of N moments of discrete time. Any function x:7 — C can be identified by a
function constant on pieces, obtained by blocking its values up to the successive
moment; such a function is wusually called a discrete signal. Let
B ={v,,v,,....,v_, | astandard basis of discrete signals v, : T — C, [4], and denote

by V = (vo
O such that

v, |...|vN_1) the Nx/N —matrix associated to. Consider also a NXxN — matrix

jo‘ V(tydt = Q. .
This is possible in the case when B is formed by the discrete exponentials
{e, (1)}, as well as B consists of the Walsh functions {w, (¢)}. The state parameters

and the command parameters can be approximated by discrete signals 77— C
(that is by corresponding functions which are constant on pieces). Under these
conditions, we look for a solution x(¢) of the system (1), with the initial condition
x(0)=x,, such that x'=C.V, where C is a nxN — matrix with undetermined

coefficients; therefore,
x(t) = x, + ch’V (t)dt . @)
But
jO’V (t)dt = O .V, hence x(t)=x, +C.0.V,

where Q is a known NXN - matrix. By substituting in (1°), it follows that
C.V=(A+P)(x, +C.Q.V)+Bu.
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But u=D.V, where D is a known pxN — matrix and similarly, 4x,=E)},

)
Px, =EV, where E,, Ej, ..., E, are known nxN — matrices (this follows from the

representation of the discrete signals by means of V). Then

p
(A+ P)x, = {EO +> u,E, j.V

k=1

and
p

CV =(4+P)CQV +|E,+Y u.E, |V+BDJV.
k=1

Keeping into account that ' is nonsingular (since v,,Vv,,...,v,_, are linearly

independent), it follows that
C=M.C.Q.+F, 3)

»
where we put F' = E + Z u,E, + BD and M=A+P.
k=1

In the relation (3), the matrices M, Q, F are known and the unknown is C.

From all above said, one deduces the following:

Proposition 1. The solution of the system (1) is given by a matricial
equation of the form

X-MXQO=F, “4)

where M e M (C), Qe M (C), FeM, ,(C) are given and X e M, ,(C) is

unknown.
A well-known result asserts that whenever M is nonsingular, the equation
(4) has solution if and only if the matrices

M MTF M7 0
and
0 0 0 0
are similar. Instead of this we give a more general result. Recall by [2] that if
AeM, (C), BeM,  (C), then their Kronecker tensor product is the following
pmxng — matrix
a,B a,B .. a,B
A®B = , .
a,B a,B .. a,B
Denote by A the pg-dimensional column-vector obtained by putting in a
single column first column of A4, followed by the second, third etc. Then

(ADsz(BT ®A)-l~), for any DeM,,(C) (the Neudecker formula). So
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(MXQS =" ®M)- X and the equation (4) becomes X —(MXQ? = F, that is
)N(—(QT ®M)-)?:1? and so
(Iy-Q"®M)- X =F 4)
Propostion 2. Let o(Q)=1{4,....4,}, o(M)={u,,... 15} be the matrix
spectrums and suppose that A, -u, #1 for any 1<i<r, 1<j<s. Then the
equation (3) has a unique solution, namely
C=(,-0"®M)"'F.
Proof. The eigen values of the matrix Q" ® M are just the products
A, - u ; and those of the matrix 7 -0"®M will be 1- 2, - i ; the latter
being nonzero (by hypothesis), it will follow that the square matrix 7, —Q" ® M

is invertible and apply (4°).
Remark. From (4’) we can deduce without any restrictions the

pseudosolution of (3) and (4’), namely: (C*S =(1,~0" ®M)" .F.
Application. Suppose now B=0, p=1, hence an homogeneous linear
system by the form x' =Ax+Pxu, P € M,(C), with the initial condition x(0)= x,

and we check the command u which minimizes a quadratic functional of the form
J(x,u) = %J(XT S x+u’)dt.
0

In order to determine the command u* which drives the system from the
state x,=x(0) to the state x(a) and minimizes J, one considers the hamiltonian

H = %xTSx + %uz + A" - (Ax + Pxu). By the Pontreagyne principle, %(HT) =0,
hence w*=—x".pP", Then x'= %(HT) = Ax+ PxU and
A= —%(HT) =—8"x—A"-2—P" Ju, with x(0)=x, and A (a)=0.

Consider the 2n - dimensional column vector z = (xj and it follows that

T
z'= Ajz—Pzz P,z ,where

4 0 P 0 0 P’
A= , P = , P =
R
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Relatively to the standard basis B, we have z=G.V, where G is a
2nxN — matrix which is unknown. Then C\V = A GV - PGVV'G"P,GV and V
being nonsingular, it follows that 4G - RGVV'G'P,G =C,,
with A;, Py, P, C; given. If G is thus determined, then z and a fortiori x(2), A(z)
will be determined and in the same time, the checked optimal command will be
uk=—x"-P'. 1.

In the case of the Walsh basis (or that of the discrete exponentials), one
can give explicit formulas.

3. A nonsingular linear system

Consider a dynamical system from [1], by the form
z by‘x;‘ )= Z a;x; (1) + ¢, (x,(1),..., x, (1)),
J=1 j=1

1<i<ntel0,]]
with the initial condition x(0)=x, Put B=(b,), 1<ij<n; A=(a,),

)

1<i,j<n; ¢=(¢,,...p,)" supposed continuos, it follows the matricial form of
the above system:

Bx'= Ax + p(x(1)). (6)

Let {wk (t)}kzo the sequence of Walsh functions on the interval [0,1]; any

function f e Lfo,l] can be represented as a series f(¢) = chwk (), t[0]1]. In
k=1

N
particular, @(x(¢)) is approximated by a partial sum of the type chwk (t), with
k=1

N =2% convenient. Denote ¢ = (CyrCpremsCyy)’ and V= (wo(t)|w1 (t)|...
hence p(x(¢)) = c” -V (1)

By reasoning like in § 1, one gets from (6) the matricial equation
BCV = A(x, + CQV)+c" -V, with unknown C.

Then

BCV — ACQV = Ax,+c" -V,

hence

(BCV) —(ACQV) = (Ax, +c" V)

and by the Neudecker relation,

(V' ®B)-C—((QV) ®A4)-C=(Ax, +c"V),

with the pseudosolution (V" ® B—(QV)" ® A)" - (Ax, + VY.

w,(1))
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, x
Example. Consider the system x2(¢)=-x,, 2x,=x . Put xz( lj,

Xy
| 1 41O O land th t be simply writt
= , = , = an € systeém can € S1m written
0 0 o 2/ 7 —x; Y i

0
Bx'= Ax + @(x(¢)). If the initial condition is x(0) =(0], the exact solution is

2
x,(t)=—t, xz(z‘)z%, t<[0,1]. The above presented method gives good

numerical results.
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