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ON THE BILINEAR DYNAMICAL SYSTEMS 

Alina NIŢĂ1, Ana NIŢĂ 2 
 
 

În acest articol, se dau soluţii aproximative pentru anumite clase de sisteme 
dinamice descrise în ecuaţiile (1) şi (5) de mai jos. Soluţiile lor sunt căutate în clase 
de funcţii constante pe porţiuni, de exemplu, funcţii Walsh sau exponenţiale discrete. 
În lucrare se utilizează unele concepte tehnice de algebră liniară, cum sunt 
produsele Kronecker sau pseudosoluţiile studiate în [3]. În partea secundă este 
studiat un sistem liniar nesingular (6) dat în [1]. 

 
In this paper one gives explicit approximative solutions of some classes of 

dynamical systems described in the equations (1) and (5) below. Their solutions are 
checked in some classes of functions which are constant on pieces, like the Walsh 
functions or the discrete exponentials; some practical tools of linear algebra                 
(e.g. Kronecker tensor products, pseudosolutions, etc.) are systematically used. 
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1. Introduction 

Consider a dynamical system with command, where the state parameters 
)(),...,(),( 21 txtxtx n  verify some relations of the form  
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ni ≤≤1 , the coefficients ija , )(k
ijp , ikb , being real or complex constants. 

Such a system is called bilinear, with the command parameters )(),...(1 tutu p . 
We now introduce the following matricial notations: 

T
nxxxx ),...,,( 21= ; T

puuuu ),...,,( 21= ; 
),( ijaA =  nji ≤≤ ,1 ; ),( ikbB =  ni ≤≤1 , pk ≤≤1  and 

P(k)=(pij
(k)); nji ≤≤ ,1 , pk ≤≤1 . 
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Keeping these into account, the system (1) can be equivalently written as 
follows: 

⋅+= ∑
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k
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1
' P(k)x+Bu. 

Moreover, putting P ⋅= ∑
=

k

p

k
u

1
P(k) (a nxn matrix), one finally obtains: 

'x =(A+P)x+Bu (1’) 
In the case when 0)( =kP  for any pk ≤≤1 , one obtains the classical case 

of the linear systems with command. 
 
2. Solving the system (1) 
 
Fix a number N>>1, kN 2=  and let { }1,...,1,0 −= NT  be considered as a 

set of N moments of discrete time. Any function C→Tx :  can be identified by a 
function constant on pieces, obtained by blocking its values up to the successive 
moment; such a function is usually called a discrete signal. Let 

{ }110 ,...,, −= NvvvB  a standard basis of discrete signals C→Tvi : , [4], and denote 
by ( )110 ... −= NvvvV  the NxN –matrix associated to. Consider also a NxN – matrix 
Q such that 

VQdttV
t

.)(
0

=∫ . 

This is possible in the case when B is formed by the discrete exponentials 
{ })(tek , as well as B consists of the Walsh functions { })(twk . The state parameters 
and the command parameters can be approximated by discrete signals C→T  
(that is by corresponding functions which are constant on pieces). Under these 
conditions, we look for a solution x(t) of the system (1’), with the initial condition 
( ) 00 xx = , such that 'x =C.V, where C is a nxN – matrix with undetermined 

coefficients; therefore, 

dttVCxtx
t

∫+=
00 )()( . (2) 

But 
,.)(

0
VQdttV

t
=∫  hence x(t)= 0x  +C.Q.V, 

where Q is a known NxN - matrix. By substituting in (1’), it follows that 
C.V=(A+P)( 0x  +C.Q.V)+Bu.  
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But u=D.V, where D is a known pxN – matrix and similarly, VEAx 00 = , 
0

)( xP k
=EkV, where 0E , E1,…, Ep are known nxN – matrices (this follows from the 

representation of the discrete signals by means of V). Then  
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Keeping into account that V is nonsingular (since 110 ,...,, −Nvvv  are linearly 
independent), it follows that 

C=M.C.Q.+F, (3) 

where we put BDEuEF kk

p

k
++= ∑

=1
0  and M=A+P. 

In the relation (3), the matrices M, Q, F are known and the unknown is C. 
From all above said, one deduces the following: 
Proposition 1. The solution of the system (1) is given by a matricial 

equation of the form 
X-MXQ=F, (4) 

where )(CnMM ∈ , )(CNMQ∈ , )(, CNnMF ∈  are given and )(, CNnMX ∈  is 
unknown. 

A well-known result asserts that whenever M is nonsingular, the equation 
(4) has solution if and only if the matrices 
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are similar. Instead of this we give a more general result. Recall by [2] that if 
)(, CqpMA∈ , )(, CnmMB∈ , then their Kronecker tensor product is the following 

pmxnq – matrix 
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Denote by A~  the pq-dimensional column-vector obtained by putting in a 
single column first column of A, followed by the second, third etc. Then 

DABADB T ~)()~( ⋅⊗= , for any )(CqmMD∈  (the Neudecker formula). So 
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XMQMXQ T ~)()~( ⋅⊗=  and the equation (4) becomes FMXQX ~)~(~ =− , that is 
FXMQX T ~~)(~ =⋅⊗−  and so 

FXMQI T
N

~~)( =⋅⊗−  (4’) 
Propostion 2. Let { }rQ λλσ ,...,)( 1= , { }SM μμσ ,...,)( 1=  be the matrix 

spectrums and suppose that 1≠⋅ ji μλ  for any ri ≤≤1 , sj ≤≤1 . Then the 
equation (3) has a unique solution, namely 

.~.)(~ 1 FMQIC T
N

−⊗−=  
Proof. The eigen values of the matrix MQT ⊗  are just the products 

ji μλ ⋅  and those of the matrix MQI T
N ⊗−  will be ji μλ ⋅−1 ; the latter 

being nonzero (by hypothesis), it will follow that the square matrix MQI T
N ⊗−  

is invertible and apply (4’). 
Remark. From (4’) we can deduce without any restrictions the 

pseudosolution of (3) and (4’), namely: .~)()~( FMQIC T
N ⋅⊗−= ++  

Application. Suppose now B=0, p=1, hence an homogeneous linear 
system by the form 'x =Ax+Pxu, )(CnMP∈ , with the initial condition ( ) 00 xx =  
and we check the command u which minimizes a quadratic functional of the form 
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In order to determine the command u* which drives the system from the 
state 0x =x(0) to the state x(a) and minimizes J, one considers the hamiltonian 
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Consider the 2n - dimensional column vector ⎟⎟
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Relatively to the standard basis B, we have z=G.V, where G is a                
2nxN – matrix which is unknown. Then GVPGGVVPGVAVC TT

2111 −=  and V 
being nonsingular, it follows that 1211 CGPGGVVPGA TT =− , 
with A1, P1, P2, C1 given. If G is thus determined, then z and a fortiori x(t), λ(t) 
will be determined and in the same time, the checked optimal command will be 

λ⋅⋅−= TT Pxu* . 
In the case of the Walsh basis (or that of the discrete exponentials), one 

can give explicit formulas. 
 
3. A nonsingular linear system 
 
Consider a dynamical system from [1], by the form 
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with the initial condition ( ) 00 xx =  Put )( ijbB = ,  nji ≤≤ ,1 ; )( ijaA = ,  

nji ≤≤ ,1 ; T
n ),...,( 1 ϕϕϕ =  supposed continuos, it follows the matricial form of 

the above system: 
)).((' txAxBx ϕ+=  (6) 

Let { } 0)( ≥kk tw  the sequence of Walsh functions on the interval [0,1]; any 

function 2
]1,0[Lf ∈  can be represented as a series ∑
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kk twctf , ]1,0[∈t . In 

particular, ))(( txϕ  is approximated by a partial sum of the type ∑
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k
kk twc

1
)( , with 

kN 2=  convenient. Denote T
Ncccc ),...,,( 110 −=  and ))(...)()(( 110 twtwtwV n−=  

hence ).())(( tVctx T ⋅≈ϕ  
By reasoning like in § 1, one gets from (6) the matricial equation 

VcCQVxABCV T ⋅++= )( 0 , with unknown C. 
Then  

VcAxACQVBCV T ⋅+=− 0 ,  
hence  

)~()~()~( 0 VcAxACQVBCV T ⋅+=−  
 and by the Neudecker relation, 

)~(~))((~)( 0 VcAxCAQVCBV TTT +=⋅⊗−⋅⊗ , 

with the pseudosolution )~())(( 0 VcAxAQVBV TTT +⋅⊗−⊗ + . 
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Example. Consider the system ,)( 12
' xtx −=  2
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ttx = , ]1,0[∈t . The above presented method gives good 

numerical results. 
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