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CONCERNING A PROBLEM OF  E. BOREL 

 

C. PANA* 

Este cunoscut rolul deosebit al bazelor ortonormale în spatii concrete de 
functii; acestea permit o abordare eleganta si eficienta a conversiei analogic - 
digitala a semnalelor. 

În anul 1910 E. Borel a considerat o serie de functii  nf  din  ( )2 ,L a b  

care sa  formeze o baza ortonormala si în plus fiecare functie nf  sa ia cel mult 

doua valori. 

Primul exemplu a fost dat de Wals h. În aceasta lucrare se da o alta descriere 
a functiilor Walsh si o demonstratie noua a completitudinii sistemului Walsh. 
Totodata se arata legatura cu functiile Rademacher si Haar folosite în studiul 
semnalelor discrete. 

It is widely known the special role of orthonormal basis in certain spaces of 
functions; they allow an elegant and efficient approach of analogic - digital 
conversion of signals. 

In 1910 E. Borel considered a series of functions nf  from ( )2 ,L a b  which 

will form an orthonormal basis and, moreover each function nf  will have at most 

two values. 

The first example was given by Walsh. In this paper we have another 
description of Walsh functions and a new proof of the complexity of Walsh system. 
In the same time the connection between Rademacher and Haar functions used in 
the study of discrete signals is shown. 

Keywords : orthonormal basis, wavelets,  Welsh functions, Rademacher functions,  
         Haar functions. 
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Introduction 

 

The Walsh functions are used in Electronics at connecting problems in 
data transmissions. This paper gives an original proof that Walsh functions form 

an orthonormal base in ( )
2
0,1L . 

 

1. Preliminaries  

Let H be a Hillbert space (complex); ( )n ne ∈¢
 an orthonormal string in H 

and ( )n na ∈¢
 a string of complex numbers. The series n n

n
a e∑  is known to 

converge  in H with the sum s  if and only if ( ) 2na l∈ ; moreover ,n na s e= . 

If ( )ne  is an orthonormal basis and if  there is t H∈  so that ,n na t e=  
for any n , then t s= . 

The set of indexes can be replaced with any other countable set. 
We also remind the following fact: 

2. Lemma 

Let ( )nB e=  an orthonormal string in H. The following 5 assertions are 
equivalent: 

a) The subspace generated by  B  is dense in H . 
b)  If x H∈  and ( ),nx e n⊥ ∀  then 0x = . 

c) x H∀ ∈ , 2 2
n

n
a x=∑ , where ,n na x e=  

d)  x H∀ ∈ , ,n n
n

x c e= ∑ where ,n nc x e=  

e) , , , n n
n

x y H x y c d∀ ∈ < >= ∑ , where ,n nc x e= , ,n nd y e= . 

Any string of vectors from H  satisfying one of these 5 conditions is called 
orthonormal bas is in H . 

 



Concerning a problem of E. Borel 

 

25 

3. Examples 

1) Let 2
(0,1)H L=  with scalar product ( ) ( )

1

0

,f g f x g x dx= ⋅∫ . The 

string ( )2sin 1ne n x nπ= ≥  is an orthonormal basis. 
We prove that the assertion c) from the above lemma is true. 

2 2
n

n
a x=∑  where ,n na x e= . 

1

0
, 2 sinn na x e x n xdxπ= = ⋅ ⋅∫  which through integration through parts 

is  
( ) 11 2n

nπ

+− ⋅
;  

22 2
2 2 2

1

2 1 2 1
lim

6 3

n

n
nn k

a x
k

π

π π→∞ =
= = ⋅ = =∑ ∑  

2) The discontinuous functions :(0,1)nϕ → ¡  

( ) sgn(sin ), 1n t n t nϕ π= ≥   are considered. This string is not orthonormal in  
2
(0,1)L , but  satisfies the condition b) from the previous lemma (if  2

(0,1)f L∈  and 

,nf nϕ⊥ ∀    then 0f =  a.e.). 

This string ( )nϕ  has a substring that is :(0,1)nr → ¡ , 2 , 1nnr nϕ= ≥   

called Rademacher functions. The graphs of the first three functions Rademacher 
are shown in fig. 1.  
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Fig. 1 
 

It is easily proved that an orthogonal string is resultated in ( )
2
0,1

L  but not 

an orthonormal basis (because cos2 ,nt r nπ ⊥ ∀  and it is not satisfied condition b) 
from the previous lemma). 

The functions nr  only take 1 and -1 values. The definition domain of the 

function nr  can be divided in 12n−  cycles of length
1

1

2n−
, and on half of them nr  

takes the value 1 and on the other half -1. 
E. Borel considered, in 1910, the problem of finding a string of functions 

from ( )
2
0,1L which will only take 2 values, but which will form an orthonormal 

base. 
The first example was made by Walsh in 1924 starting from the string 

( ) , 1nr n ≥ . He was the one to “completed” this string adding other functions. He 

considered the string ( ) 1nw n ≥  of Walsh functions defined as the following: 

1 1w = ; then for any integer 1k ≥  we have a unique form in basis 2: 

4 cycles 

t 

y 

1 

y= r3(t) 

0 



Concerning a problem of E. Borel 

 

27 

1 22 2 ......2 pnn nk = + +  with 1 2...... 0pn n n> > ≥  and we define 

1 21 1 1 1......
pk n n nw r r r+ + + += ⋅ ⋅ ⋅ . 

In the case of 1p = , so ( )1
12 0nk n= ≥  we find again 

1 1nr + . In this way 

the functions Rademacher 1 2 3, , ......r r r  are among Walsh functions. 
It is obvious that the Walsh functions take only the values 1 and  -1. 
 
The following theorem belongs to Walsh but we have another proof: 
 

4. Theorem 

  The functions Walsh ( ), 1kw k ≥  form an orthonormal basis in ( )
2
0,1L . 

 
Proof :  The product of two functions Walsh will be of the following form 

( ) ( ) ( )1 2

1 2
......

p

p

aa a
m m mr r r⋅  where 1 2 ...... 1pm m m> > ≥  are integers and ka  are 

equal to 1 or 2. 

If two functions coincide then 2ka =  and 2 1mkr ≡  a.e. so 
1

2

0

1
kmr ≡∫ . 

If ,f g  are distinct then in ,f g we can renumber the indexes and we 
only remember the functions Rademacher at one squared with 
indexes 1 2, ...... qm m m . But the product ( ) ( )

2
......

qm mr x r x  is constant with values 1 

or -1 on each on the two semicycles 22m  or 
2mr . A typical semicycle 

2mI  is 

divided in 1 22m m−  semicycles of 
1mr  in which 

1mr  is alternative +1 and  -1. So 

1 1

2 2

1

0

...... ( )
qm m m

I m I m

r r const r= ⋅∑∫ ∫  so equal with 0, because 
1

2

0m
I m

r =∫ . 

Let ( )
2
0,1f L∈  and ( ) ( )

0

x
F x f t dt= ∫  so ( )0 0F = . 

 
Because after defining Walsh’s function we have  
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1 2 1 3 2 4 1 2 5 31; ; ; ,w w r w r w r r w r= = = = ⋅ =   we get:  

 
1

1 1
0

0f w fw⊥ ⇒ =∫  which is (1) 0F =  

 

(1) 

 
1 1 1/2 1

2 2 1
0 0 0 1 / 2

0 0 0f w fw fr f f⊥ ⇒ = ⇔ = ⇔ − = ⇔∫ ∫ ∫ ∫  

( )1 1 1
1 0 0

2 2 2
F F F F

      − − = ⇔ =      
      

 (2) 

 
1 1 1 / 4 1 / 2 3 / 4 1

3 3 2
0 0 0 1 / 4 1 / 2 3 / 4

0 0 0f w fw fr f f f f⊥ ⇒ = ⇔ = ⇔ − + − = ⇔∫ ∫ ∫ ∫ ∫ ∫  

( )1 1 1 3 1 3
1 0

4 2 4 4 2 4
F F F F F F F           − + + − − + =           

           
 

1 3
0

4 4
F F   ⇔ + =      

 
(3) 

 
1 1 1 / 4 3 / 4 1

4 4 1 2
0 0 0 1 / 4 3 / 4

0 0f w fw fr r f f f⊥ ⇒ = ⇔ = ⇔ − + =∫ ∫ ∫ ∫ ∫  

 

( )1 3 1 3
1 0

4 4 4 4
F F F F F       = − + + − =       

       
 

 
1 3 0
4 4

F F   ⇔ − =   
   

 
(4) 

 
From relation  (3) and  (4) we have 

1 30, 0
4 4

F F   = =   
   

 
(5) 

 
1 1

5 5 3
0 0

0 0f w fw fr⊥ ⇒ = ⇔ = ⇔∫ ∫  
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1/8 1 / 4 3 / 8 1 / 2 5 / 8 3 / 4 7 / 8 1

0 1/8 1 / 4 3 / 8 1/2 5/8 3 / 4 7 / 8

0f f f f f f f f− + − + − + − =∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫  

1 1 1 3 1 1 3 5 1 3
8 4 8 8 4 2 8 8 2 4

F F F F F F F F F F                   ⇔ − + + − − + + − − +                   
                   

 

( )5 7 3 7
1 0

8 8 4 8
F F F F F       + + − − + = ⇔              

 

1 3 5 7
0

8 8 8 8
F F F F       ⇔ + + + =              

 
(6) 

Than from  6 7 8, ,f w w w⊥  it results   1 3 5 7
0

8 8 8 8
F F F F       = = = =              

. 

 
Than through incomplete induction it results that F is cancelled on  

2 1
, , ,2 1 2 1

2
n

n

k
S k n k

+ = ∈ + ≤ − 
 

¥ . Because S is dense in  ( )0,1  and F is 

continuous  0F⇒ =  on  ( )0,1  so  0f =  a.e. in ( )0,1 . 
 

5. Observation 

In many papers the Walsh functions ( ), 1kw k ≥  are ordered differently so 

that each kw  could have exactly 1k +  “crossing in 0” in the interval ( )0,1 . 
The graphs of the first 3 Walsh functions are shown in fig. 2.  
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Fig.2 
 
 
For the sinc signals it is fundamental that notion of frequency. 

Let the family of functions ( )sin2 tπω , *ω ∈ ¥  for any ω  the function 

sin2t tπω→ , has the period 1
ω

 and in any semi-open interval of length 1
ω

 , 

sin2 tπω  has 2ω  zeroes. 
The index ω  appears as being equal with half the number of zeroes of the 

signal s in2 tπ ω  in a time unit. 
For the Walsh functions, the notion of sequence is defined as being half 

the number of changes of signal in time unit. 

Haar build an orthonormal base for ( )
2
0,1L , formed with functions having 

at most three values, which approximates uniformly any continuous function 
[ ]: 0,1f → ¡ . 

Functions Haar have a systematic application in the wavelets theory.  
 
The definition of functions ( ): 0,1 , 1nh n→ ≥¡  is the following:    

1/4 1 

t 

3/4 

W2 
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1 1h =  ;  

( )

/ 2

/ 2
2

1
1 22 , ,

2 2

1
2( ) 2 , ,

2 2

0,totherestof theinterval 0,1

k

k
k k

k
l k k

llif x

l lh x if x+

  −  −∈  
  

 
   − = − ∈  
  

 






 

for 1,2,.........2 ; 0kl k= ≥  

The definition domain of each function Haar divided in 2k  cycles of 

length 1

2k
. 

The graph of a Haar function is shown in figure 3. 

 

Fig. 3 
 

It can be proven that the string ( ) 1n nh ≥
 forms an orthonormal basis in 

( )
2
0,1L . 

x 

22
k

 

2k
l

 

1
2k
l−

 

22
k

−
 

1 
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Conclusions 

 

I have studied a series of functions ( )nf  from ( )2 ,L a b  which will form 

an orthonormal basis and, moreover , each function nf  will have at most two 
values. The results have applications in wavelet’s theory. 

I have given a new proof for the fact that the string ( ) 1k k
w

≥
 of Walsh’s 

functions is a Hillbert base in ( )2 0,1L . 
In this article I offered a rather more simple proof than the one in paper 

[1]. 
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