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ON 7-PRIME IDEALS

Esra SENGELEN SEvIM! and Suat Koc?

In this article, we introduce an intermediate classes of ideals between
prime and quasi primary ideals, denoted by N-prime, and we focus on some prop-
erties of M-prime ideals. Moreover, we defined a topology on the set of all N-prime
ideals such that we examine the topological concepts, irreducibility, connectedness,
and seperation azxioms.
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1. Introduction

Throughout this study, all rings will be commutative with 1 # 0. Let R denote
such a ring. If P is an ideal of R, then the radical of P, /P, is defined to be

ﬁ::{aeR:anePforsomeneN}.

We denote the nilradical of R by M(R) instead of v/0. The concept of prime ideal
has a significant role in the theory of commutative algebra and algebraic geometry.
The properties of prime ideals in a special ring has been obtained in different articles,
see [3-4,6,9]. Recall from [2], a prime ideal P of R is a proper ideal if ab € P implies
a € Porb e P foreacha,b € R. A proper ideal @ of R is called primary if whenever
ab € @, then a € Q or b € \/Q , equivalently a € /Q or b € Q, [10]. Also a quasi
primary ideal @ of R is defined as a proper ideal whose radical is prime [7].

The main focus in this study (especially in Chapter 2) is to present an inter-
mediate classes of ideals between prime and quasi primary ideals, and to examine
its properties, called -prime ideals. We will define P is a 9-prime ideal of R to
be a proper ideal P satisfying the condition ab € P implies either a € P + N(R)
or b € P+ M(R). Among many results in Chapter 2, we give (in Corollary 2.2) a
number of results characterizing the -prime ideals of a given ring R. Also, we de-
termine all 91-prime ideals of cartesian products of rings. Recall the crucial theorem

n

of prime avodiance lemma. Suppose that I C UH- is a covering of prime ideals,
i=1
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all P;’s are prime ideals, then at least one of them contains I. We examine the
lemma for H-prime ideals. Moreover, we study the 91-prime ideals of fractional ring
S~'R. And we characterize the 91-prime homogeneous ideals of idealization of a
unital R-module M. A ring (not necessarily commutative) R is called a UN-ring
if every nonunit element of R is a product of a unit and nilpotent element, [5]. We
characterize all U N-rings by means of l-prime ideals. We support each results with
examples.

In Chapter 3, we construct a topology on 9spec(R), where Dspec(R) denotes
the set of all M-prime ideals of R while Spec(R) denotes the set of all prime ideals
of R. We show that the topological spaces of Spec(R) and Jlspec(R) are different.
Moreover, we obtained some topological properties of Mspec(R), and we support the
results with some examples.

2. M-prime Ideals in Commutative Rings

Definition 2.1. A proper ideal P of R is called a N-prime ideal if ab € P, for each
a,b € R, then either a € P+ N(R) or b e P+ N(R).

Example 2.1. (i) In a reduced ring; prime and N-prime ideals coincide. In par-
ticular, in any domain or von Neumann regular ring, all YN-prime ideals are exactly
prime ideals.
(i) Let (R, M) be a quasi-local with nil maximal ideal, i.e, M = N(R). If P is
a proper ideal of R and ab € P for a,b € R, then a € P +N(R) or b € P+ MN(R).
Thus every proper ideal is N-prime ideal in a quasi local ring with nil maximal.
(iii) Consider the quotient ring

R = F[X,Y]/(X?),
where F is a field, and the ideal
P= (X2 XY, Y% /(X?).
Note that W(R) = (z) and P +N(R) = (x,9?), where
=X+ (X% andy =Y + (X?).
Since y*> € P and y ¢ P+ N(R), P is not a N-prime ideal of R.

Fact 2.1. (i) Assume that P+ N(R) is a prime ideal of R. Then it is easily seen
that P is a M-prime ideal: if ab € P C P+N(R), then it follows that a € P+ 9(R)
orbe P+ N(R).

(ii) Since prime ideals contain the nilradical, every prime ideal is also a N-
prime ideal. However, the converse is not hold. For instance, consider the ring
Z3e and the ideal P = (4). It is clear that P is not a prime ideal. In addition,
P +MN(Zsg) = (2) is prime, then by (i), P is a N-prime ideal of Zsg.

(ii3) If P is a N-prime ideal of R and N(R) C P, then P is a prime ideal of
R.

The following explicit result is easily obtained from Fact 2.1.
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Corollary 2.1. A proper ideal P of a ring R is prime if and only if P is N-prime
and N(R) C P.

The following examples show the differences between primary ideals and 91-
prime ideals.

Example 2.2. (i) Assume that R is a PID and 0 # p is an irreducible element. It
is obvious that (p") is a primary ideal for n > 1 but it is not a N-prime ideal.
(i) Let R =7g[X,Y] and

v Zs[ X, Y] = Zo| X, Y]
be homomorphism defined by

¥(90(X)+g1(X)Y +g2(X)Y 4490 (X)Y™) = g0(X) 491 (X)Y +92(X)Y 290 (X)YT,
where m is a polynomial obtained by taking the coefficient of g;(X) in modulo
2. Note that
Ker(y) =N(R) = 273X, Y]
and 1 is an epimorphism. Thus
Zg[ X, Y]/MN(R) = Zs]X,Y]

is an integral domain, so that M(R) is a prime ideal. Now, take P = (4XY) C
N(R). Since P+ N(R) = N(R) is a prime ideal, by Fact 2.1, P is a N-prime ideal.
However, P is not a primary ideal

Y(4X)=4XY € P, 4X ¢ P andY" ¢ P for alln € N.

Proposition 2.1. For any proper ideal P of R, the followings are satisfied:
(i) VP = P +N(R) if P is a N-prime ideal.
(ii) \/P is a prime ideal if P is a M-prime ideal.

Proof. (i) : P+9(R) C v/P always holds. To show VP C P+M(R), take a € v/ P,
then a” = a.a...a € P for some n € N. Since P is a 9l-prime ideal, we obtain
a € P+N(R).

(ii) : Assume that P is a -prime ideal of R and ab € v/P. So a™b" € P for
some n € N, then a™ € P4+ M(R) = v/P or b" € /P by (i). Hence, a € VP or
beVP. O

It follows that every 9-prime ideal is also a quasi primary ideal. However, a
quasi primary ideal is not necessarily a 91-prime ideal.

Example 2.3. Consider the subring
R={ag+ a1 X + ...+ a, X" :ay is a multiple of 3 } C Z[X]

and the ideal Q = (9X?,3X3, X4, X5 X6) of R. Note that \/Q = (3X, X2, X3) and
R/\/Q = Z is an integral domain. Then Q is a quasi primary ideal, M(R) =0 and
Q+N(R)=Q. Since 9X2 € Q but 9¢ Q +N(R) and X% ¢ Q + N(R), therefore,
Q is not a M-prime ideal of R.
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The following figure states the relations between Di-prime ideals and other
classical ideals

RN-prime ideals

Prime ideals

Quasi primary
ideals

Primary ideals

FIGURE 1. M-prime ideal

Corollary 2.2. For any proper ideal P of R, the followings are equivalent:
(i) P is a N-prime ideal;
(ii) P +N(R) is a prime ideal of R;
(iii) IJ C P implies that either

ICP+NR) orJ CP+NR)

for ideals I,J of R;
(iv) (P+MN(R):a) =P +MN(R) for every a ¢ P+ N(R);
(v) R/(P 4+ N(R)) is an integral domain.

Let Rj, Ry be two rings (not necessarily the same), then R = R; x Ry becomes
a commutative ring under componentwise addition and multiplication. In addition,
every ideal P of R has the form P; x P», where P; is an ideal of R; for i =1, 2.

Proposition 2.2. Let R = R X R, and P = P} X Ps, where P; is an ideal of R; for
1 =1,2. Then the followings are equivalent:

(i) P is a M-prime ideal of R.

(ii) Py is a M-prime ideal of Ry and Py = Ry or P = Ry and Py is a M-prime
ideal of Ro.

Proof. (i) = (i) : P is a 9-prime ideal of R, by Proposition 2.1, v'P = /P x /P,
is a prime ideal, so that either P, = Ry or P» = Ry. Let P, = R;. To prove P is a
NM-prime ideal of Ry, let ab e Py , a,b € R,.

(0,a)(0,b) = (0,ad) € P,
implies

(0,a) € P+ MN(R) or (0,b) € P+ N(R).
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Hence,
N(R) = N(R1) x N(R2)
and
P+ N(R)= (P +N(R1)) X (Pa+N(Re2)) = Ry x (P + N(R2)).
Soa € Py +M(Ry) or b e Py +N(Ry).
(7i) = (i) : Assume that P = P; X Ry, where P; is a 91-prime ideal of R;. Then
by Corollary 2.2, R;/(P1 + 9(Ry)), and

R/(P+N(R)) = Ri/(P1+N(Ry))
is an integral domain. Consequently, P is a 91-prime ideal. O

Theorem 2.1. Let Ry, Ro, ..., R, be rings, where n > 2, and
P=P X P, x..xPF,,

where P; is an ideal of R;, 1 <1i < n. Then the followings are equivalent:

(i) P is a N-prime ideal of R.

(it) Pj is a N-prime ideal of R; for some j € {1,2,...,n} and P; = R; for
every i # j.
Proof. We use induction on n. By Proposition 2.2, the claim is true if n = 2. Assume
that the claim is true for each k <n—1andlet k =n. Put P = Py x Py x ... x P,_1,
and R = Ry X Ry X ... x R,,_1, by Proposition 2.2, P = P’ x P, is a M-prime ideal of
R =R x R, if and only if P’ is a M-prime ideal of R’ and P, = R, or P’ = R and
P, is a M-prime ideal of R,. The rest follows from induction hypothesis. ]

n

Corollary 2.3. Suppose that I C UR where P; (i = 1,...,n) is a N-prime ideal.
i=1

Then I C P; +MN(R) for some 1 <i < n.

Proof. Since P; (i = 1,...,n) is a M-prime ideal of R, by Corollary 2.2, P; + M(R) is
a prime ideal for 1 <+ < n. Note that
rcJrcyJm+9n(ry),
i=1 i=1
by prime avodiance lemma, we have I C P; +9(R) for some 1 <i < n. O

Theorem 2.2. Assume f : R — S is an epimorphism and Ker(f) C P is a MN-prime
ideal. Then f(P) is a MN-prime ideal of S.

Proof. Let P be a 9-prime ideal of R such that Ker(f) C P. Let yz € f(P) for
y,z € S. Since f is an epimorphism, y = f(x) and z = f(t) for some x,t € R. Then
yz = f(xt) € f(P), xt € P. This yields

xeP+MR)orte P+MNR),
and so, y € f(P+M(R)) or z € f(P+MN(R)). Since
f(P+0N(R)) € f(P) +N(S)
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we obtain y € f(P) +N(S) or z € f(P) + N(S5). O

Corollary 2.4. If P is a M-prime ideal of R that contains an ideal I, then P/I is
a N-prime ideal of R/I.

Proposition 2.3. For any proper ideal P of R, the followings are satisfied:
(i) If (P, X) is a N-prime ideal of R[X|, then P is a M-prime ideal of R.
(ii) If P is a M-prime ideal of R, then P[X] is a N-prime ideal of R[X].

Proof. (i) : Consider the homomorphism v : R[X]| — R defined by

P(f(X)) = f(0).
Notice that Ker(¢) = (X) € (P,X) and v is an epimorphism. As (P, X) is a
N-prime ideal of R[X], by Theorem 2.2, ¢)((P, X)) = P is a M-prime ideal of R.
(73) : Let P be a 9M-prime ideal of R. By Corollary 2.2, R/(P + 91(R)) is an
integral domain, and so is (R/(P + 9(R)))[X] = R[X]/(P[X] + N(R[X])) . O

S~!R denotes the fractional ring of R at a multiplicatively closed subset S of
R. If I is an ideal of R, then S™'I = I® = {¢ : s € S,a € I} is an ideal of
S~!R. Furthermore, for an ideal I of R, the set {a € R : ra € I for some r € R—1I}
is denoted by Z(I).

Proposition 2.4. Let P be a proper ideal of R and S be a multiplicatively closed
subset of R with SN P = (. Then the followings are satisfied:

(i) If P is a M-prime ideal of R, then S™'P is a M-prime ideal of S™'R.

(ii) If STLP is a M-prime ideal of ST R with SN Z(P+MN(R)) = 0, then P is
a N-prime ideal of R.

Proof. (i) : Let %% = ‘;—i’ € S7'P for a,b € R;s,t € S. Then uab € P for some
u € S. Since P is a 9-prime ideal of R, ua € P+ MN(R) or b € P+ N(R). Hence

¢ =1 g-1(P+NR)) or & eSTHP+NR)). Also,
STHP+MNR)=5"P+NSIR)
holds.
(73) : Let ab € P for a,b € R. Then %% €S 'Pand 2 € ST'P+M(ST!R) or
b e S71P+M(S7IR). Assume that ¢ € STIP+N(STIR) = S~1(P +MN(R)). Then
ua € P+N(R) for some u € S. Since SNZ(P+MN(R)) = 0, we have a € P+N(R). If
% € STIP+M(S7IR), b€ P+ M(R). Hence P is a M-prime ideal of R. O

Let M be a unital R-module, and R®& M = {(a,m) : a € R,m € M}. Then
R & M, idealization of an R-module M, is a commutative ring with componentwise
addition and the multiplication, [8]:

(a,mq)(b,ma) = (ab,amgy + bmy).

If P is an ideal of R and NV is a submodule of M, then P& N is an ideal of R M if
and only if PM C N. Then P & N is called a homogeneous ideal. In [1], it was
shown that (R & M) = MN(R) & M, and then all prime ideals P of R & M are of
the form P = P; ® M, where P; is a prime ideal of R.
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Theorem 2.3. Let M be an R-module. Assume that P is an ideal of R and N is
a submodule of M such that PM C N. Then P ® N is a N-prime ideal of R® M if
and only if P is a M-prime ideal of R.

Proof. Let P @ N be a 9-prime ideal of R @ M, and let ab € P for a,b € R. Then
(a,0n7)(b,0nr) = (ab,0p7) € P @ N.
This implies
(a,0p1) EPON+N(R®M) or (b,0p;) e PEN +N(RDM).

Thus a € P+9(R) or b € P+N(R). Suppose that P is a N-prime ideal of R. Then
by Corollary 2.2, R/(P + 91(R)) is an integral domain, and so

RoM/(Po>N+NRoM))= R/(P+MNR))
is an integral domain. Thus P @& N is a 9M-prime ideal of R & M. U

Theorem 2.4. Let R be a ring, then the followings are equivalent:
(i) Every ideal P of R is a M-prime ideal;
(i) Every element a of R is either nilpotent or unit;
(iii) R is a quasi-local ring with (nil maximal) N(R);
(iv) R is a UN -ring.

Proof. (i) = (i7) : Assume that all ideal P of R is a M-prime ideal of R. Since
(0) is a M-prime ideal of R, by Corollary 2.2, (0) +D(R) = N(R) is a prime ideal of
R. Let a be a nonunit element of R. Then by (i), (a?) is a M-prime ideal of R. Since
(a).(a) C (a?), we get that (a) C (a®) + N(R) by Corollary 2.2. So a = a’zx + y for
some z € R,y € M(R). Thus we conculde that a — a?x = a(l — az) =y € N(R). As
M(R) is a prime ideal, we have a € M(R) or 1 — ax € N(R). Assume that 1 — az
is nilpotent, then 1 — (1 — ax) = ax is a unit and hence a is a unit which is a
contradiction.

(73) = (417) : It is clear.

(791) < (iv) : It follows from [5, Proposition 2].

(731) = (i) : Assume that R is a quasi-local ring with nil maximal ideal. Let
P be a proper ideal of R. Then by assumption P C 9(R), and so P+9(R) = N(R) is
a prime ideal. By Corollary 2.2, P is a 9i-prime ideal of R. U

3. J-prime Spectrum of a Commutative Ring

In this section, our aim is to construct a topology on the set of all Hi-prime
ideals of a ring R. We denote this set by Dspec(9R). We examine the relations between
topological properties of Mspec(PR) and algebraic properties of R. First we define a
variety of a subset £ C R by

V*(E) := {P € Nspec(R) : E C VP}.
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Proposition 3.1. Let R be a ring and E C R. Then the followings are satisfied:
(i) If I is an ideal generated by the set E C R, then V*(E) = V*(I) = V*(V/I).
(ii) V*(0) = Nspec(R), V*(R) = 0.
(iii) For each family of subsets {E;}ica of R, V(U Ei) = () V*(E;).
) €A

1EA 1€
(iv) For each ideals I,J of R, V*(I)UV*(J)=V*(INJ)=V*1J).

Proof. (i) and (it) clear.
(i) -
N V*(E;) = {P € Nspec(R) : E; C VP for every i € A}
1EA
= {P e Nspec(R) : J E; € VP}

1EA
=V*(U Ey).
1EA
(tv) : Since IJ CINJ CI,J, V¥I)UuV*(J)CV*(InNJ)CV*IJ).
For the converse, take P € V*(I.J). Then IJ C V/P. Morover /P is a prime
ideal, and thus either I C /P or J C v/P. Hence P € V*(I) U V*(J). O

As a consequence of Proposition 3.1, if we assign open sets O*(E) = Mspec(R)—
V*(E), then the family {O*(E) : E C R} satisfies all conditions of being a topology
on MNspec(R). We define this topology as IM-prime spectrum of R, and denote it by
(o, Mspec(R)) or briefly Ispec(R). We know that zariski topology of a ring R is
always a Tp-space. However 9spec(R) is not necessarily to be a Ty-space.

Example 3.1. Consider the ring Z,» of integers modulo p", where p is a prime
number. it is a quasi-local ring with mazimal ideal W(Zyn) = (p). By Theorem 2.4,
every proper ideal P = <pk> is a N-prime ideal of Zyn, where 1 < k < n. Moreover

Spec(Zy) = ()}, Mopec(Zyn) = {(p') 1< £ < n}.
Then, for any ideal P = (p*) of ZLipn, variety of P on prime spectrum and N-
prime spectrum are obtained V(P) = Spec(Zpyn) and V*(P) = Nspec(Zyn) re-
spectively. Thus all closed subset of I-prime spectrum of Zpn is either empty or
Nspec(Zyn). Now, take singletons {(p*)} # {(p')}, where 1 < t # k < n. Note
that all closed subset of Mspec(Zyn) containing {(p*)} also contains {(p')}. Hence
Nspec(Zyn) is not a To-space.

Proposition 3.2. Let R be a ring, and X, = X —=V*(r), where X = DNspec(R). Then
{X, :r € R} forms a base for M-prime spectrum of R.

Proof. Let O be an open set. Then we have O = X — V*(FE) for some E C R. Then
we have

O=X-V*E)=X—V* LEJE{T})

—X - NV = UE V()= UX.

rek rek rek
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Proposition 3.3. Let R be a ring, and X, = X — V*(r), where X = MNspec(R).
(i) For anyr,s € R, X, = X, N Xs.
(i) X, = 0 iff r is a nilpotent in R.
(i) X, = X iff r is a unit in R.
(iv) X = X, iff /T) = \/To).
(v) X, is quasi-compact.
(vi) X is quasi compact.

Proof. (i) : Let P € X, N X, for P € Mspec(R). Then r ¢ VP and s ¢ v/P. Since
VP is a prime ideal, we get rs ¢ /P, that is, P € X,,.

Conversely; let P € X, 5. Then rs ¢ VP implies r ¢ \/]3, and s ¢ V/P. This
yields P € X, N X,.

(i4) : Suppose that X, = (), that is, V*(r) = DNspec(R). Since every prime

ideal is a M-prime, r € (| P = MN(R), r is a nilpotent in R. Conversely, let
PeSpec(R)
r € M(R) and P € Nspec(R). Then by Proposition 2.1,

reN(R) C P+NR)=VP

for any P € Dspec(R), hence P € V*(r). Therefore, V*(r) = Nspec(R).

(i7) : Suppose that X, = X, that is, V*(r) = (. Since every maximal ideal is
also a 9l-prime ideal, r is not in any maximal ideal, so that r is unit. The converse
is clear.

(tv) : Suppose that X, = X, that is, V*(r) = V*(s). As every prime ideal of
R is a Y-prime ideal and V*(r) = V*(s), for any P € Spec(R),

(r)y CP<(s) CP.

So /7T = v/

Conversely, let \/ = /(s). Assume that P € V*(r). Then we have (r)

-

VP, and so (s) C \/(s) = \/(r) € V/P. Therefore P € V*(s), so that V*(r) C
V*(s). Similarly V*(s) C V*(r).

(v) : Suppose that X, C (J O; is an open covering. Since {X, : r € R} forms

1EA
a base for Nspec(R), we may assume that O; = X,,. Then X, C |J X,,, and so
1€EA
X-V*r)C UX-V*m)=X— NV*(r;) =X —V*(U {r:}). Hence
€A 1EA 1EA

V(U {ri}) € Vi(r),

ieA
and

Vi< (U ).

[ISTAN
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Then we have ™ € (|J {r;}) for some n € N, and so 7" = ayr1 + ... + a7, for some
€A
n

ai,ag, ...,an € R. It follows that ™ € (|J {r;}) which implies
i=1

V0D SV = Vi),
so that
X, € X =VH(U{r}) = UX,.
i=1 i=1
(vi) : Take r = 1, and apply to (v). O

Note that a topological space X is called irreducible if it can not be expressed
as X = I} U Fy, where F1, F> are nonempty proper closed subsets of X.

Proposition 3.4. Let R be a ring. The followings are equivalent:
(i) Nspec(R) is an irreducible topological space.
(i) R/M(R) is an integral domain.

Proof. (i) = (i7) : Assume that Dspec(R) is an irreducible topological space. Let
I1J CN(R) for ideals I, J of R. It is clear that

VH(IJ) = V() UV*(J) = V*(NU(R)) = Nspec(R).

Then by (i), V*(I) = Nspec(R) or V*(J) = Nspec(R). This implies I C JN(R) or
J CN(R), that is, N(R) is a prime ideal of R.

(13) = (i) : Since R/M(R) is an integral domain, M(R) is a prime ideal
of R. Suppose that V*(I) U V*(J) = Nspec(R). Then V*(IJ) = Nspec(R), and
IJ C M(R). Therfore I C N(R) or J C N(R), that is, V*(I) = Nspec(R) or
V*(J) = MNspec(R). Consequently, Nspec(R) is an irreducible space. O

Lemma 3.1. Let R be a ring, and I,J be ideals of R.
(i) V*(I) = V*(J) if and only if I =~/J for ideals I, J of R.
(ii) If P € Nspec(R), then V*(P) = CI(P).

Proof. (i) : It is clear.

(73) : Note that P € V*(P). Take any closed set V*(.J) containing P, then
J C V/P. For every ideal Q € V*(P), P C /@, and so J C v P C /Q, Therfore
V*(P) is the smallest closed subset of 9spec(R) that contains P. O

By example 3.1, -prime spectrum of a ring R is not necessarily be a Tp-
space. The following theorem gives the necessary and sufficient condition for 91-
prime spectrum to be a Ty-space.

Theorem 3.1. Let R be a ring. Then every IN-prime ideal is also a prime ideal of
R if and only if Nspec(R) is a Ty-space.

Proof. Suppose that every -prime ideal of R is also a prime ideal. To prove that
MNspec(R) is a Tp-space, let CI(P) = Cl(Q) for some P,Q € Nspec(R). By Lemma
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3.1, V¥(Q) = V*(P) and so v/Q = v/P. Then by the hypothesis, P = Q. Conversely,
let DMspec(R) is a Tp-space, and P € Nspec(R). Then, clearly

Cl(P) = V*(P) = V*(V/P) = CI(VP).
Thus P = /P is a prime ideal by the hypothesis and Proposition 2.1. O

Theorem 3.2. Let R be a ring. The followings are equivalent:
(i) Every N-prime ideal of R is maximal;
(ii) Nspec(R) is a Th-space;
(iii) Nspec(R) is a Ty -space.

Proof. (i) = (ii) : Suppose that every M-prime ideal of R is maximal, then it is
prime. Hence Spec(R) and NMspec(R) coincide. Since every prime ideal is maximal,
Nspec(R) = Spec(R) is a Tr-space.

(7i) = (7i7) : It is clear.

(13t) = (i) : Assume that Dlspec(R) is a Ti-space and P € spec(R). By
Lemma 3.1 and the hypothesis,

CI(P) = V*(P) = {P} = {VP} = V*(VP).
This implies P is a maximal ideal. O

A topological space X is a connected space if it can not be express as a union
of two nonempty proper disjoint closed subset of X.

Theorem 3.3. The followings are equivalent for any ring R :
(i) R has no proper idempotent, that is, the idempotents are 0 and 1.
(ii) MNspec(R) is a connected space.

Proof. (i) = (ii) : Assume that the only idempotents in R are 0 and 1. Suppose
that V*(I) U V*(J) = Mspec(R) and V*(I) N V*(J) = 0 for ideals I, J of R. Then
I+J =R and IJ C M(R) which implies a + b = 1 and (ab)* = 0 for some
acl,beJand k eN.
Note that (a)* + (b)* = R and {(a)¥(b)* = 0, by Chinese Remainder Theorem, we
get R = R/(a)* x R/(b)*. Since R has no proper idempotent, either R/(a)* =0 or
R/(b)* = 0, that is, a is a unit or b is a unit. Hence V*(I) = 0 or V*(J) =
(). Consequently, Dspec(R) is a connected space.

(74) = (i) : Suppose that DNspec(R) is a connected space and e is an idempotent
of R. Then e(1 —e) =0 € N(R), and

V*({e)) UV ((1 —e)) = Nspec(R) and V*((e)) NV*((1 —¢)) = 0.

Since MNspec(R) is a connected space, either V*((e)) = Nspec(R) or V*((e)) = 0. This
implies either e is a nilpotent element or a unit element, that is, e =0ore=1. [
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