

ON \mathfrak{N} -PRIME IDEALSEsra SENGELEN SEVİM¹ and Suat KOC²

In this article, we introduce an intermediate classes of ideals between prime and quasi primary ideals, denoted by \mathfrak{N} -prime, and we focus on some properties of \mathfrak{N} -prime ideals. Moreover, we defined a topology on the set of all \mathfrak{N} -prime ideals such that we examine the topological concepts, irreducibility, connectedness, and separation axioms.

Keywords: prime ideals, prime spectrum, \mathfrak{N} -prime Ideals, \mathfrak{N} -prime spectrum.

MSC2010: 13A15, 13F99.

1. Introduction

Throughout this study, all rings will be commutative with $1 \neq 0$. Let R denote such a ring. If P is an ideal of R , then the radical of P , \sqrt{P} , is defined to be

$$\sqrt{P} := \left\{ a \in R : a^n \in P \text{ for some } n \in \mathbb{N} \right\}.$$

We denote the nilradical of R by $\mathfrak{N}(R)$ instead of $\sqrt{0}$. The concept of prime ideal has a significant role in the theory of commutative algebra and algebraic geometry. The properties of prime ideals in a special ring has been obtained in different articles, see [3-4,6,9]. Recall from [2], a prime ideal P of R is a proper ideal if $ab \in P$ implies $a \in P$ or $b \in P$ for each $a, b \in R$. A proper ideal Q of R is called primary if whenever $ab \in Q$, then $a \in Q$ or $b \in \sqrt{Q}$, equivalently $a \in \sqrt{Q}$ or $b \in Q$, [10]. Also a quasi primary ideal Q of R is defined as a proper ideal whose radical is prime [7].

The main focus in this study (especially in Chapter 2) is to present an intermediate classes of ideals between prime and quasi primary ideals, and to examine its properties, called \mathfrak{N} -prime ideals. We will define P is a \mathfrak{N} -prime ideal of R to be a proper ideal P satisfying the condition $ab \in P$ implies either $a \in P + \mathfrak{N}(R)$ or $b \in P + \mathfrak{N}(R)$. Among many results in Chapter 2, we give (in Corollary 2.2) a number of results characterizing the \mathfrak{N} -prime ideals of a given ring R . Also, we determine all \mathfrak{N} -prime ideals of cartesian products of rings. Recall the crucial theorem of prime avoidance lemma. Suppose that $I \subseteq \bigcup_{i=1}^n P_i$ is a covering of prime ideals,

¹Department of Mathematics, Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Istanbul, Turkey, E-mail: esra.sengelen@bilgi.edu.tr

²Department of Mathematics, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey, e-mail: suat.koc@marmara.edu.tr

all P_i 's are prime ideals, then at least one of them contains I . We examine the lemma for \mathfrak{N} -prime ideals. Moreover, we study the \mathfrak{N} -prime ideals of fractional ring $S^{-1}R$. And we characterize the \mathfrak{N} -prime homogeneous ideals of idealization of a unital R -module M . A ring (not necessarily commutative) R is called a UN -ring if every nonunit element of R is a product of a unit and nilpotent element, [5]. We characterize all UN -rings by means of \mathfrak{N} -prime ideals. We support each results with examples.

In Chapter 3, we construct a topology on $\mathfrak{N}\text{spec}(\mathfrak{R})$, where $\mathfrak{N}\text{spec}(\mathfrak{R})$ denotes the set of all \mathfrak{N} -prime ideals of R while $\text{Spec}(R)$ denotes the set of all prime ideals of R . We show that the topological spaces of $\text{Spec}(R)$ and $\mathfrak{N}\text{spec}(\mathfrak{R})$ are different. Moreover, we obtained some topological properties of $\mathfrak{N}\text{spec}(\mathfrak{R})$, and we support the results with some examples.

2. \mathfrak{N} -prime Ideals in Commutative Rings

Definition 2.1. A proper ideal P of R is called a \mathfrak{N} -prime ideal if $ab \in P$, for each $a, b \in R$, then either $a \in P + \mathfrak{N}(R)$ or $b \in P + \mathfrak{N}(R)$.

Example 2.1. (i) In a reduced ring; prime and \mathfrak{N} -prime ideals coincide. In particular, in any domain or von Neumann regular ring, all \mathfrak{N} -prime ideals are exactly prime ideals.

(ii) Let (R, M) be a quasi-local with nil maximal ideal, i.e., $M = \mathfrak{N}(R)$. If P is a proper ideal of R and $ab \in P$ for $a, b \in R$, then $a \in P + \mathfrak{N}(R)$ or $b \in P + \mathfrak{N}(R)$. Thus every proper ideal is \mathfrak{N} -prime ideal in a quasi local ring with nil maximal.

(iii) Consider the quotient ring

$$R = F[X, Y]/\langle X^2 \rangle,$$

where F is a field, and the ideal

$$P = \langle X^2, XY, Y^2 \rangle / \langle X^2 \rangle.$$

Note that $\mathfrak{N}(R) = \langle x \rangle$ and $P + \mathfrak{N}(R) = \langle x, y^2 \rangle$, where

$$x = X + \langle X^2 \rangle \text{ and } y = Y + \langle X^2 \rangle.$$

Since $y^2 \in P$ and $y \notin P + \mathfrak{N}(R)$, P is not a \mathfrak{N} -prime ideal of R .

Fact 2.1. (i) Assume that $P + \mathfrak{N}(R)$ is a prime ideal of R . Then it is easily seen that P is a \mathfrak{N} -prime ideal: if $ab \in P \subseteq P + \mathfrak{N}(R)$, then it follows that $a \in P + \mathfrak{N}(R)$ or $b \in P + \mathfrak{N}(R)$.

(ii) Since prime ideals contain the nilradical, every prime ideal is also a \mathfrak{N} -prime ideal. However, the converse is not hold. For instance, consider the ring \mathbb{Z}_{36} and the ideal $P = \langle \bar{4} \rangle$. It is clear that P is not a prime ideal. In addition, $P + \mathfrak{N}(\mathbb{Z}_{36}) = \langle \bar{2} \rangle$ is prime, then by (i), P is a \mathfrak{N} -prime ideal of \mathbb{Z}_{36} .

(iii) If P is a \mathfrak{N} -prime ideal of R and $\mathfrak{N}(R) \subseteq P$, then P is a prime ideal of R .

The following explicit result is easily obtained from Fact 2.1.

Corollary 2.1. *A proper ideal P of a ring R is prime if and only if P is \mathfrak{N} -prime and $\mathfrak{N}(R) \subseteq P$.*

The following examples show the differences between primary ideals and \mathfrak{N} -prime ideals.

Example 2.2. (i) *Assume that R is a PID and $0 \neq p$ is an irreducible element. It is obvious that $\langle p^n \rangle$ is a primary ideal for $n > 1$ but it is not a \mathfrak{N} -prime ideal.*

(ii) *Let $R = \mathbb{Z}_8[X, Y]$ and*

$$\psi : \mathbb{Z}_8[X, Y] \rightarrow \mathbb{Z}_2[X, Y]$$

be homomorphism defined by

$\psi(g_0(X) + g_1(X)Y + g_2(X)Y^2 + \dots + g_n(X)Y^n) = \overline{g_0(X)} + \overline{g_1(X)}Y + \overline{g_2(X)}Y^2 + \dots + \overline{g_n(X)}Y^n$,
where $\overline{g_i(X)}$ is a polynomial obtained by taking the coefficient of $g_i(X)$ in modulo 2. Note that

$$Ker(\psi) = \mathfrak{N}(R) = \overline{2}\mathbb{Z}_8[X, Y]$$

and ψ is an epimorphism. Thus

$$\mathbb{Z}_8[X, Y]/\mathfrak{N}(R) \cong \mathbb{Z}_2[X, Y]$$

is an integral domain, so that $\mathfrak{N}(R)$ is a prime ideal. Now, take $P = \langle \overline{4}XY \rangle \subseteq \mathfrak{N}(R)$. Since $P + \mathfrak{N}(R) = \mathfrak{N}(R)$ is a prime ideal, by Fact 2.1, P is a \mathfrak{N} -prime ideal. However, P is not a primary ideal

$$Y(\overline{4}X) = \overline{4}XY \in P, \overline{4}X \notin P \text{ and } Y^n \notin P \text{ for all } n \in \mathbb{N}.$$

Proposition 2.1. *For any proper ideal P of R , the followings are satisfied:*

- (i) $\sqrt{P} = P + \mathfrak{N}(R)$ if P is a \mathfrak{N} -prime ideal.
- (ii) \sqrt{P} is a prime ideal if P is a \mathfrak{N} -prime ideal.

Proof. (i) : $P + \mathfrak{N}(R) \subseteq \sqrt{P}$ always holds. To show $\sqrt{P} \subseteq P + \mathfrak{N}(R)$, take $a \in \sqrt{P}$, then $a^n = a \cdot a \dots a \in P$ for some $n \in \mathbb{N}$. Since P is a \mathfrak{N} -prime ideal, we obtain $a \in P + \mathfrak{N}(R)$.

(ii) : Assume that P is a \mathfrak{N} -prime ideal of R and $ab \in \sqrt{P}$. So $a^n b^n \in P$ for some $n \in \mathbb{N}$, then $a^n \in P + \mathfrak{N}(R) = \sqrt{P}$ or $b^n \in \sqrt{P}$ by (i). Hence, $a \in \sqrt{P}$ or $b \in \sqrt{P}$. \square

It follows that every \mathfrak{N} -prime ideal is also a quasi primary ideal. However, a quasi primary ideal is not necessarily a \mathfrak{N} -prime ideal.

Example 2.3. *Consider the subring*

$$R = \{a_0 + a_1X + \dots + a_nX^n : a_1 \text{ is a multiple of 3}\} \subseteq \mathbb{Z}[X]$$

and the ideal $Q = \langle 9X^2, 3X^3, X^4, X^5, X^6 \rangle$ of R . Note that $\sqrt{Q} = \langle 3X, X^2, X^3 \rangle$ and $R/\sqrt{Q} \cong \mathbb{Z}$ is an integral domain. Then Q is a quasi primary ideal, $\mathfrak{N}(R) = 0$ and $Q + \mathfrak{N}(R) = Q$. Since $9X^2 \in Q$ but $9 \notin Q + \mathfrak{N}(R)$ and $X^2 \notin Q + \mathfrak{N}(R)$, therefore, Q is not a \mathfrak{N} -prime ideal of R .

The following figure states the relations between \mathfrak{N} -prime ideals and other classical ideals

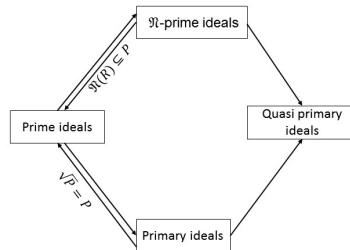


FIGURE 1. \mathfrak{N} -prime ideal

Corollary 2.2. *For any proper ideal P of R , the followings are equivalent:*

- (i) P is a \mathfrak{N} -prime ideal;
- (ii) $P + \mathfrak{N}(R)$ is a prime ideal of R ;
- (iii) $IJ \subseteq P$ implies that either

$$I \subseteq P + \mathfrak{N}(R) \text{ or } J \subseteq P + \mathfrak{N}(R)$$

for ideals I, J of R ;

- (iv) $(P + \mathfrak{N}(R)) : a = P + \mathfrak{N}(R)$ for every $a \notin P + \mathfrak{N}(R)$;
- (v) $R/(P + \mathfrak{N}(R))$ is an integral domain.

Let R_1, R_2 be two rings (not necessarily the same), then $R = R_1 \times R_2$ becomes a commutative ring under componentwise addition and multiplication. In addition, every ideal P of R has the form $P_1 \times P_2$, where P_i is an ideal of R_i for $i = 1, 2$.

Proposition 2.2. *Let $R = R_1 \times R_2$, and $P = P_1 \times P_2$, where P_i is an ideal of R_i for $i = 1, 2$. Then the followings are equivalent:*

- (i) P is a \mathfrak{N} -prime ideal of R .
- (ii) P_1 is a \mathfrak{N} -prime ideal of R_1 and $P_2 = R_2$ or $P_1 = R_1$ and P_2 is a \mathfrak{N} -prime ideal of R_2 .

Proof. (i) \Rightarrow (ii) : P is a \mathfrak{N} -prime ideal of R , by Proposition 2.1, $\sqrt{P} = \sqrt{P_1} \times \sqrt{P_2}$ is a prime ideal, so that either $P_1 = R_1$ or $P_2 = R_2$. Let $P_1 = R_1$. To prove P_2 is a \mathfrak{N} -prime ideal of R_2 , let $ab \in P_2$, $a, b \in R_2$.

$$(0, a)(0, b) = (0, ab) \in P,$$

implies

$$(0, a) \in P + \mathfrak{N}(R) \text{ or } (0, b) \in P + \mathfrak{N}(R).$$

Hence,

$$\mathfrak{N}(R) = \mathfrak{N}(R_1) \times \mathfrak{N}(R_2)$$

and

$$P + \mathfrak{N}(R) = (P_1 + \mathfrak{N}(R_1)) \times (P_2 + \mathfrak{N}(R_2)) = R_1 \times (P_2 + \mathfrak{N}(R_2)).$$

So $a \in P_2 + \mathfrak{N}(R_2)$ or $b \in P_2 + \mathfrak{N}(R_2)$.

(ii) \Rightarrow (i) : Assume that $P = P_1 \times R_2$, where P_1 is a \mathfrak{N} -prime ideal of R_1 . Then by Corollary 2.2, $R_1/(P_1 + \mathfrak{N}(R_1))$, and

$$R/(P + \mathfrak{N}(R)) \cong R_1/(P_1 + \mathfrak{N}(R_1))$$

is an integral domain. Consequently, P is a \mathfrak{N} -prime ideal. \square

Theorem 2.1. *Let R_1, R_2, \dots, R_n be rings, where $n \geq 2$, and*

$$P = P_1 \times P_2 \times \dots \times P_n,$$

where P_i is an ideal of R_i , $1 \leq i \leq n$. Then the followings are equivalent:

(i) P is a \mathfrak{N} -prime ideal of R .

(ii) P_j is a \mathfrak{N} -prime ideal of R_j for some $j \in \{1, 2, \dots, n\}$ and $P_i = R_i$ for every $i \neq j$.

Proof. We use induction on n . By Proposition 2.2, the claim is true if $n = 2$. Assume that the claim is true for each $k \leq n - 1$ and let $k = n$. Put $P' = P_1 \times P_2 \times \dots \times P_{n-1}$, and $R' = R_1 \times R_2 \times \dots \times R_{n-1}$, by Proposition 2.2, $P = P' \times P_n$ is a \mathfrak{N} -prime ideal of $R = R' \times R_n$ if and only if P' is a \mathfrak{N} -prime ideal of R' and $P_n = R_n$ or $P' = R'$ and P_n is a \mathfrak{N} -prime ideal of R_n . The rest follows from induction hypothesis. \square

Corollary 2.3. *Suppose that $I \subseteq \bigcup_{i=1}^n P_i$ where P_i ($i = 1, \dots, n$) is a \mathfrak{N} -prime ideal.*

Then $I \subseteq P_i + \mathfrak{N}(R)$ for some $1 \leq i \leq n$.

Proof. Since P_i ($i = 1, \dots, n$) is a \mathfrak{N} -prime ideal of R , by Corollary 2.2, $P_i + \mathfrak{N}(R)$ is a prime ideal for $1 \leq i \leq n$. Note that

$$I \subseteq \bigcup_{i=1}^n P_i \subseteq \bigcup_{i=1}^n (P_i + \mathfrak{N}(R)),$$

by prime avoidance lemma, we have $I \subseteq P_i + \mathfrak{N}(R)$ for some $1 \leq i \leq n$. \square

Theorem 2.2. *Assume $f : R \rightarrow S$ is an epimorphism and $\text{Ker}(f) \subseteq P$ is a \mathfrak{N} -prime ideal. Then $f(P)$ is a \mathfrak{N} -prime ideal of S .*

Proof. Let P be a \mathfrak{N} -prime ideal of R such that $\text{Ker}(f) \subseteq P$. Let $yz \in f(P)$ for $y, z \in S$. Since f is an epimorphism, $y = f(x)$ and $z = f(t)$ for some $x, t \in R$. Then $yz = f(xt) \in f(P)$, $xt \in P$. This yields

$$x \in P + \mathfrak{N}(R) \text{ or } t \in P + \mathfrak{N}(R),$$

and so, $y \in f(P + \mathfrak{N}(R))$ or $z \in f(P + \mathfrak{N}(R))$. Since

$$f(P + \mathfrak{N}(R)) \subseteq f(P) + \mathfrak{N}(S)$$

we obtain $y \in f(P) + \mathfrak{N}(S)$ or $z \in f(P) + \mathfrak{N}(S)$. \square

Corollary 2.4. *If P is a \mathfrak{N} -prime ideal of R that contains an ideal I , then P/I is a \mathfrak{N} -prime ideal of R/I .*

Proposition 2.3. *For any proper ideal P of R , the followings are satisfied:*

- (i) *If $\langle P, X \rangle$ is a \mathfrak{N} -prime ideal of $R[X]$, then P is a \mathfrak{N} -prime ideal of R .*
- (ii) *If P is a \mathfrak{N} -prime ideal of R , then $P[X]$ is a \mathfrak{N} -prime ideal of $R[X]$.*

Proof. (i) : Consider the homomorphism $\psi : R[X] \rightarrow R$ defined by

$$\psi(f(X)) = f(0).$$

Notice that $\text{Ker}(\psi) = \langle X \rangle \subseteq \langle P, X \rangle$ and ψ is an epimorphism. As $\langle P, X \rangle$ is a \mathfrak{N} -prime ideal of $R[X]$, by Theorem 2.2, $\psi(\langle P, X \rangle) = P$ is a \mathfrak{N} -prime ideal of R .

(ii) : Let P be a \mathfrak{N} -prime ideal of R . By Corollary 2.2, $R/(P + \mathfrak{N}(R))$ is an integral domain, and so is $(R/(P + \mathfrak{N}(R)))[X] \cong R[X]/(P[X] + \mathfrak{N}(R[X]))$. \square

$S^{-1}R$ denotes the fractional ring of R at a multiplicatively closed subset S of R . If I is an ideal of R , then $S^{-1}I = I^e = \{\frac{a}{s} : s \in S, a \in I\}$ is an ideal of $S^{-1}R$. Furthermore, for an ideal I of R , the set $\{a \in R : ra \in I \text{ for some } r \in R - I\}$ is denoted by $Z(I)$.

Proposition 2.4. *Let P be a proper ideal of R and S be a multiplicatively closed subset of R with $S \cap P = \emptyset$. Then the followings are satisfied:*

- (i) *If P is a \mathfrak{N} -prime ideal of R , then $S^{-1}P$ is a \mathfrak{N} -prime ideal of $S^{-1}R$.*
- (ii) *If $S^{-1}P$ is a \mathfrak{N} -prime ideal of $S^{-1}R$ with $S \cap Z(P + \mathfrak{N}(R)) = \emptyset$, then P is a \mathfrak{N} -prime ideal of R .*

Proof. (i) : Let $\frac{a}{s} \frac{b}{t} = \frac{ab}{st} \in S^{-1}P$ for $a, b \in R; s, t \in S$. Then $uab \in P$ for some $u \in S$. Since P is a \mathfrak{N} -prime ideal of R , $ua \in P + \mathfrak{N}(R)$ or $b \in P + \mathfrak{N}(R)$. Hence $\frac{a}{s} = \frac{ua}{us} \in S^{-1}(P + \mathfrak{N}(R))$ or $\frac{b}{t} \in S^{-1}(P + \mathfrak{N}(R))$. Also,

$$S^{-1}(P + \mathfrak{N}(R)) = S^{-1}P + \mathfrak{N}(S^{-1}R)$$

holds.

(ii) : Let $ab \in P$ for $a, b \in R$. Then $\frac{a}{1} \frac{b}{1} \in S^{-1}P$, and $\frac{a}{1} \in S^{-1}P + \mathfrak{N}(S^{-1}R)$ or $\frac{b}{1} \in S^{-1}P + \mathfrak{N}(S^{-1}R)$. Assume that $\frac{a}{1} \in S^{-1}P + \mathfrak{N}(S^{-1}R) = S^{-1}(P + \mathfrak{N}(R))$. Then $ua \in P + \mathfrak{N}(R)$ for some $u \in S$. Since $S \cap Z(P + \mathfrak{N}(R)) = \emptyset$, we have $a \in P + \mathfrak{N}(R)$. If $\frac{b}{1} \in S^{-1}P + \mathfrak{N}(S^{-1}R)$, $b \in P + \mathfrak{N}(R)$. Hence P is a \mathfrak{N} -prime ideal of R . \square

Let M be a unital R -module, and $R \oplus M = \{(a, m) : a \in R, m \in M\}$. Then $R \oplus M$, idealization of an R -module M , is a commutative ring with componentwise addition and the multiplication, [8]:

$$(a, m_1)(b, m_2) = (ab, am_2 + bm_1).$$

If P is an ideal of R and N is a submodule of M , then $P \oplus N$ is an ideal of $R \oplus M$ if and only if $PM \subseteq N$. Then $P \oplus N$ is called a homogeneous ideal. In [1], it was shown that $\mathfrak{N}(R \oplus M) = \mathfrak{N}(R) \oplus M$, and then all prime ideals P of $R \oplus M$ are of the form $P = P_1 \oplus M$, where P_1 is a prime ideal of R .

Theorem 2.3. *Let M be an R -module. Assume that P is an ideal of R and N is a submodule of M such that $PM \subseteq N$. Then $P \oplus N$ is a \mathfrak{N} -prime ideal of $R \oplus M$ if and only if P is a \mathfrak{N} -prime ideal of R .*

Proof. Let $P \oplus N$ be a \mathfrak{N} -prime ideal of $R \oplus M$, and let $ab \in P$ for $a, b \in R$. Then

$$(a, 0_M)(b, 0_M) = (ab, 0_M) \in P \oplus N.$$

This implies

$$(a, 0_M) \in P \oplus N + \mathfrak{N}(R \oplus M) \text{ or } (b, 0_M) \in P \oplus N + \mathfrak{N}(R \oplus M).$$

Thus $a \in P + \mathfrak{N}(R)$ or $b \in P + \mathfrak{N}(R)$. Suppose that P is a \mathfrak{N} -prime ideal of R . Then by Corollary 2.2, $R/(P + \mathfrak{N}(R))$ is an integral domain, and so

$$R \oplus M/(P \oplus N + \mathfrak{N}(R \oplus M)) \cong R/(P + \mathfrak{N}(R))$$

is an integral domain. Thus $P \oplus N$ is a \mathfrak{N} -prime ideal of $R \oplus M$. \square

Theorem 2.4. *Let R be a ring, then the followings are equivalent:*

- (i) *Every ideal P of R is a \mathfrak{N} -prime ideal;*
- (ii) *Every element a of R is either nilpotent or unit;*
- (iii) *R is a quasi-local ring with (nil maximal) $\mathfrak{N}(R)$;*
- (iv) *R is a UN-ring.*

Proof. (i) \Rightarrow (ii) : Assume that all ideal P of R is a \mathfrak{N} -prime ideal of R . Since $\langle 0 \rangle$ is a \mathfrak{N} -prime ideal of R , by Corollary 2.2, $\langle 0 \rangle + \mathfrak{N}(R) = \mathfrak{N}(R)$ is a prime ideal of R . Let a be a nonunit element of R . Then by (i), $\langle a^2 \rangle$ is a \mathfrak{N} -prime ideal of R . Since $\langle a \rangle \cdot \langle a \rangle \subseteq \langle a^2 \rangle$, we get that $\langle a \rangle \subseteq \langle a^2 \rangle + \mathfrak{N}(R)$ by Corollary 2.2. So $a = a^2x + y$ for some $x \in R$, $y \in \mathfrak{N}(R)$. Thus we conclude that $a - a^2x = a(1 - ax) = y \in \mathfrak{N}(R)$. As $\mathfrak{N}(R)$ is a prime ideal, we have $a \in \mathfrak{N}(R)$ or $1 - ax \in \mathfrak{N}(R)$. Assume that $1 - ax$ is nilpotent, then $1 - (1 - ax) = ax$ is a unit and hence a is a unit which is a contradiction.

(ii) \Rightarrow (iii) : It is clear.

(iii) \Leftrightarrow (iv) : It follows from [5, Proposition 2].

(iii) \Rightarrow (i) : Assume that R is a quasi-local ring with nil maximal ideal. Let P be a proper ideal of R . Then by assumption $P \subseteq \mathfrak{N}(R)$, and so $P + \mathfrak{N}(R) = \mathfrak{N}(R)$ is a prime ideal. By Corollary 2.2, P is a \mathfrak{N} -prime ideal of R . \square

3. \mathfrak{N} -prime Spectrum of a Commutative Ring

In this section, our aim is to construct a topology on the set of all \mathfrak{N} -prime ideals of a ring R . We denote this set by $\mathfrak{N}\text{spec}(\mathfrak{R})$. We examine the relations between topological properties of $\mathfrak{N}\text{spec}(\mathfrak{R})$ and algebraic properties of R . First we define a variety of a subset $E \subseteq R$ by

$$V^*(E) := \{P \in \mathfrak{N}\text{spec}(\mathfrak{R}) : E \subseteq \sqrt{P}\}.$$

Proposition 3.1. *Let R be a ring and $E \subseteq R$. Then the followings are satisfied:*

- (i) *If I is an ideal generated by the set $E \subseteq R$, then $V^*(E) = V^*(I) = V^*(\sqrt{I})$.*
- (ii) *$V^*(0) = \mathfrak{N}\text{spec}(\mathfrak{R})$, $V^*(R) = \emptyset$.*
- (iii) *For each family of subsets $\{E_i\}_{i \in \Delta}$ of R , $V^*(\bigcup_{i \in \Delta} E_i) = \bigcap_{i \in \Delta} V^*(E_i)$.*
- (iv) *For each ideals I, J of R , $V^*(I) \cup V^*(J) = V^*(I \cap J) = V^*(IJ)$.*

Proof. (i) and (ii) clear.

(iii) :

$$\begin{aligned} \bigcap_{i \in \Delta} V^*(E_i) &= \{P \in \mathfrak{N}\text{spec}(\mathfrak{R}) : E_i \subseteq \sqrt{P} \text{ for every } i \in \Delta\} \\ &= \{P \in \mathfrak{N}\text{spec}(\mathfrak{R}) : \bigcup_{i \in \Delta} E_i \subseteq \sqrt{P}\} \\ &= V^*(\bigcup_{i \in \Delta} E_i). \end{aligned}$$

(iv) : Since $IJ \subseteq I \cap J \subseteq I, J$, $V^*(I) \cup V^*(J) \subseteq V^*(I \cap J) \subseteq V^*(IJ)$.

For the converse, take $P \in V^*(IJ)$. Then $IJ \subseteq \sqrt{P}$. Moreover \sqrt{P} is a prime ideal, and thus either $I \subseteq \sqrt{P}$ or $J \subseteq \sqrt{P}$. Hence $P \in V^*(I) \cup V^*(J)$. \square

As a consequence of Proposition 3.1, if we assign open sets $O^*(E) = \mathfrak{N}\text{spec}(\mathfrak{R}) - V^*(E)$, then the family $\{O^*(E) : E \subseteq R\}$ satisfies all conditions of being a topology on $\mathfrak{N}\text{spec}(\mathfrak{R})$. We define this topology as \mathfrak{N} -prime spectrum of R , and denote it by $(\sigma, \mathfrak{N}\text{spec}(\mathfrak{R}))$ or briefly $\mathfrak{N}\text{spec}(\mathfrak{R})$. We know that zariski topology of a ring R is always a T_0 -space. However $\mathfrak{N}\text{spec}(\mathfrak{R})$ is not necessarily to be a T_0 -space.

Example 3.1. *Consider the ring \mathbb{Z}_{p^n} of integers modulo p^n , where p is a prime number. it is a quasi-local ring with maximal ideal $\mathfrak{N}(\mathbb{Z}_{p^n}) = \langle p \rangle$. By Theorem 2.4, every proper ideal $P = \langle p^k \rangle$ is a \mathfrak{N} -prime ideal of \mathbb{Z}_{p^n} , where $1 \leq k \leq n$. Moreover*

$$\text{Spec}(\mathbb{Z}_{p^n}) = \{\langle p \rangle\}, \quad \mathfrak{N}\text{spec}(\mathbb{Z}_{p^n}) = \{\langle p^t \rangle : 1 \leq t \leq n\}.$$

Then, for any ideal $P = \langle p^k \rangle$ of \mathbb{Z}_{p^n} , variety of P on prime spectrum and \mathfrak{N} -prime spectrum are obtained $V(P) = \text{Spec}(\mathbb{Z}_{p^n})$ and $V^(P) = \mathfrak{N}\text{spec}(\mathbb{Z}_{p^n})$ respectively. Thus all closed subset of \mathfrak{N} -prime spectrum of \mathbb{Z}_{p^n} is either empty or $\mathfrak{N}\text{spec}(\mathbb{Z}_{p^n})$. Now, take singletons $\{\langle p^k \rangle\} \neq \{\langle p^t \rangle\}$, where $1 \leq t \neq k \leq n$. Note that all closed subset of $\mathfrak{N}\text{spec}(\mathbb{Z}_{p^n})$ containing $\{\langle p^k \rangle\}$ also contains $\{\langle p^t \rangle\}$. Hence $\mathfrak{N}\text{spec}(\mathbb{Z}_{p^n})$ is not a T_0 -space.*

Proposition 3.2. *Let R be a ring, and $X_r = X - V^*(r)$, where $X = \mathfrak{N}\text{spec}(\mathfrak{R})$. Then $\{X_r : r \in R\}$ forms a base for \mathfrak{N} -prime spectrum of R .*

Proof. Let O be an open set. Then we have $O = X - V^*(E)$ for some $E \subseteq R$. Then we have

$$\begin{aligned} O &= X - V^*(E) = X - V^*(\bigcup_{r \in E} \{r\}) \\ &= X - \bigcap_{r \in E} V^*(r) = \bigcup_{r \in E} (X - V^*(r)) = \bigcup_{r \in E} X_r. \end{aligned}$$

\square

Proposition 3.3. *Let R be a ring, and $X_r = X - V^*(r)$, where $X = \mathfrak{N}\text{spec}(\mathfrak{R})$.*

- (i) *For any $r, s \in R$, $X_{rs} = X_r \cap X_s$.*
- (ii) *$X_r = \emptyset$ iff r is a nilpotent in R .*
- (iii) *$X_r = X$ iff r is a unit in R .*
- (iv) *$X_r = X_s$ iff $\sqrt{\langle r \rangle} = \sqrt{\langle s \rangle}$.*
- (v) *X_r is quasi-compact.*
- (vi) *X is quasi compact.*

Proof. (i) : Let $P \in X_r \cap X_s$ for $P \in \mathfrak{N}\text{spec}(\mathfrak{R})$. Then $r \notin \sqrt{P}$ and $s \notin \sqrt{P}$. Since \sqrt{P} is a prime ideal, we get $rs \notin \sqrt{P}$, that is, $P \in X_{rs}$.

Conversely; let $P \in X_{rs}$. Then $rs \notin \sqrt{P}$ implies $r \notin \sqrt{P}$, and $s \notin \sqrt{P}$. This yields $P \in X_r \cap X_s$.

(ii) : Suppose that $X_r = \emptyset$, that is, $V^*(r) = \mathfrak{N}\text{spec}(\mathfrak{R})$. Since every prime ideal is a \mathfrak{N} -prime, $r \in \bigcap_{P \in \text{Spec}(R)} P = \mathfrak{N}(R)$, r is a nilpotent in R . Conversely, let $r \in \mathfrak{N}(R)$ and $P \in \mathfrak{N}\text{spec}(\mathfrak{R})$. Then by Proposition 2.1,

$$r \in \mathfrak{N}(R) \subseteq P + \mathfrak{N}(R) = \sqrt{P}$$

for any $P \in \mathfrak{N}\text{spec}(\mathfrak{R})$, hence $P \in V^*(r)$. Therefore, $V^*(r) = \mathfrak{N}\text{spec}(\mathfrak{R})$.

(iii) : Suppose that $X_r = X$, that is, $V^*(r) = \emptyset$. Since every maximal ideal is also a \mathfrak{N} -prime ideal, r is not in any maximal ideal, so that r is unit. The converse is clear.

(iv) : Suppose that $X_r = X_s$, that is, $V^*(r) = V^*(s)$. As every prime ideal of R is a \mathfrak{N} -prime ideal and $V^*(r) = V^*(s)$, for any $P \in \text{Spec}(R)$,

$$\langle r \rangle \subseteq P \Leftrightarrow \langle s \rangle \subseteq P.$$

So $\sqrt{\langle r \rangle} = \sqrt{\langle s \rangle}$.

Conversely, let $\sqrt{\langle r \rangle} = \sqrt{\langle s \rangle}$. Assume that $P \in V^*(r)$. Then we have $\langle r \rangle \subseteq \sqrt{P}$, and so $\langle s \rangle \subseteq \sqrt{\langle s \rangle} = \sqrt{\langle r \rangle} \subseteq \sqrt{P}$. Therefore $P \in V^*(s)$, so that $V^*(r) \subseteq V^*(s)$. Similarly $V^*(s) \subseteq V^*(r)$.

(v) : Suppose that $X_r \subseteq \bigcup_{i \in \Delta} O_i$ is an open covering. Since $\{X_r : r \in R\}$ forms a base for $\mathfrak{N}\text{spec}(\mathfrak{R})$, we may assume that $O_i = X_{r_i}$. Then $X_r \subseteq \bigcup_{i \in \Delta} X_{r_i}$, and so $X - V^*(r) \subseteq \bigcup_{i \in \Delta} (X - V^*(r_i)) = X - \bigcap_{i \in \Delta} V^*(r_i) = X - V^*(\bigcup_{i \in \Delta} \{r_i\})$. Hence

$$V^*(\bigcup_{i \in \Delta} \{r_i\}) \subseteq V^*(r),$$

and

$$\sqrt{\langle r \rangle} \subseteq \sqrt{\langle \bigcup_{i \in \Delta} \{r_i\} \rangle}.$$

Then we have $r^n \in \langle \bigcup_{i \in \Delta} \{r_i\} \rangle$ for some $n \in \mathbb{N}$, and so $r^n = a_1 r_1 + \dots + a_n r_n$ for some $a_1, a_2, \dots, a_n \in R$. It follows that $r^n \in \langle \bigcup_{i=1}^n \{r_i\} \rangle$ which implies

$$V^*(\bigcup_{i=1}^n \{r_i\}) \subseteq V^*(r^n) = V^*(r),$$

so that

$$X_r \subseteq X - V^*(\bigcup_{i=1}^n \{r_i\}) = \bigcup_{i=1}^n X_{r_i}.$$

(vi) : Take $r = 1$, and apply to (v). \square

Note that a topological space X is called irreducible if it can not be expressed as $X = F_1 \cup F_2$, where F_1, F_2 are nonempty proper closed subsets of X .

Proposition 3.4. *Let R be a ring. The followings are equivalent:*

- (i) $\mathfrak{N}\text{spec}(\mathfrak{R})$ is an irreducible topological space.
- (ii) $R/\mathfrak{N}(R)$ is an integral domain.

Proof. (i) \Rightarrow (ii) : Assume that $\mathfrak{N}\text{spec}(\mathfrak{R})$ is an irreducible topological space. Let $IJ \subseteq \mathfrak{N}(R)$ for ideals I, J of R . It is clear that

$$V^*(IJ) = V^*(I) \cup V^*(J) = V^*(\mathfrak{N}(R)) = \mathfrak{N}\text{spec}(\mathfrak{R}).$$

Then by (i), $V^*(I) = \mathfrak{N}\text{spec}(\mathfrak{R})$ or $V^*(J) = \mathfrak{N}\text{spec}(\mathfrak{R})$. This implies $I \subseteq \mathfrak{N}(R)$ or $J \subseteq \mathfrak{N}(R)$, that is, $\mathfrak{N}(R)$ is a prime ideal of R .

(ii) \Rightarrow (i) : Since $R/\mathfrak{N}(R)$ is an integral domain, $\mathfrak{N}(R)$ is a prime ideal of R . Suppose that $V^*(I) \cup V^*(J) = \mathfrak{N}\text{spec}(\mathfrak{R})$. Then $V^*(IJ) = \mathfrak{N}\text{spec}(\mathfrak{R})$, and $IJ \subseteq \mathfrak{N}(R)$. Therefore $I \subseteq \mathfrak{N}(R)$ or $J \subseteq \mathfrak{N}(R)$, that is, $V^*(I) = \mathfrak{N}\text{spec}(\mathfrak{R})$ or $V^*(J) = \mathfrak{N}\text{spec}(\mathfrak{R})$. Consequently, $\mathfrak{N}\text{spec}(\mathfrak{R})$ is an irreducible space. \square

Lemma 3.1. *Let R be a ring, and I, J be ideals of R .*

- (i) $V^*(I) = V^*(J)$ if and only if $\sqrt{I} = \sqrt{J}$ for ideals I, J of R .
- (ii) If $P \in \mathfrak{N}\text{spec}(\mathfrak{R})$, then $V^*(P) = Cl(P)$.

Proof. (i) : It is clear.

(ii) : Note that $P \in V^*(P)$. Take any closed set $V^*(J)$ containing P , then $J \subseteq \sqrt{P}$. For every ideal $Q \in V^*(P)$, $P \subseteq \sqrt{Q}$, and so $J \subseteq \sqrt{P} \subseteq \sqrt{Q}$, Therefore $V^*(P)$ is the smallest closed subset of $\mathfrak{N}\text{spec}(\mathfrak{R})$ that contains P . \square

By example 3.1, \mathfrak{N} -prime spectrum of a ring R is not necessarily be a T_0 -space. The following theorem gives the necessary and sufficient condition for \mathfrak{N} -prime spectrum to be a T_0 -space.

Theorem 3.1. *Let R be a ring. Then every \mathfrak{N} -prime ideal is also a prime ideal of R if and only if $\mathfrak{N}\text{spec}(\mathfrak{R})$ is a T_0 -space.*

Proof. Suppose that every \mathfrak{N} -prime ideal of R is also a prime ideal. To prove that $\mathfrak{N}\text{spec}(\mathfrak{R})$ is a T_0 -space, let $Cl(P) = Cl(Q)$ for some $P, Q \in \mathfrak{N}\text{spec}(\mathfrak{R})$. By Lemma

3.1, $V^*(Q) = V^*(P)$ and so $\sqrt{Q} = \sqrt{P}$. Then by the hypothesis, $P = Q$. Conversely, let $\mathfrak{N}\text{spec}(\mathfrak{R})$ is a T_0 -space, and $P \in \mathfrak{N}\text{spec}(\mathfrak{R})$. Then, clearly

$$Cl(P) = V^*(P) = V^*(\sqrt{P}) = Cl(\sqrt{P}).$$

Thus $P = \sqrt{P}$ is a prime ideal by the hypothesis and Proposition 2.1. \square

Theorem 3.2. *Let R be a ring. The followings are equivalent:*

- (i) *Every \mathfrak{N} -prime ideal of R is maximal;*
- (ii) *$\mathfrak{N}\text{spec}(\mathfrak{R})$ is a T_2 -space;*
- (iii) *$\mathfrak{N}\text{spec}(\mathfrak{R})$ is a T_1 -space.*

Proof. (i) \Rightarrow (ii) : Suppose that every \mathfrak{N} -prime ideal of R is maximal, then it is prime. Hence $\text{Spec}(R)$ and $\mathfrak{N}\text{spec}(\mathfrak{R})$ coincide. Since every prime ideal is maximal, $\mathfrak{N}\text{spec}(\mathfrak{R}) \cong \text{Spec}(R)$ is a T_2 -space.

(ii) \Rightarrow (iii) : It is clear.

(iii) \Rightarrow (i) : Assume that $\mathfrak{N}\text{spec}(\mathfrak{R})$ is a T_1 -space and $P \in \mathfrak{N}\text{spec}(\mathfrak{R})$. By Lemma 3.1 and the hypothesis,

$$Cl(P) = V^*(P) = \{P\} = \{\sqrt{P}\} = V^*(\sqrt{P}).$$

This implies P is a maximal ideal. \square

A topological space X is a connected space if it can not be express as a union of two nonempty proper disjoint closed subset of X .

Theorem 3.3. *The followings are equivalent for any ring R :*

- (i) *R has no proper idempotent, that is, the idempotents are 0 and 1.*
- (ii) *$\mathfrak{N}\text{spec}(\mathfrak{R})$ is a connected space.*

Proof. (i) \Rightarrow (ii) : Assume that the only idempotents in R are 0 and 1. Suppose that $V^*(I) \cup V^*(J) = \mathfrak{N}\text{spec}(\mathfrak{R})$ and $V^*(I) \cap V^*(J) = \emptyset$ for ideals I, J of R . Then $I + J = R$ and $IJ \subseteq \mathfrak{N}(R)$ which implies $a + b = 1$ and $(ab)^k = 0$ for some $a \in I, b \in J$ and $k \in \mathbb{N}$.

Note that $\langle a \rangle^k + \langle b \rangle^k = R$ and $\langle a \rangle^k \langle b \rangle^k = 0$, by Chinese Remainder Theorem, we get $R \cong R/\langle a \rangle^k \times R/\langle b \rangle^k$. Since R has no proper idempotent, either $R/\langle a \rangle^k = 0$ or $R/\langle b \rangle^k = 0$, that is, a is a unit or b is a unit. Hence $V^*(I) = \emptyset$ or $V^*(J) = \emptyset$. Consequently, $\mathfrak{N}\text{spec}(\mathfrak{R})$ is a connected space.

(ii) \Rightarrow (i) : Suppose that $\mathfrak{N}\text{spec}(\mathfrak{R})$ is a connected space and e is an idempotent of R . Then $e(1 - e) = 0 \in \mathfrak{N}(R)$, and

$$V^*(\langle e \rangle) \cup V^*(\langle 1 - e \rangle) = \mathfrak{N}\text{spec}(\mathfrak{R}) \text{ and } V^*(\langle e \rangle) \cap V^*(\langle 1 - e \rangle) = \emptyset.$$

Since $\mathfrak{N}\text{spec}(\mathfrak{R})$ is a connected space, either $V^*(\langle e \rangle) = \mathfrak{N}\text{spec}(\mathfrak{R})$ or $V^*(\langle e \rangle) = \emptyset$. This implies either e is a nilpotent element or a unit element, that is, $e = 0$ or $e = 1$. \square

REFERENCES

- [1] Anderson, D. D., & Winders, M. (2009). Idealization of a module. *Journal of Commutative Algebra*, 1(1), 3-56.
- [2] Atiyah, M. F., & Macdonald, I. G. (1969). *Introduction to commutative algebra* (Vol. 2). Reading: Addison-Wesley.
- [3] Badawi, A. (2007). On 2-absorbing ideals of commutative rings. *Bulletin of the Australian Mathematical Society*, 75(3), 417-430.
- [4] Badawi, A., & Darani, A. Y. (2013). On weakly 2-absorbing ideals of commutative rings. *Houston J. Math.*, 39(2), 441-452.
- [5] Călugăreanu, G. (2015). UN-rings. *Journal of Algebra and Its Applications*, 1650182.
- [6] Darani, A. Y. (2012). Generalizations of primary ideals in commutative rings. *Novi Sad J. Math.*, 42(1), 27-35.
- [7] Fuchs, L. (1947). On quasi-primary ideals. *Acta Sci. Math.(Szeged)*, 11, 174-183.
- [8] Huckaba, J. A. (1988). *Commutative rings with zero divisors*. Dekker.
- [9] Mostafanasab, H., & Darani, A. Y. (2015). Some properties of 2-absorbing and weakly 2-absorbing primary ideals. *Transactions on Algebra and its Applications*, 1(1).
- [10] Zariski, O., & Samuel, P. (2013). *Commutative algebra* (Vol. 2). Springer Science & Business Media.