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ON N-PRIME IDEALS

Esra Sengelen Sevim1 and Suat Koc2

In this article, we introduce an intermediate classes of ideals between

prime and quasi primary ideals, denoted by N-prime, and we focus on some prop-

erties of N-prime ideals. Moreover, we defined a topology on the set of all N-prime

ideals such that we examine the topological concepts, irreducibility, connectedness,

and seperation axioms.
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1. Introduction

Throughout this study, all rings will be commutative with 1 6= 0. Let R denote

such a ring. If P is an ideal of R, then the radical of P ,
√
P , is defined to be

√
P :=

{
a ∈ R : an ∈ P for some n ∈ N

}
.

We denote the nilradical of R by N(R) instead of
√

0. The concept of prime ideal

has a significant role in the theory of commutative algebra and algebraic geometry.

The properties of prime ideals in a special ring has been obtained in different articles,

see [3-4,6,9]. Recall from [2], a prime ideal P of R is a proper ideal if ab ∈ P implies

a ∈ P or b ∈ P for each a, b ∈ R. A proper ideal Q of R is called primary if whenever

ab ∈ Q, then a ∈ Q or b ∈
√
Q , equivalently a ∈

√
Q or b ∈ Q, [10]. Also a quasi

primary ideal Q of R is defined as a proper ideal whose radical is prime [7].

The main focus in this study (especially in Chapter 2) is to present an inter-

mediate classes of ideals between prime and quasi primary ideals, and to examine

its properties, called N-prime ideals. We will define P is a N-prime ideal of R to

be a proper ideal P satisfying the condition ab ∈ P implies either a ∈ P + N(R)

or b ∈ P + N(R). Among many results in Chapter 2, we give (in Corollary 2.2) a

number of results characterizing the N-prime ideals of a given ring R. Also, we de-

termine all N-prime ideals of cartesian products of rings. Recall the crucial theorem

of prime avodiance lemma. Suppose that I ⊆
n⋃

i=1

Pi is a covering of prime ideals,
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all Pi’s are prime ideals, then at least one of them contains I. We examine the

lemma for N-prime ideals. Moreover, we study the N-prime ideals of fractional ring

S−1R. And we characterize the N-prime homogeneous ideals of idealization of a

unital R-module M. A ring (not necessarily commutative) R is called a UN -ring

if every nonunit element of R is a product of a unit and nilpotent element, [5]. We

characterize all UN -rings by means of N-prime ideals. We support each results with

examples.

In Chapter 3, we construct a topology on Nspec(R), where Nspec(R) denotes

the set of all N-prime ideals of R while Spec(R) denotes the set of all prime ideals

of R. We show that the topological spaces of Spec(R) and Nspec(R) are different.

Moreover, we obtained some topological properties of Nspec(R), and we support the

results with some examples.

2. N-prime Ideals in Commutative Rings

Definition 2.1. A proper ideal P of R is called a N-prime ideal if ab ∈ P, for each

a, b ∈ R, then either a ∈ P + N(R) or b ∈ P + N(R).

Example 2.1. (i) In a reduced ring; prime and N-prime ideals coincide. In par-

ticular, in any domain or von Neumann regular ring, all N-prime ideals are exactly

prime ideals.

(ii) Let (R,M) be a quasi-local with nil maximal ideal, i.e, M = N(R). If P is

a proper ideal of R and ab ∈ P for a, b ∈ R, then a ∈ P + N(R) or b ∈ P + N(R).

Thus every proper ideal is N-prime ideal in a quasi local ring with nil maximal.

(iii) Consider the quotient ring

R = F [X,Y ]/〈X2〉,

where F is a field, and the ideal

P = 〈X2, XY, Y 2〉/〈X2〉.

Note that N(R) = 〈x〉 and P + N(R) = 〈x, y2〉, where

x = X + 〈X2〉 and y = Y + 〈X2〉.

Since y2 ∈ P and y /∈ P + N(R), P is not a N-prime ideal of R.

Fact 2.1. (i) Assume that P + N(R) is a prime ideal of R. Then it is easily seen

that P is a N-prime ideal: if ab ∈ P ⊆ P +N(R), then it follows that a ∈ P +N(R)

or b ∈ P + N(R).

(ii) Since prime ideals contain the nilradical, every prime ideal is also a N-

prime ideal. However, the converse is not hold. For instance, consider the ring

Z36 and the ideal P = 〈4〉. It is clear that P is not a prime ideal. In addition,

P + N(Z36) = 〈2〉 is prime, then by (i), P is a N-prime ideal of Z36.

(iii) If P is a N-prime ideal of R and N(R) ⊆ P, then P is a prime ideal of

R.

The following explicit result is easily obtained from Fact 2.1.
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Corollary 2.1. A proper ideal P of a ring R is prime if and only if P is N-prime

and N(R) ⊆ P.

The following examples show the differences between primary ideals and N-

prime ideals.

Example 2.2. (i) Assume that R is a PID and 0 6= p is an irreducible element. It

is obvious that 〈pn〉 is a primary ideal for n > 1 but it is not a N-prime ideal.

(ii) Let R = Z8[X,Y ] and

ψ : Z8[X,Y ]→ Z2[X,Y ]

be homomorphism defined by

ψ(g0(X)+g1(X)Y+g2(X)Y 2+...+gn(X)Y n) = g0(X)+g1(X)Y+g2(X)Y 2+...+gn(X)Y n,

where gi(X) is a polynomial obtained by taking the coefficient of gi(X) in modulo

2. Note that

Ker(ψ) = N(R) = 2Z8[X,Y ]

and ψ is an epimorphism. Thus

Z8[X,Y ]/N(R) ∼= Z2[X,Y ]

is an integral domain, so that N(R) is a prime ideal. Now, take P = 〈4XY 〉 ⊆
N(R). Since P + N(R) = N(R) is a prime ideal, by Fact 2.1, P is a N-prime ideal.

However, P is not a primary ideal

Y (4X) = 4XY ∈ P, 4X /∈ P and Y n /∈ P for all n ∈ N.

Proposition 2.1. For any proper ideal P of R, the followings are satisfied:

(i)
√
P = P + N(R) if P is a N-prime ideal.

(ii)
√
P is a prime ideal if P is a N-prime ideal.

Proof. (i) : P +N(R) ⊆
√
P always holds. To show

√
P ⊆ P +N(R), take a ∈

√
P ,

then an = a.a...a ∈ P for some n ∈ N. Since P is a N-prime ideal, we obtain

a ∈ P + N(R).

(ii) : Assume that P is a N-prime ideal of R and ab ∈
√
P . So anbn ∈ P for

some n ∈ N, then an ∈ P + N(R) =
√
P or bn ∈

√
P by (i). Hence, a ∈

√
P or

b ∈
√
P . �

It follows that every N-prime ideal is also a quasi primary ideal. However, a

quasi primary ideal is not necessarily a N-prime ideal.

Example 2.3. Consider the subring

R = {a0 + a1X + ...+ anX
n : a1 is a multiple of 3 } ⊆ Z [X]

and the ideal Q = 〈9X2, 3X3, X4, X5, X6〉 of R. Note that
√
Q = 〈3X,X2, X3〉 and

R/
√
Q ∼= Z is an integral domain. Then Q is a quasi primary ideal, N(R) = 0 and

Q+ N(R) = Q. Since 9X2 ∈ Q but 9 /∈ Q + N(R) and X2 /∈ Q+ N(R), therefore,

Q is not a N-prime ideal of R.
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The following figure states the relations between N-prime ideals and other

classical ideals

Figure 1. N-prime ideal

Corollary 2.2. For any proper ideal P of R, the followings are equivalent:

(i) P is a N-prime ideal;

(ii) P + N(R) is a prime ideal of R;

(iii) IJ ⊆ P implies that either

I ⊆ P + N(R) or J ⊆ P + N(R)

for ideals I, J of R;

(iv) (P + N(R) : a) = P + N(R) for every a /∈ P + N(R);

(v) R/(P + N(R)) is an integral domain.

Let R1, R2 be two rings (not necessarily the same), then R = R1×R2 becomes

a commutative ring under componentwise addition and multiplication. In addition,

every ideal P of R has the form P1 × P2, where Pi is an ideal of Ri for i = 1, 2.

Proposition 2.2. Let R = R1×R2, and P = P1×P2, where Pi is an ideal of Ri for

i = 1, 2. Then the followings are equivalent:

(i) P is a N-prime ideal of R.

(ii) P1 is a N-prime ideal of R1 and P2 = R2 or P1 = R1 and P2 is a N-prime

ideal of R2.

Proof. (i)⇒ (ii) : P is a N-prime ideal of R, by Proposition 2.1,
√
P =

√
P1×

√
P2

is a prime ideal, so that either P1 = R1 or P2 = R2. Let P1 = R1. To prove P2 is a

N-prime ideal of R2, let ab ∈ P2 , a, b ∈ R2.

(0, a)(0, b) = (0, ab) ∈ P,

implies

(0, a) ∈ P + N(R) or (0, b) ∈ P + N(R).
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Hence,

N(R) = N(R1)×N(R2)

and

P + N(R) = (P1 + N(R1))× (P2 + N(R2)) = R1 × (P2 + N(R2)).

So a ∈ P2 + N(R2) or b ∈ P2 + N(R2).

(ii)⇒ (i) : Assume that P = P1×R2, where P1 is a N-prime ideal of R1. Then

by Corollary 2.2, R1/(P1 + N(R1)), and

R/(P + N(R)) ∼= R1/(P1 + N(R1))

is an integral domain. Consequently, P is a N-prime ideal. �

Theorem 2.1. Let R1, R2, ..., Rn be rings, where n ≥ 2, and

P = P1 × P2 × ...× Pn,

where Pi is an ideal of Ri, 1 ≤ i ≤ n. Then the followings are equivalent:

(i) P is a N-prime ideal of R.

(ii) Pj is a N-prime ideal of Rj for some j ∈ {1, 2, ..., n} and Pi = Ri for

every i 6= j.

Proof. We use induction on n. By Proposition 2.2, the claim is true if n = 2. Assume

that the claim is true for each k ≤ n−1 and let k = n. Put P ′ = P1×P2× ...×Pn−1,

and R′ = R1×R2× ...×Rn−1, by Proposition 2.2, P = P ′×Pn is a N-prime ideal of

R = R′ ×Rn if and only if P ′ is a N-prime ideal of R′ and Pn = Rn or P ′ = R′ and

Pn is a N-prime ideal of Rn. The rest follows from induction hypothesis. �

Corollary 2.3. Suppose that I ⊆
n⋃

i=1

Pi where Pi (i = 1, ..., n) is a N-prime ideal.

Then I ⊆ Pi + N(R) for some 1 ≤ i ≤ n.

Proof. Since Pi (i = 1, ..., n) is a N-prime ideal of R, by Corollary 2.2, Pi + N(R) is

a prime ideal for 1 ≤ i ≤ n. Note that

I ⊆
n⋃

i=1

Pi ⊆
n⋃

i=1

(Pi + N(R)),

by prime avodiance lemma, we have I ⊆ Pi + N(R) for some 1 ≤ i ≤ n. �

Theorem 2.2. Assume f : R→ S is an epimorphism and Ker(f) ⊆ P is a N-prime

ideal. Then f(P ) is a N-prime ideal of S.

Proof. Let P be a N-prime ideal of R such that Ker(f) ⊆ P. Let yz ∈ f(P ) for

y, z ∈ S. Since f is an epimorphism, y = f(x) and z = f(t) for some x, t ∈ R. Then

yz = f(xt) ∈ f(P ), xt ∈ P. This yields

x ∈ P + N(R) or t ∈ P + N(R),

and so, y ∈ f(P + N(R)) or z ∈ f(P + N(R)). Since

f(P + N(R)) ⊆ f(P ) + N(S)
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we obtain y ∈ f(P ) + N(S) or z ∈ f(P ) + N(S). �

Corollary 2.4. If P is a N-prime ideal of R that contains an ideal I, then P/I is

a N-prime ideal of R/I.

Proposition 2.3. For any proper ideal P of R, the followings are satisfied:

(i) If 〈P,X〉 is a N-prime ideal of R[X], then P is a N-prime ideal of R.

(ii) If P is a N-prime ideal of R, then P [X] is a N-prime ideal of R[X].

Proof. (i) : Consider the homomorphism ψ : R[X]→ R defined by

ψ(f(X)) = f(0).

Notice that Ker(ψ) = 〈X〉 ⊆ 〈P,X〉 and ψ is an epimorphism. As 〈P,X〉 is a

N-prime ideal of R[X], by Theorem 2.2, ψ(〈P,X〉) = P is a N-prime ideal of R.

(ii) : Let P be a N-prime ideal of R. By Corollary 2.2, R/(P + N(R)) is an

integral domain, and so is (R/(P + N(R)))[X] ∼= R[X]/(P [X] + N(R[X])) . �

S−1R denotes the fractional ring of R at a multiplicatively closed subset S of

R. If I is an ideal of R, then S−1I = Ie = {as : s ∈ S, a ∈ I} is an ideal of

S−1R. Furthermore, for an ideal I of R, the set {a ∈ R : ra ∈ I for some r ∈ R− I}
is denoted by Z(I).

Proposition 2.4. Let P be a proper ideal of R and S be a multiplicatively closed

subset of R with S ∩ P = ∅. Then the followings are satisfied:

(i) If P is a N-prime ideal of R, then S−1P is a N-prime ideal of S−1R.

(ii) If S−1P is a N-prime ideal of S−1R with S ∩Z(P +N(R)) = ∅, then P is

a N-prime ideal of R.

Proof. (i) : Let a
s
b
t = ab

st ∈ S−1P for a, b ∈ R; s, t ∈ S. Then uab ∈ P for some

u ∈ S. Since P is a N-prime ideal of R, ua ∈ P + N(R) or b ∈ P + N(R). Hence
a
s = ua

us ∈ S
−1(P + N(R)) or b

t ∈ S
−1(P + N(R)). Also,

S−1(P + N(R)) = S−1P + N(S−1R)

holds.

(ii) : Let ab ∈ P for a, b ∈ R. Then a
1
b
1 ∈ S

−1P, and a
1 ∈ S

−1P + N(S−1R) or
b
1 ∈ S

−1P +N(S−1R). Assume that a
1 ∈ S

−1P +N(S−1R) = S−1(P +N(R)). Then

ua ∈ P+N(R) for some u ∈ S. Since S∩Z(P+N(R)) = ∅, we have a ∈ P+N(R). If
b
1 ∈ S

−1P + N(S−1R), b ∈ P + N(R). Hence P is a N-prime ideal of R. �

Let M be a unital R-module, and R ⊕M = {(a,m) : a ∈ R,m ∈ M}. Then

R⊕M, idealization of an R-module M, is a commutative ring with componentwise

addition and the multiplication, [8]:

(a,m1)(b,m2) = (ab, am2 + bm1).

If P is an ideal of R and N is a submodule of M, then P ⊕N is an ideal of R⊕M if

and only if PM ⊆ N. Then P ⊕ N is called a homogeneous ideal. In [1], it was

shown that N(R ⊕M) = N(R) ⊕M, and then all prime ideals P of R ⊕M are of

the form P = P1 ⊕M, where P1 is a prime ideal of R.
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Theorem 2.3. Let M be an R-module. Assume that P is an ideal of R and N is

a submodule of M such that PM ⊆ N. Then P ⊕N is a N-prime ideal of R⊕M if

and only if P is a N-prime ideal of R.

Proof. Let P ⊕N be a N-prime ideal of R⊕M, and let ab ∈ P for a, b ∈ R. Then

(a, 0M )(b, 0M ) = (ab, 0M ) ∈ P ⊕N.

This implies

(a, 0M ) ∈ P ⊕N + N(R⊕M) or (b, 0M ) ∈ P ⊕N + N(R⊕M).

Thus a ∈ P +N(R) or b ∈ P +N(R). Suppose that P is a N-prime ideal of R. Then

by Corollary 2.2, R/(P + N(R)) is an integral domain, and so

R⊕M/(P ⊕N + N(R⊕M)) ∼= R/(P + N(R))

is an integral domain. Thus P ⊕N is a N-prime ideal of R⊕M. �

Theorem 2.4. Let R be a ring, then the followings are equivalent:

(i) Every ideal P of R is a N-prime ideal;

(ii) Every element a of R is either nilpotent or unit;

(iii) R is a quasi-local ring with (nil maximal) N(R);

(iv) R is a UN -ring.

Proof. (i) ⇒ (ii) : Assume that all ideal P of R is a N-prime ideal of R. Since

〈0〉 is a N-prime ideal of R, by Corollary 2.2, 〈0〉+N(R) = N(R) is a prime ideal of

R. Let a be a nonunit element of R. Then by (i), 〈a2〉 is a N-prime ideal of R. Since

〈a〉.〈a〉 ⊆ 〈a2〉, we get that 〈a〉 ⊆ 〈a2〉+ N(R) by Corollary 2.2. So a = a2x+ y for

some x ∈ R, y ∈ N(R). Thus we conculde that a− a2x = a(1− ax) = y ∈ N(R). As

N(R) is a prime ideal, we have a ∈ N(R) or 1 − ax ∈ N(R). Assume that 1 − ax
is nilpotent, then 1 − (1 − ax) = ax is a unit and hence a is a unit which is a

contradiction.

(ii)⇒ (iii) : It is clear.

(iii)⇔ (iv) : It follows from [5, Proposition 2].

(iii) ⇒ (i) : Assume that R is a quasi-local ring with nil maximal ideal. Let

P be a proper ideal of R. Then by assumption P ⊆ N(R), and so P+N(R) = N(R) is

a prime ideal. By Corollary 2.2, P is a N-prime ideal of R. �

3. N-prime Spectrum of a Commutative Ring

In this section, our aim is to construct a topology on the set of all N-prime

ideals of a ring R. We denote this set by Nspec(R). We examine the relations between

topological properties of Nspec(R) and algebraic properties of R. First we define a

variety of a subset E ⊆ R by

V ∗(E) := {P ∈ Nspec(R) : E ⊆
√
P}.
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Proposition 3.1. Let R be a ring and E ⊆ R. Then the followings are satisfied:

(i) If I is an ideal generated by the set E ⊆ R, then V ∗(E) = V ∗(I) = V ∗(
√
I).

(ii) V ∗(0) = Nspec(R), V ∗(R) = ∅.
(iii) For each family of subsets {Ei}i∈∆ of R, V ∗(

⋃
i∈∆

Ei) =
⋂
i∈∆

V ∗(Ei).

(iv) For each ideals I, J of R, V ∗(I) ∪ V ∗(J) = V ∗(I ∩ J) = V ∗(IJ).

Proof. (i) and (ii) clear.

(iii) : ⋂
i∈∆

V ∗(Ei) = {P ∈ Nspec(R) : Ei ⊆
√
P for every i ∈ ∆}

= {P ∈ Nspec(R) :
⋃
i∈∆

Ei ⊆
√
P}

= V ∗(
⋃
i∈∆

Ei).

(iv) : Since IJ ⊆ I ∩ J ⊆ I, J, V ∗(I) ∪ V ∗(J) ⊆ V ∗(I ∩ J) ⊆ V ∗(IJ).

For the converse, take P ∈ V ∗(IJ). Then IJ ⊆
√
P . Morover

√
P is a prime

ideal, and thus either I ⊆
√
P or J ⊆

√
P . Hence P ∈ V ∗(I) ∪ V ∗(J). �

As a consequence of Proposition 3.1, if we assign open setsO∗(E) = Nspec(R)−
V ∗(E), then the family {O∗(E) : E ⊆ R} satisfies all conditions of being a topology

on Nspec(R). We define this topology as N-prime spectrum of R, and denote it by

(σ,Nspec(R)) or briefly Nspec(R). We know that zariski topology of a ring R is

always a T0-space. However Nspec(R) is not necessarily to be a T0-space.

Example 3.1. Consider the ring Zpn of integers modulo pn, where p is a prime

number. it is a quasi-local ring with maximal ideal N(Zpn) = 〈p〉. By Theorem 2.4,

every proper ideal P = 〈pk〉 is a N-prime ideal of Zpn , where 1 ≤ k ≤ n. Moreover

Spec(Zpn) = {〈p〉}, Nspec(Zpn) = {〈pt〉 : 1 ≤ t ≤ n}.

Then, for any ideal P = 〈pk〉 of Zpn , variety of P on prime spectrum and N-

prime spectrum are obtained V (P ) = Spec(Zpn) and V ∗(P ) = Nspec(Zpn) re-

spectively. Thus all closed subset of N-prime spectrum of Zpn is either empty or

Nspec(Zpn). Now, take singletons {〈pk〉} 6= {〈pt〉}, where 1 ≤ t 6= k ≤ n. Note

that all closed subset of Nspec(Zpn) containing {〈pk〉} also contains {〈pt〉}. Hence

Nspec(Zpn) is not a T0-space.

Proposition 3.2. Let R be a ring, and Xr = X−V ∗(r), where X = Nspec(R). Then

{Xr : r ∈ R} forms a base for N-prime spectrum of R.

Proof. Let O be an open set. Then we have O = X − V ∗(E) for some E ⊆ R. Then

we have

O = X − V ∗(E) = X − V ∗(
⋃
r∈E
{r})

= X −
⋂
r∈E

V ∗(r) =
⋃
r∈E

(X − V ∗(r)) =
⋃
r∈E

Xr.

�
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Proposition 3.3. Let R be a ring, and Xr = X − V ∗(r), where X = Nspec(R).

(i) For any r, s ∈ R, Xrs = Xr ∩Xs.

(ii) Xr = ∅ iff r is a nilpotent in R.

(iii) Xr = X iff r is a unit in R.

(iv) Xr = Xs iff
√
〈r〉 =

√
〈s〉.

(v) Xr is quasi-compact.

(vi) X is quasi compact.

Proof. (i) : Let P ∈ Xr ∩Xs for P ∈ Nspec(R). Then r /∈
√
P and s /∈

√
P . Since√

P is a prime ideal, we get rs /∈
√
P , that is, P ∈ Xrs.

Conversely; let P ∈ Xrs. Then rs /∈
√
P implies r /∈

√
P , and s /∈

√
P . This

yields P ∈ Xr ∩Xs.

(ii) : Suppose that Xr = ∅, that is, V ∗(r) = Nspec(R). Since every prime

ideal is a N-prime, r ∈
⋂

P∈Spec(R)

P = N(R), r is a nilpotent in R. Conversely, let

r ∈ N(R) and P ∈ Nspec(R). Then by Proposition 2.1,

r ∈ N(R) ⊆ P + N(R) =
√
P

for any P ∈ Nspec(R), hence P ∈ V ∗(r). Therefore, V ∗(r) = Nspec(R).

(iii) : Suppose that Xr = X, that is, V ∗(r) = ∅. Since every maximal ideal is

also a N-prime ideal, r is not in any maximal ideal, so that r is unit. The converse

is clear.

(iv) : Suppose that Xr = Xs, that is, V ∗(r) = V ∗(s). As every prime ideal of

R is a N-prime ideal and V ∗(r) = V ∗(s), for any P ∈ Spec(R),

〈r〉 ⊆ P ⇔ 〈s〉 ⊆ P.

So
√
〈r〉 =

√
〈s〉.

Conversely, let
√
〈r〉 =

√
〈s〉. Assume that P ∈ V ∗(r). Then we have 〈r〉 ⊆√

P , and so 〈s〉 ⊆
√
〈s〉 =

√
〈r〉 ⊆

√
P . Therefore P ∈ V ∗(s), so that V ∗(r) ⊆

V ∗(s). Similarly V ∗(s) ⊆ V ∗(r).
(v) : Suppose that Xr ⊆

⋃
i∈∆

Oi is an open covering. Since {Xr : r ∈ R} forms

a base for Nspec(R), we may assume that Oi = Xri . Then Xr ⊆
⋃
i∈∆

Xri , and so

X − V ∗(r) ⊆
⋃
i∈∆

(X − V ∗(ri)) = X −
⋂
i∈∆

V ∗(ri) = X − V ∗(
⋃
i∈∆

{ri}). Hence

V ∗(
⋃
i∈∆

{ri}) ⊆ V ∗(r),

and √
〈r〉 ⊆

√
〈
⋃
i∈∆

{ri}〉.
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Then we have rn ∈ 〈
⋃
i∈∆

{ri}〉 for some n ∈ N, and so rn = a1r1 + ...+ anrn for some

a1, a2, ..., an ∈ R. It follows that rn ∈ 〈
n⋃

i=1
{ri}〉 which implies

V ∗(
n⋃

i=1
{ri}) ⊆ V ∗(rn) = V ∗(r),

so that

Xr ⊆ X − V ∗(
n⋃

i=1
{ri}) =

n⋃
i=1
Xri .

(vi) : Take r = 1, and apply to (v). �

Note that a topological space X is called irreducible if it can not be expressed

as X = F1 ∪ F2, where F1, F2 are nonempty proper closed subsets of X.

Proposition 3.4. Let R be a ring. The followings are equivalent:

(i) Nspec(R) is an irreducible topological space.

(ii) R/N(R) is an integral domain.

Proof. (i) ⇒ (ii) : Assume that Nspec(R) is an irreducible topological space. Let

IJ ⊆ N(R) for ideals I, J of R. It is clear that

V ∗(IJ) = V ∗(I) ∪ V ∗(J) = V ∗(N(R)) = Nspec(R).

Then by (i), V ∗(I) = Nspec(R) or V ∗(J) = Nspec(R). This implies I ⊆ N(R) or

J ⊆ N(R), that is, N(R) is a prime ideal of R.

(ii) ⇒ (i) : Since R/N(R) is an integral domain, N(R) is a prime ideal

of R. Suppose that V ∗(I) ∪ V ∗(J) = Nspec(R). Then V ∗(IJ) = Nspec(R), and

IJ ⊆ N(R). Therfore I ⊆ N(R) or J ⊆ N(R), that is, V ∗(I) = Nspec(R) or

V ∗(J) = Nspec(R). Consequently, Nspec(R) is an irreducible space. �

Lemma 3.1. Let R be a ring, and I, J be ideals of R.

(i) V ∗(I) = V ∗(J) if and only if
√
I =
√
J for ideals I, J of R.

(ii) If P ∈ Nspec(R), then V ∗(P ) = Cl(P ).

Proof. (i) : It is clear.

(ii) : Note that P ∈ V ∗(P ). Take any closed set V ∗(J) containing P, then

J ⊆
√
P . For every ideal Q ∈ V ∗(P ), P ⊆

√
Q, and so J ⊆

√
P ⊆

√
Q, Therfore

V ∗(P ) is the smallest closed subset of Nspec(R) that contains P. �

By example 3.1, N-prime spectrum of a ring R is not necessarily be a T0-

space. The following theorem gives the necessary and sufficient condition for N-

prime spectrum to be a T0-space.

Theorem 3.1. Let R be a ring. Then every N-prime ideal is also a prime ideal of

R if and only if Nspec(R) is a T0-space.

Proof. Suppose that every N-prime ideal of R is also a prime ideal. To prove that

Nspec(R) is a T0-space, let Cl(P ) = Cl(Q) for some P,Q ∈ Nspec(R). By Lemma
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3.1, V ∗(Q) = V ∗(P ) and so
√
Q =

√
P . Then by the hypothesis, P = Q. Conversely,

let Nspec(R) is a T0-space, and P ∈ Nspec(R). Then, clearly

Cl(P ) = V ∗(P ) = V ∗(
√
P ) = Cl(

√
P ).

Thus P =
√
P is a prime ideal by the hypothesis and Proposition 2.1. �

Theorem 3.2. Let R be a ring. The followings are equivalent:

(i) Every N-prime ideal of R is maximal;

(ii) Nspec(R) is a T2-space;

(iii) Nspec(R) is a T1-space.

Proof. (i) ⇒ (ii) : Suppose that every N-prime ideal of R is maximal, then it is

prime. Hence Spec(R) and Nspec(R) coincide. Since every prime ideal is maximal,

Nspec(R) ∼= Spec(R) is a T2-space.

(ii)⇒ (iii) : It is clear.

(iii) ⇒ (i) : Assume that Nspec(R) is a T1-space and P ∈ Nspec(R). By

Lemma 3.1 and the hypothesis,

Cl(P ) = V ∗(P ) = {P} = {
√
P} = V ∗(

√
P ).

This implies P is a maximal ideal. �

A topological space X is a connected space if it can not be express as a union

of two nonempty proper disjoint closed subset of X.

Theorem 3.3. The followings are equivalent for any ring R :

(i) R has no proper idempotent, that is, the idempotents are 0 and 1.

(ii) Nspec(R) is a connected space.

Proof. (i) ⇒ (ii) : Assume that the only idempotents in R are 0 and 1. Suppose

that V ∗(I) ∪ V ∗(J) = Nspec(R) and V ∗(I) ∩ V ∗(J) = ∅ for ideals I, J of R. Then

I + J = R and IJ ⊆ N(R) which implies a + b = 1 and (ab)k = 0 for some

a ∈ I, b ∈ J and k ∈ N.
Note that 〈a〉k + 〈b〉k = R and 〈a〉k〈b〉k = 0, by Chinese Remainder Theorem, we

get R ∼= R/〈a〉k × R/〈b〉k. Since R has no proper idempotent, either R/〈a〉k = 0 or

R/〈b〉k = 0, that is, a is a unit or b is a unit. Hence V ∗(I) = ∅ or V ∗(J) =

∅. Consequently, Nspec(R) is a connected space.

(ii)⇒ (i) : Suppose that Nspec(R) is a connected space and e is an idempotent

of R. Then e(1− e) = 0 ∈ N(R), and

V ∗(〈e〉) ∪ V ∗(〈1− e〉) = Nspec(R) and V ∗(〈e〉) ∩ V ∗(〈1− e〉) = ∅.

Since Nspec(R) is a connected space, either V ∗(〈e〉) = Nspec(R) or V ∗(〈e〉) = ∅. This

implies either e is a nilpotent element or a unit element, that is, e = 0 or e = 1. �
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