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A DUALITY-TYPE METHOD FOR THE FOURTH ORDER

OBSTACLE PROBLEM

Diana Rodica Merluşcă3

In this paper we study by duality the fourth order obstacle problem. The
main idea is to use Fenchel duality theorem. We apply the duality principle to the
approximate problem as well and the dual is a finite dimensional minimization
problem, which can be solved efficiently. The method developed here is easy to
implement. The obtained results are superior to other known methods, in the
considered examples.
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1. Introduction

The biharmonic obstacle problem is subject to intensive research activity due
to many authors, starting with the pioneering works of Landau and Lifshitz [16],
Brezis and Stampacchia [7], Duvaut and Lions [11, 12], Glowinski et al. [13] and
Comodi [10]. There are many applications in elasticity theory and fluid mechanics:
bending of plates and beams, Stokes problem, free boundary problems.

The well known paper by Caffarelli and Friedman [8] from 1979 proves regu-
larity of the solution up to the boundary in the case n ≤ 4. They proved that the
solution is C2(Ω) if n = 2. We also mention a paper on the stability of the solution
of the obstacle problem for plates by Pozzolini and Lèger [21], proving the existence
of a strong derivative of the solution. The Neumann boundary value problems for
the biharmonic obstacle problems was studied in the paper of Karachik, Turmetov
and Bekaeva [15], in which they give the necessary and sufficient conditions for the
solution to exist. We also find the problem of bending a plate over an obstacle
as an example of in the monograph by Rodrigues [22]. In Neittaanmaki, Sprekels
and Tiba [19], Sprekels and Tiba [23] a duality approach was used in the study of
Kirchhoff-Love arches and explicit solutions formulas were obtained. Other recent
papers that study the biharmonic obstacle problem are Chuquipoma, Raposo and
Bastos [9], Yau and Gao [26].

From the numerical point of view, there also are many articles that treat the
fourth order obstacle problem. One of the recent works in this area develops a Morley

1 D. R. Merluşcă, Institute of Mathematics of the Romanian Academy, Bucharest, Romania,
e-mail: dianam1985@yahoo.com; This paper is supported by the Sectorial Operational Programme
Human Resources Development (SOP HRD), financed from the European Social Fund and by the
Romanian Government under contract number SOP HRD/107/1.5/S/82514

147



148 Diana Rodica Merluşcă

finite element method for the displacement obstacle problem for the clamped Kirch-
hoff plates on polygonal domains, Brenner at al. [5]. There are many other articles
treating numerically the biharmonic obstacle problems in very different manners,
such as [1, 20, 2, 4].

In this paper we treat the biharmonic obstacle problem by the duality point
of view. We apply a similar algorithm as for the second order obstacle problem
in Merluşcă [17, 18]. Constructing the approximate problem and passing by the
Fenchel duality theorem, we obtain a finite dimensional dual problem. In Section
2, we consider the simply supported plate problem and we construct an approxi-
mate problem. In Section 3, by using Fenchel’s duality theorem we obtain the dual
approximate problem as a finite dimensional minimization problem. Section 4 is
dedicated to some numerical modelling and numerical results which point out that
in the cases considered here the duality method could generates better approximate
solutions in comparison with other methods. The argument is that the value of
the cost functional to be minimized is strictly less then the one obtained by other
methods.

2. The simply supported plate problem and its approximation

We consider that Ω ⊂ Rn, with n ≤ 3, a bounded open set with the strong
local Lipschitz property. We denote by V the space H2(Ω) ∩H1

0 (Ω) endowed with
the scalar product

(u, v)V =

∫
Ω

∆u∆v.

V is a Hilbert space and the norm

|y|V =

(∫
Ω

(∆y)2

) 1
2

is equivalent to the usual Sobolev norm.
We extend the duality method presented in Merluşcă [17, 18] to the following

obstacle problem

min
y∈K

{
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy

}
(1)

where f ∈ L2(Ω), and K = {y ∈ V : y ≥ 0 in Ω}.
The problem considered here is a simplified model of the simply supported

plate problem.
By the Sobolev theorem, and using the fact that dim Ω ≤ 3, we have H2(Ω)∩

H1
0 (Ω)→ C(Ω) and thus we may consider the following approximate problem

min

{
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy : y ∈ V ; y(xi) ≥ 0, i = 1, 2, . . . , k

}
(2)

where {xi}i∈N ⊆ Ω is a dense set in Ω. For each k ∈ N, we denote the closed convex
cone

Ck = {y ∈ V : y(xi) ≥ 0, i = 1, 2, . . . , k}.

Proposition 2.1. The following assertions are true

(i): Problem (1) has a unique solution ȳ ∈ K.
(ii): Problem (2) has a unique solution ȳk ∈ Ck, for any k ∈ N.
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The above Proposition can be easily proved using the compact imbedding
H2(Ω) ∩H1

0 (Ω)→ L2(Ω).
Furthermore, we have the following approximation result

Theorem 2.1. The sequence {ȳk}k of the solutions of problems (2), for k ∈ N, is a
strongly convergent sequence in V to the unique solution ȳ of the problem (1).

Proof. Let {ȳk}k∈N ⊆ V be the sequence of the solutions of the problems (2). Con-
sider y ∈ K arbitrary. Then y ∈ Ck, for every k ∈ N. Thus, since ȳk = argmin(Pk),
we have

1

2

∫
Ω

(∆y)2 −
∫

Ω
fy ≥ 1

2

∫
Ω

(∆ȳk)2 −
∫

Ω
fȳk, ∀y ∈ K,∀k ∈ N. (3)

Then, there is a constant M > 0 such that

M ≥ 1

2

∫
Ω

(∆yk)2 −
∫

Ω
fyk ≥

1

2
|ȳk|2V − c|f |L2(Ω)|ȳk|2V .

Then the sequence {|ȳk|V }k is bounded, which means that the sequence {ȳk}k ⊆ V
is weakly convergent, on a subsequence, to an element ŷ ∈ V .

Since ȳk(xi) ≥ 0 and ȳk → ŷ uniformly on Ω, then for every x ∈ Ω we have
ȳk(x) → ŷ(x). Then ŷ(xi) ≥ 0, ∀i ∈ N. As we assumed the set {xi : i ∈ N} to be
dense in Ω, it yields that ŷ ∈ K. Thus, ŷ is admissible for (1).

Since ȳ ∈ K, we can write (3) for ȳ,

1

2

∫
Ω

(∆ȳ)2 −
∫

Ω
fȳ ≥ 1

2

∫
Ω

(∆ȳk)2 −
∫

Ω
fȳk. (4)

Considering the weak inferior semicontinuity of the norm, we pass to the limit

1

2

∫
Ω

(∆ȳ)2 −
∫

Ω
fȳ ≥ 1

2

∫
Ω

(∆ŷ)2 −
∫

Ω
fŷ.

As we already stated in Proposition 2.1, the solution of problem (1) is unique, it
follows that ȳ = ŷ. Then ȳk → ȳ weakly in V .

To prove the strong convergence, we use (4) to get that

1

2
|ȳ|2V ≥ lim sup

k→∞

1

2
|yk|2V . (5)

Again, by the weak convergence we have the other inequality too

1

2
|ȳ|2V ≤ lim inf

k→∞

1

2
|yk|2V . (6)

Then, using Proposition 3.32, page 78, Brezis, [6] and the equality given by the
relations (5) and (6)

1

2
|ȳ|2V = lim

k→∞

1

2
|yk|2V ,

it follows that ȳk → ȳ strongly in V . Note that, since the limit is unique, the
convergence is valid without taking subsequences. �



150 Diana Rodica Merluşcă

3. The dual problem

In this section we construct the dual continuous and approximate problems
which will help us to solve problem (1) easier.

We denote V ∗ the dual space of V . By the Riesz representation theorem, for
every y∗ ∈ V ∗ we find a unique element v ∈ V such that

(y∗, y)V ∗×V = (v, y)V , ∀y ∈ V.

And, moreover, |y∗|V ∗ = |v|V .
Notice that H−2(Ω) is not dense in V ∗, since H2

0 (Ω) is not dense in V . But
the inclusion H2

0 (Ω) ⊂ V is continuous, then for every y∗ ∈ V ∗ the restriction
y∗|H2

0 (Ω) ∈ H−2(Ω).

Consider a sequence {vn}n ⊂ H4(Ω)∩H1
0 (Ω), such that vn → v ∈ H2(Ω) and

∆vn = 0 on ∂Ω. This is possible by taking vn as the solution of an appropriate
system of type (8), obtained from the similar system satisfied by v in a weak sense
and by regularizing its right-hand side. Let y∗n = I(vn) where I : V → V ∗ is the
canonical isomorphism. Obviously, if we denote I(v) = y∗ we get that y∗n → y∗

strongly in V ∗. Then

(y∗n, y)V ∗×V =

∫
Ω

∆vn∆y =

∫
Ω

(∆∆vn)y, ∀y ∈ V

Thus ∆∆vn = y∗n converges strongly to an element x ∈ V ∗. We denote this
element x with ∆∆v.

With the above arguments, the duality mapping J : V → V ∗ may be written
as J(v) = ∆∆v.

We consider the functional

F (y) =
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy, y ∈ V. (7)

The convex conjugate of F is

F ∗(y∗) = sup

{
(y∗, y)V ∗×V −

1

2

∫
Ω

(∆y)2 +

∫
Ω
fy : y ∈ V

}
.

Since f ∈ L2(Ω), with the arguments above we find a unique yf ∈ V , which is the
weak solution of the problem{

∆∆yf = f, on Ω
yf = 0,∆yf = 0, on ∂Ω

(8)

such as

(f, y)V ∗×V =

∫
Ω

∆∆yfy =

∫
Ω
fy, ∀y ∈ V.

Then

F ∗(y∗) = sup

{
(y∗ + f, y)V ∗×V −

1

2

∫
Ω

(∆y)2 : y ∈ V
}
.

Using the inequality (y∗ + f, y)V ∗×V ≤ 1
2 |y
∗ + f |2V ∗ + 1

2 |y|
2
V we obtain

F ∗(y∗) ≤ 1

2
|y∗ + f |2V ∗
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Since the duality mapping is bijective, for each y∗ + f ∈ V ∗ there exists an
element v ∈ V such that |v|2V = |y∗+ f |2V ∗ = (J(v), v)V ∗×V . Then (y∗+ f, v)V ∗×V −
1
2 |v|

2
V = 1

2 |y
∗ + f |2V ∗ . It yields that the convex conjugate of F is

F ∗(y∗) =
1

2
|y∗ + f |2V ∗ .

We now consider the functional g = −IK . From the concave conjugate defini-
tion we have

g•(y∗) =

{
0, y∗ ∈ K∗
−∞, y∗ 6∈ K∗

with K∗ = {y∗ ∈ V ∗ : (y, y∗)V×V ∗ ≥ 0, ∀y ∈ K} = V ∗+.
We can apply Fenchel duality Theorem (see Barbu and Precupanu, [3], pp

189), since F and −g are convex and proper functionals on H2(Ω) ∩ H1
0 (Ω), the

domain of g is D(g) = K, and F is continuous everywhere on K. Then

min
y∈K

{
1

2

∫
Ω

(∆ȳ)2 −
∫

Ω
fy

}
= max

{
−1

2
|f + y∗|2V ∗ : y∗ ∈ K∗

}
.

The dual problem associated to problem (1) is stated as

min

{
1

2
|f + y∗|2V ∗ : y∗ ∈ K∗

}
.

We compute the concave conjugated of gk = −ICk
which is needed for the

dual approximate problem. Thus, by definition, the concave conjugate is

g•k(y∗) = inf {(y, y∗)V×V ∗ − gk(y) : y ∈ Ck} =

{
0, y∗ ∈ C∗k
−∞, y∗ 6∈ C∗k

where C∗k = {y∗ ∈ V ∗ : (y∗, y)V ∗×V ≥ 0,∀y ∈ Ck}.

Lemma 3.1. Consider the Dirac distributions concentrated in xi ∈ Ω, i.e. δxi(y) =
y(xi), ∀y ∈ H2(Ω) ∩H1

0 (Ω).
The polar cone of Ck is

C∗k =

{
u =

k∑
i=1

αiδxi : αi ≥ 0

}
Proof. We denote

T =

{
u =

k∑
i=1

αiδxi : αi ≥ 0

}
The Dirac distributions δxi are linear and continuous functionals on V due to

the fact that H2(Ω) ∩H1
0 (Ω)→ C(Ω). This yields that T ⊂ V ∗.

We compute the polar of the cone T , which is, by definition,

T ∗ = {y ∈ V : (y, u)V×V ∗ ≥ 0, ∀u ∈ T} .

Note that

(y, u)V×V ∗ = (y,

k∑
i=1

αiδxi)V×V ∗ =

k∑
i=1

αi(y, δxi)V×V ∗ =

k∑
i=1

αiy(xi)
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and αi ≥ 0, ∀i = 1, k. Here we also use that T ⊂ H−2(Ω). Then we have the
equivalence (y, u)V×V ∗ ≥ 0, ∀u ∈ T ⇔ y(xi) ≥ 0, ∀i = 1, k. Thus

T ∗ =
{
y ∈ V : y(xi) ≥ 0,∀i = 1, k

}
= Ck.

Applying the polar to the above relation, we have (T ∗)∗ = C∗k .
The Bipolar theorem ( Barbu and Precupanu, [3], pp 88) states that

T ∗∗ = conv(T ∪ {0}). (9)

We have to prove just that T is a closed cone, because it is obvious that 0 ∈ T
and the cone T is convex.

Take u ∈ T . Then there exists a sequence (un)n ∈ T convergent to u in V .
Since un ∈ T , we have

un =
k∑

i=1

αn
i δxi → u in V ∗.

We consider S(xi, r) ⊂ Ω such that xj 6∈ S(xi, r), for i 6= j. For every i ∈
{1, 2, . . . , k}, let ρi ∈ D(S(xi, r)) ⊂ D(Ω) such that ρi(xi) = 1. Then, the con-
vergence above gives us(

k∑
i=1

αn
i δxi , ρj

)
V ∗×V

→ (u, ρj)V ∗×V , ∀j = 1, k.

We obtain
αn
j → (u, ρj)V ∗×V , ∀j = 1, k.

We denote αj = limn→+∞ α
n
j , and clearly it is independent of ρj .

Then

u = lim
n→∞

un = lim
n→∞

k∑
i=1

αn
i δxi =

k∑
i=1

(
lim
n→∞

αn
i

)
δxi =

k∑
i=1

αiδxi

which implies that u ∈ T .
Then T is closed and, from relation (9), it follows that T ∗∗ = T. Then T = C∗k

as claimed. �

Since the domain of gk is D(gk) = Ck and the functional F is still continuous
on the closed convex cone Ck, the hypothesis of Fenchel duality Theorem are satisfied
and

min

{
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy : y ∈ Ck

}
= max

{
−1

2
|y∗ + f |2V ∗ : y∗ ∈ C∗k

}
We write the dual approximate problem associated to problem (2)

min

{
1

2
|y∗ + f |2V ∗ : y∗ ∈ C∗k

}
. (10)

Theorem 3.1. Consider ȳk to be the solution of the approximate problem (2) and
ȳ∗k the solution of the dual approximate problem (10). Then

ȳk = J−1(ȳ∗k + f) (11)

where J is the duality mapping J : V → V ∗.
Moreover, (ȳ∗k, ȳk)V ∗×V = 0.
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Proof. We get the following system of equations from Theorem 2.4 (Barbu and
Precupanu, [3], pp 188)

ȳ∗k ∈ ∂F (ȳk), (12)

−ȳ∗k ∈ ∂ICk
(ȳk) (13)

where the functional F is the functional defined as in (7).
Using the definition of the subdifferential of a convex function, from (12), we

obtain ȳ∗k + f ∈ J(ȳk). Since the duality mapping is single-valued and bijective, we
get that ȳk = J−1(ȳ∗k + f).

From (13), we get for the indicator functions

ICk
(ȳk)− ICk

(z) ≤ (−ȳ∗k, ȳk − z)V ∗×V , ∀z ∈ Ck

Take z = 1
2 ȳk and we get

ICk
(ȳk) ≤ −(ȳ∗k, ȳk)V ∗×V

Then, take z = 2ȳk ∈ Ck and we have the opposite inequality

ICk
(ȳk) ≥ −(ȳ∗k, ȳk)V ∗×V

But, since ȳk ∈ Ck, we can conclude that (y∗k, yk)V ∗×V = 0 �

Remark 3.1. Since ȳ∗k ∈ C∗k , by Lemma 3.1, we know

ȳ∗k =
k∑

i=1

α∗i δxi ∈ H−2(Ω)

where α∗i ≥ 0 for all i = 1, 2, . . . , k. Then, from the Theorem 3.1,

0 = (ȳ∗k, ȳk)V ∗×V = (
k∑

i=1

α∗i δxi , ȳk)V ∗×V =
k∑

i=1

α∗i (δxi , ȳk)V ∗×V =
k∑

i=1

α∗i ȳk(xi)

Thus,
k∑

i=1

α∗i ȳk(xi) = 0

Again ȳk ∈ Ck, using the definition of the cone Ck, we have ȳk(xi) ≥ 0 for all
i = 1, 2, . . . , k. Then

α∗i ȳk(xi) = 0, ∀i = 1, 2, . . . , k.

In conclusion, the Lagrange multipliers α∗i are zero if the constraint is inactive,
i.e. ȳk(xi) > 0 and they can be positive only when the constraint is active, i.e.
ȳk(xi) = 0.

4. Numerical applications and comparison of the dual method with
other methods

In this section we discuss the numerical implementation of the algorithm and
we explain how to solve the dual approximate problem.

In the space V = H2(Ω) ∩ H1
0 (Ω) with the scalar product (·, ·)V given in

Section 3, we have already seen that the duality mapping J : V → V ∗ is defined by
J(y) = ∆∆y and it is a linear, single-valued, bijective operator.
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For every y∗ ∈ C∗k

|y∗ + f |2V ∗ = |J−1(y∗ + f)|2V =
∣∣∣ k∑
i=1

αiJ
−1(δxi) + J−1(f)

∣∣∣2
V

Due to the definition of the duality mapping, we can denote Φi = J−1(δxi),
for all i ∈ {1, 2, . . . , k}. Since δxi ∈ V ∗, Φi are the weak solution of the problem{

∆∆Φi = δxi , in Ω
Φi = 0,∆Φi = 0, on Ω

(14)

We have already introduced J−1(f) = yf in (8), Section 3. Then

|y∗ + f |2V ∗ =
∣∣∣ k∑
i=1

αiΦi + yf

∣∣∣2
V

Computing this norm, with respect to the scalar product on V , we obtain

|y∗ + f |2V ∗ =

k∑
i,j=1

αiαj

∫
Ω

∆Φi∆Φj +

k∑
i=1

αi

∫
Ω

∆Φi∆yf +

∫
Ω

(∆yf )2

We denote

aij =

∫
Ω

∆Φi∆Φj , ∀i, j ∈ {1, . . . , n}, bi =

∫
Ω

∆Φi∆yf , i ∈ {1, . . . , n} (15)

Then the dual approximate problem is equivalent to the quadratic optimization
problem

min

{
1

2
αTAα+ bTα : α ∈ Rn, αi ≥ 0, ∀i = 1, 2, . . . , n

}
(16)

where A = [aij ] and b = [bi].
We compute now aij and bi. To this end, we remark that (14) can be rewritten

as {
∆y = z, in Ω
y = 0, on Ω

{
∆z = δxi , in Ω
z = 0, on Ω

(17)

Then we denote by ϕi the weak solutions of the second equation in (17) for
all i ∈ {1, 2, . . . , k}. Then we obtain that

aij =

∫
Ω
ϕiϕj , ∀i, j ∈ {1, 2, . . . , n}

As for the components of the vector b, we have

bi =

∫
Ω

∆Φi∆yf =

∫
Ω

∆∆Φiyf = (δxi , yf )V ∗×V = yf (xi).

For i 6= j, we get

aij =

∫
Ω

∆Φi∆Φj = Φi(xj)

and, since δxi ∈ V ∗, it yields that Φi ∈ V , hence, its norm is finite in V ,

aii =

∫
Ω

(∆Φi)
2 = |Φi|2V
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After finding the solution α∗ for the quadratic problem (16) we apply the
formula stated in Theorem 3.1, i.e.

ȳk(xi) =
k∑

j=1

α∗jφj(xi) + yf (xi).

Example 4.1. We consider Ω = (−1, 1) and we take the function

f(x) = 1680x4 − 1170x2 + 90.

We consider the simply supported beam conditions at the limit. We solve the
following problem

min
y∈K

{
1

2

∫
Ω

(y′′)2 −
∫

Ω
fy

}
where K = {y ∈ H1

0 (Ω) ∩H2(Ω) : y ≥ 0 in Ω}.
In figure 1 we represent the two solutions, one computed using the dual method

presented above, the other computed using the direct method (IPOPT optimizer for
large scale, non-linear, constrained optimization, implemented in Freefem++; for
details see Wächter and Biegler [25] and Hatch [14]).

Figure 1. Comparison of the two solutions.

We computed the values of the cost functional at the two approximate so-
lutions. Table 1 shows that the cost functional has lower values for the solutions
computed by the dual method.

Table 1. The values of the cost functional for different partitions k
of (−1, 1).

k 801 1401 1601 1801 2001

IPOPT -0.373085 -0.373096 -0.373098 -0.373099 -0.3731
Dual -0.391613 -0.391625 -0.391626 -0.391627 -0.391628
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Example 4.2. We take Ω the unit disc in R2 and we solve the obstacle problem

min
y∈K

{
1

2

∫
Ω

(∆y)2 −
∫

Ω
fy

}
(18)

where K = {y ∈ H1
0 (Ω) ∩H2(Ω) : y ≥ 0 in Ω} and

f(x1, x2) = 100(−x2
1 + 3x1).

We computed again the two solutions. The one by the dual method is rep-
resented in Figure 2 and the one by the IPOPT method is represented in Figure
3.

Figure 2. The solution obtain using the dual method.

Figure 3. The solution given by IPOPT method.

We considered the points {xi}i as the vertices of the mesh. The two solutions
have been computed on the same mesh and with the same default tolerance param-
eters for the IPOPT minimization method. We also mention that we used a double
P1 finite element space to compute both solutions.

Comparing the values in Table 2 we conclude that, also in this example, the
minimum values of the cost functional are lower when applying the dual method.
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Table 2. The values of the cost functional for different meshes with
the number of vertices denoted by k.

k 205 682 1031 1431 1912 2797

IPOPT -55.8069 -57.9099 -58.168 -58.3493 -58.4457 -58.5392
Dual -78.0675 -80.5279 -80.8705 -81.113 -81.2397 -81.3977
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