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SOURCE IDENTIFICATION PROBLEM FOR DEGENERATE
DIFFERENTIAL EQUATIONS

Fadi AwawDEH!, H.M. OBIEDAT?

This paper deals with an identification problem for degenerate parabolic
equations. The problem consists of recovering a source term from the knowledge
of an additional observation of the solution by exploiting some accessible measure-
ments. Existence, uniqueness and continuous dependence results are proved for
the problem. Applications to the source identification problems for the Poisson-
heat equation and Mazwell system are given to illustrate the theory.
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1. Introduction

Using partial differential equations to model physical systems is one of the
oldest activities in applied mathematics. A complete model requires certain state
inputs in the form of initial and/or boundary data together with what might be
called structure inputs such as coeflicients or source terms which are related to the
physical properties of the system. Obtaining a unique solution for the associated
well-posed problem constitutes what we will call solving the direct problem. Solving
the direct problem permits the computation of various system outputs of physical
interest. On the other hand, when some of the required inputs are not available we
may instead be able to determine the missing inputs from outputs that are measured
rather than computed by formulating and solving an appropriate inverse problem.
In particular, when the missing inputs are one or more unknown coefficients in
the partial differential equation, the problem is called a coefficient identification
problem and when the source term is missing it is a source identification problem
(see [11,15,22,23)).

We point out that the problem of identifying a linear source in nondegenerate
parabolic equations is very popular and widely studied in the literature concerning
inverse problems for PDEs. The question of uniqueness has been solved in [7,8,14]
by a method based on local Carleman estimates. There have been many papers
dealing with the Lipschitz stability for parabolic problems (see for instance [13]).
All these Lipschitz stability results were obtained using global Carleman estimates,
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which were first introduced to prove observability inequalities and null controllability
results. Semigroup theory and fixed point argument are also applied in the field of
inverse problems by Prilepko et. al. [24, chapter 7], Orlovsky [20,21], Awawdeh
[5,6], Lorenzi [16-19].

In contrast, in both fields of controllability and inverse problems very few
results are known for degenerate parabolic equations, even though this class of
operators occurs in interesting theoretical and applied problems such as diffusion
processes, laminar flow and climatology models (see, e.g., [1-4] and [7,8]).

Let X be a Banach space endowed with the norm ||-|| and let M and L be
two single valued closed linear operators in X. Let z € X; let ¢ : X — R, be a
C' functional and let us consider the following identification problem for degenerate
equations:

(IP) given ug € X and g € C1([0,7];R), find f € CL([0,7];R) and a strict
solution v € C1([0, 7]; X) of the degenerate problem

4 = Lo(t) + f(t)z, 0<t<r,
Mv(0) = uo,

satisfying the additional condition

¢[Mo(t)] = g(t).

The object of this paper can be described as follows: Is it possible to recover a source
term f from the knowledge of an additional observation of the solution? We answer
this question in the case of the boundary observation ¢[Mv(t)] = g(t).

We note that (IP) represents the mathematical model for various phenomena,
such as, for instance, heat transfer obeying Fourier’s Law or linear diffusion in a
homogeneous three-dimensional body. On the other hand, the set {f(:)z; z € X}
can be viewed as a family of special feedback laws which modify the instantaneous
rate of change, (Mv)'(t), only along the z direction and having the same sense as z,
and ‘magnitude’ f(¢). So, the problem (IP) consists in finding the ‘right magnitude
f’ of the feedback, in order for (IP) to have a unique strict solution v having a
preassigned mean, i.e. g.

In this work we present some results concerning solutions of problem (IP)
using semigroup theory and perturbation theory for linear operators.

The rest of the paper is organized as follows. In the next section, some defini-
tions and preliminary results are introduced. Section 3 presents sufficient conditions
for the existence and uniqueness of solutions for problem (IP). Section 4 is devoted
to the problem of existence and uniqueness of solution for degenerate systems of
Maxwell equations and Poisson-heat equations.

2. Preliminary Results

We denote by X a Banach space with norm |[|-|| and A : D(A) — X is the
infinitesimal generator of a cg-semigroup of bounded linear operators T'(t), ¢t > 0, on
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X. It is well known that A is closed and its domain D(A) equipped with the graph
norm

ll.4 = [l + (| Az]

becomes a Banach space, which we shall denote by X 4.

Let L and M be two single valued, closed linear operators in a Banach space
X with D(L) € D(M). We are concerned with resolvent of the multivalued linear
operator LM 1. In order to represent (A— LM ~1)~! by L and M, we introduce the
notion ppr(L) of the M resolvent set of L by:

pym(L) = {\ € C; AM — L has a single valued and bounded inverse on X}
and the bounded operator (AM — L) is called the M resolvent of L.

Theorem 2.1 ([12]). Let A be a multivalued linear operator on X such that A — 3
s maximal dissipative with some real number 3, i.e., A satisfies

Re(f,u)x < B ull% for all f e Au (1)
with the range condition
RN — A) =X  for some Xy > f. (2)
Then, p(A) D (B,00) and A satisfies

(A —A x> B

1
—1
Men < 15

By virtue of Theorem 2.1, if A is a multivalued linear operator on X with a
maximal dissipative A — 3, € R, a semigroup T'(t) = e!4 is generated by A on the
whole space X with the estimate

tA Bt
e HL(X) sev.
For more details about the construction of the exponential semigroup, the

reader can refer to [12].

Theorem 2.2 ([12]). Let X be a Banach space and A be a multivalued linear op-
erator generating a co-semigroup T(t) on X. For any f € C*([0,T); X) and any
ug € D(A), the function
t
Mﬂziﬁmm+/T@—@ﬂ$®
0

1s the unique solution to the multivalued problem
u'(t) € Au(t) + f(t), 0<t<T,
u(0) = wp.

The following result from perturbation theory for linear operators will be help-
ful in the sequel.
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Theorem 2.3 ([10]). Let X be a Banach space and let A be the infinitesimal genera-
tor of a co-semigroup T'(t) on X. If B: X4 — X4 is a continuous linear operator,
then A+ B is the infinitesimal generator of a cy-semigroup on X.

3. Main Results

Let us first consider the multivalued identification problem in a Banach space

X:
dl;it) € Au(t) + f(t)z 0<t<m (3)
u(0) = o, (4)
olu(t)] = g(t), 0<t<, (5)

where A is a multivalued linear operator on X, z,ug € X, g € C1([0,7];R), ¢ € X*,
X* being the dual space to X, and u € C([0,7]; D(A)) and f € C([0,7];R) are the
unknown functions.

We will propose a method coupled with the perturbation theory for linear
operators for the solvability of the identification problem (3)-(5).

Theorem 3.1. Let A be a multivalued linear operator that generates a co-semigroup
on X, z € X, up € D(A), g € CY[0,7;R), ¢ € X* and ¢[z] # 0. Then the

identification problem (3)-(5) possesses a unique solution in the class of functions
we CY([0,7];D(A)), feC([0,7}R).
Proof. By applying the linear functional ¢ to both sides of (3) and using (5) we have
g'(t) € plAu(t)] + f(t)9[2],
and if ¢[z] # 0, we obtain

1 /
ft) e W(g (t) — ¢[Au(t)]) (6)
Substituting (6) in (3), we get
u'(t) € Au(t) + qb[lz](gl(?f) — ¢lAu(t)])z. (7)
By defining the operator
~1
Br = @((ﬁ[flx])za (8)
then (7) becomes
u'(t) € (A+ B)u(t) + Lg'(lt)z. (9)

¢lz]

The boundedness of the operator B in X 4, follows from the estimate
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IBlly = sup |Bul|

=]l 4 =1
= Qj[zl]w(m)])z
< WA 1o =1 191 =1
< o lEllel-

This proves that B is a bounded linear operator on X 4. By virtue of Theorem 2.3,
A + B is the infinitesimal generator of a semigroup S(¢), ¢ > 0. Since ug € D(A),
Theorem 2.2 implies that the Cauchy problem (3)-(4) has a unique solution u(t)

t

2/

u(t) = —— [ S(t — s)g'(s)zds, 10

) 0 (10)
0

and by (6) and (10), f(¢) is uniquely determined. Therefore, the reduced problem

(3)-(5) possesses a unique solution (u, f) and the proof is completed. O

Consider now the identification degenerate problem (/P) in the Banach space
X where M and L are single valued closed linear operators in X with D(L) C D(M),
z€ X, up € D(L), g € CY[0,7];R), ¢ € X* and the pair (u, f) € C([0,7]; D(L)) x
C(]0,7];R) is to be determined.

Note that M may have no bounded inverse and so the classical theory of
semigroups does not apply here.

We assume the resolvent set pps(L) contains a region

Y, ={AeC:Re(A—7) > —c(ImA] +1)*, ~yeR, (11)
and the M resolvent satisfies

C

—1
[MOAM = L) ) < TSI

A€ X, (12)
with some exponents 0 < § < a < 1 and constants ¢, C' > 0.

We can now prove existence and uniqueness theorem of solutions to the iden-
tification problem (IP).

Theorem 3.2. Let M and L be closed linear operators in the Banach space X with
D(L) ¢ D(M), z € X, up € D(L), M(D(L)) is dense in X, g € C([0,7];R),
¢ € X*, ¢[z] #0 and (11) and (12) be satisfied. Then, problem (IP) possesses a
unique solution (v, f) such that

Mv e CH((0,7); X), LveC((0,7;X), feC([0,7;R).
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Proof. By changing the unknown function to u(t) = Mwv(t), we write the identifica-
tion problem (IP) into the multivalued form

WO ¢ LM u(t) + f(t)z,  0<t<T,
u(0) = uo, (13)
Plu(t)] = g(1), 0<t<r.

In addition, change of the unknown function to u,(t) = e~ "*u(t) yields that (13) is
regarded as a multivalued equation of the form (3)-(5) with a coefficient operator
A= LM™! —~. We can verify that if L and M are any two closed linear operators
in X then py(L) C p(LM~Y) and M(AM — L)™' = (A= LM~1)~1 (see [12]). Tt
follows for A+ € pas(L) that
A=A =M(A+yM-L)"!
In this line, (11) and (12) yields directly that:
The resolvent set p(A) contains a region

Y={Ae€C:ReX>—c(|ImA +1)¢ ~eR, (14)
and the resolvent (A — A)~! satisfies
¢
=+ D7

with some exponents 0 < f < a < 1 and constants ¢,C > 0. (14) and (15)
ensure that the multivalued linear operator A generates an infinitely differentiable
semigroup on X, (see [2]). Therefore, the reduced multivalued problem possesses a

[ =), x) AET, (15)

unique strict solution (u, f). Clearly u, is a strict solution to (3)-(5) if and only if
v is a strict solution to the identification problem (IP) in the sense

Mv € C*((0,7]; X), Lv € C((0,7]; X).
Finally, the uniqueness of the solution v follows from the invertibility of yM — L. O

Since D(A) = D(LM~1) = M(D(L)) the continuity of Muv(t) at t = 0 in the
topology of X is obtained as follows:

Theorem 3.3. Let ug € M(D(L) if « = 8 = 1 and ug € M(D(L)) on the other
case (o # 1 or B # 1). Then for the solution v obtained in Theorem 3.2, Muv(t) is
continuous at t = 0 in the norm of X, i.e. Mv € C([0,7]; X) with Mv(0) = ug if
ug € M(D(L)).

Next, we consider the identification problem (IP) in X, X being a Hilbert
space with the inner product (-,-)x. We assume:

Re(Lv, Mv)x < B ||Mv|3 , v e D(L); (16)

R(MM — L) = X and (\oM — L) ! is single valued for some A\ > 3. (17)

Then we prove the following theorem:



Source Identification Problem for Degenerate Differential Equations 67

Theorem 3.4. Let M and L be linear operators in the Hilbert space X with D(L) C
D(M), z € X, up € D(L), M(D(L)) is dense in X, g € C1([0,7];R), ¢ € X*,
¢[z] # 0 and (16) and (17) be satisfied. Then, for any ug € M(D(L)), problem (IP)

possesses a unique solution (v, f) such that
Muv e CH([0,7]; X), LveC([0,7];X), feCH[0,7];R),

Proof. By changing the unknown function u(t) = Mw(t), we write (IP) into a
multivalued problem of the form (3)-(5) with the operator coefficient A = LM~
Since M ! is not continuous in general, the operator A is considered as a multivalued
linear operator. To show that (1) is satisfied, let h € Au, then h = LM ~‘u = Lv
and Mv = u for some v € D(L). So that, (h,u)x = (Lv, Mv)x, which shows that
(1) follows from (16). On the other hand, for any h € X, we have by (17) that
h = (AoM — L)v for some v € D(L). If we put u = Mv, then u € M(D(L)) = D(A)
and h € (A\g — A)u, i.e. (2) satisfied. According to Theorem 2.1, this proves that
A — [ is maximal dissipative in X and so A is the generator of a cg-semigroup on
X. Clearly, up € D(A) if and only if ug € M(D(L)). O

4. Applications
4.1. Identification Problem of the Poisson-heat Equation

In several applications, when the temperature of a thermal body, subjected to
an external supply of heat, is to be determined, the source itself is often unknown or
scarcely known. So, we have to face with recovering both the temperature and the
unknown source. To compensate for the lack of information, suitable measurements
involving the temperature are given, as well as suitable assumptions on the source
are made. For instance, it is assumed to depend on one space variable, i.e. on time
only or, to be the product of two functions, the first depending on the temperature
and the latter on the space variable.

Consider the Poisson-heat equation:

3ma(tm)v = Av + f(t)h(z), (x,t) € Q x (0,71,
v =0, (z,t) € 0Q x (0,71, (18)
m(z)v(x,0) = up(x), x € Q,

with the supplementary condition

/Q n(@)m(@)o(z, dz = g(t), Wt € [0,T] (19)

in a bounded region 2 C R” with a smooth boundary 992. Here m(xz) > 0in Q is a
given function in L*>(Q), ug,n,h € H~1(Q2), and g is continuous function on [0, 7.

We start by introducing a convenient abstract frame. Let X = H (),
then this problem is formulated as a problem of the form (I P) in which M : L*(Q) —
L*(Q) C X is the multiplication operator by the function m(z) and L : H}(Q) —
H~Y(Q) is A with the Dirichlet boundary conditions.
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For A € C, consider the sesquilinear form
a)(u,v) = )\/m(:c)uvd:c + /Vu Vodz,  u,v € HHQ),
Q Q

defined on HE(Q2). Obviously this form is continuous on H}(f2). In addition for
5 <w < m and for suitable ¢ > 0, the following estimate

2
jax(u, 0)| = 8(||ull7 + (A |[Vmull7.),  we Hy(Q),

is observed to hold for each A € ¥ = {A € C: |argA| <w or |\ <c} with some
uniform 0 > 0. Then, since

a)(u,v) = ((AM — L)u, U>H_1><Hé . u,v € Hy(Q),

the Lax-Milgram Theorem (see [25; p. 92]) yields that A\M — L, A € X, has a
bounded inverse from H~1(Q) to H}(Q) with an estimate

S(llullfi + M [V ) < el el if w=AM-L)""p.
Hence, ||Lul| -1 < C Hu||H5 < C||l¢|lfg-1- Moreover, noting the identity
AMOAM — L)™' =14+ LM - L),
we obtain that
[MOM — L) ol 0 <CIN T ellg-, 0 e HHQ).

This immediately yields that (14) and (15) are valid with a = =1, v = 0.
From Theorem 3.2 it follows that for any uy € H1(Q), problem (18)-(19)
possesses a unique solution (v, f) such that

mv € CH(0, T HH(Q), v e C(0,THHT(Q), feC([0,T;R).
In addition, Theorem 3.3 yields that mv is continuous at t = 0 if ug = muvy with
some vg € L(Q).

4.2. The Identification Problem related to the system of Maxwell

equations

Consider the system of Maxwell equations in a bounded domain  C R? :

0B
t B =—— 20
ro at? ( )
oD
t H=—+J
70 ot + J,

where F is the vector of electric field strength, H is the vector of the magnetic
field strength, D and B are designate the electric and magnetic induction vectors,
respectively. In what follows we denote by J the current density.

In the sequel we deal with a linear medium in which the vectors of strengths
are proportional to those of inductions in accordance with the governing laws:

D=¢E, B=uH, (21)
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and we assume, in addition, that Ohm’s law
J=ocFE+1 (22)

is satisfied in the domain €2, where ¢ is the dielectric permeability of the medium, p
is the magnetic permeability, o is the electric conductance and I the density of the
extraneous current. Further development is connected with the initial conditions for
the vectors of the electric and magnetic inductions:

D(z,0) = Do(z), (23)
B(z,0) = By(x).

The direct problem here consists of finding the functions E, D, H, B from the system
(20)-(23) for the given functions €, u, o, I, Dy and By involved. The statement of an
inverse problem involves the density of the extraneous current as an unknown of the
structure

I(w,1) = f(t)p(x), (24)
here the matrix p(z) of size 3 x 3 is known for all x € 2, while the unknown vector-
valued function f(t) is sought. To complete such a setting of the problem, we take
the integral overdetermination in the form

/E(:c,t)w(m) = g(t), 0<t<T, (25)
Q

where the function w(z) is known in advance. The system of equations (20)-(25)
is treated as the inverse problem for the Maxwell system related to the unknown
functions F, H and f.

By setting
(BN (em) 0\ o (o) 0 (1)
(o= v (5 8 pen=(57)
then system (20)-(23) can be written as
3
=Ygy H W S0, @R T, @

with certain 6 x 6 matrices a;, i = 1,2, 3.
e(x), u(r) and o(x) are assumed to be real matrices and the components of
which are bounded measurable functions in R3. In addition, we assume:

e(x) is symmetric and e(x) > 0 for all z € R?; (28)

p(x) is symmetric and p(z) > 6, for some 6 > 0 uniformly in z € R?; (29)
({ve(x)+o(x)}E,€) > 6 ||€]1?, € € R3, for some § > 0 and v > 0 uniformly in z € R,

(30)

Further treatment of the system (20)-(25) as an abstract problem is connected
with introducing the Lebesgue space

X = (LA(R%)* x (LX(R?))* = (L*(R%))",
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using the bounded operator M of multiplication by c(z) acting in X (the adjoint
operator M*of M satisfies M* = M) and the closed linear operator L accept for
each v € D(L) the set of relations

In doing so, the symbols v(t) and f(t)z will refer to the same functions v(z,t) and
f(t)p(x) but being viewed as abstract functions of the variable ¢ with values in the
space X. The symbol uy will be used in treating the function ug (z) = (Do(z), Bo(z))
as the element of the space X. With these ingredients, the system (20)-(25) reduces
to the inverse problem (/P) in the Banach space X.

Condition (16) is verified as follows. Let v € Y = (H'(R3))% € D(L). Then,

3
0
(Lv,v)x = — (U, Zaiai; + b(@”) + (b(z)v,v)x + (v, b(z)v)x;
=1 X
so that,
Re(Lv,v)x = Re(b(z)v,v)x = —Re(cE, E)p2.
In this line, (29) and (30) yield that
Re(Lv,v)x < ~0(El2: + [ H|%2) +3(e() B, By + (u(w) H, H) 12
< =6 |[vllx + A(e(2) B, E) 2 + (u(2)H, H) 2)
= =6 [[vll% + MMl (31)
where A > max{v,1}. This estimate is in fact verified for v € D(L) also, because
there exists a sequence v, € Y such that v, — v and Lv, — Lv in X. Thus, (1)
holds with § = max{vy,1}.
Let us next verify (17). Since (31) yields that
[AM™M — L)v||x = 6 o] x, v e D(L),
then (AM*M — L) is seen to be one-to-one and to have a closed range. Therefore
it suffices to verify that R(AM*M — L)+ = {0}. Let w € R(AM*M — L)*, then
w € D(L*) and (AM*M — L*)w = 0. On the other hand, since the principal part of
L is symmetric, w € D(L). Therefore, (31) yields
5 wl% + A Mwlk > Re(Lw, w)x = Re(w, Lw)x =\ | Mw|%,

and so w = 0.
As a result, if conditions (28)-(30) are satisfied, then a solution E, H,p of the
identification problem (20)-(25) exists and it is unique in the class of functions

E,H € C([0,T); (L*(R%))?), p e C([0,T;R%).
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