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This paper deals with an identification problem for degenerate parabolic

equations. The problem consists of recovering a source term from the knowledge

of an additional observation of the solution by exploiting some accessible measure-

ments. Existence, uniqueness and continuous dependence results are proved for

the problem. Applications to the source identification problems for the Poisson-

heat equation and Maxwell system are given to illustrate the theory.
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1. Introduction

Using partial differential equations to model physical systems is one of the

oldest activities in applied mathematics. A complete model requires certain state

inputs in the form of initial and/or boundary data together with what might be

called structure inputs such as coefficients or source terms which are related to the

physical properties of the system. Obtaining a unique solution for the associated

well-posed problem constitutes what we will call solving the direct problem. Solving

the direct problem permits the computation of various system outputs of physical

interest. On the other hand, when some of the required inputs are not available we

may instead be able to determine the missing inputs from outputs that are measured

rather than computed by formulating and solving an appropriate inverse problem.

In particular, when the missing inputs are one or more unknown coefficients in

the partial differential equation, the problem is called a coefficient identification

problem and when the source term is missing it is a source identification problem

(see [11,15,22,23]).

We point out that the problem of identifying a linear source in nondegenerate

parabolic equations is very popular and widely studied in the literature concerning

inverse problems for PDEs. The question of uniqueness has been solved in [7,8,14]

by a method based on local Carleman estimates. There have been many papers

dealing with the Lipschitz stability for parabolic problems (see for instance [13]).

All these Lipschitz stability results were obtained using global Carleman estimates,
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which were first introduced to prove observability inequalities and null controllability

results. Semigroup theory and fixed point argument are also applied in the field of

inverse problems by Prilepko et. al. [24, chapter 7], Orlovsky [20,21], Awawdeh

[5,6], Lorenzi [16-19].

In contrast, in both fields of controllability and inverse problems very few

results are known for degenerate parabolic equations, even though this class of

operators occurs in interesting theoretical and applied problems such as diffusion

processes, laminar flow and climatology models (see, e.g., [1-4] and [7,8]).

Let X be a Banach space endowed with the norm ∥·∥ and let M and L be

two single valued closed linear operators in X. Let z ∈ X; let ϕ : X → R+ be a

C1 functional and let us consider the following identification problem for degenerate

equations:

(IP ) given u0 ∈ X and g ∈ C1([0, τ ];R), find f ∈ C1([0, τ ];R) and a strict

solution v ∈ C1([0, τ ];X) of the degenerate problem{
dMv
dt = Lv(t) + f(t)z, 0 ≤ t ≤ τ,

Mv(0) = u0,

satisfying the additional condition

ϕ[Mv(t)] = g(t).

The object of this paper can be described as follows: Is it possible to recover a source

term f from the knowledge of an additional observation of the solution? We answer

this question in the case of the boundary observation ϕ[Mv(t)] = g(t).

We note that (IP ) represents the mathematical model for various phenomena,

such as, for instance, heat transfer obeying Fourier’s Law or linear diffusion in a

homogeneous three-dimensional body. On the other hand, the set {f(·)z; z ∈ X}
can be viewed as a family of special feedback laws which modify the instantaneous

rate of change, (Mv)′(t), only along the z direction and having the same sense as z,

and ‘magnitude’ f(t). So, the problem (IP ) consists in finding the ‘right magnitude

f ’ of the feedback, in order for (IP ) to have a unique strict solution v having a

preassigned mean, i.e. g.

In this work we present some results concerning solutions of problem (IP )

using semigroup theory and perturbation theory for linear operators.

The rest of the paper is organized as follows. In the next section, some defini-

tions and preliminary results are introduced. Section 3 presents sufficient conditions

for the existence and uniqueness of solutions for problem (IP ). Section 4 is devoted

to the problem of existence and uniqueness of solution for degenerate systems of

Maxwell equations and Poisson-heat equations.

2. Preliminary Results

We denote by X a Banach space with norm ∥·∥ and A : D(A) → X is the

infinitesimal generator of a c0-semigroup of bounded linear operators T (t), t ≥ 0, on
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X. It is well known that A is closed and its domain D(A) equipped with the graph

norm

∥x∥A = ∥x∥+ ∥Ax∥
becomes a Banach space, which we shall denote by XA.

Let L and M be two single valued, closed linear operators in a Banach space

X with D(L) ⊂ D(M). We are concerned with resolvent of the multivalued linear

operator LM−1. In order to represent (λ−LM−1)−1 by L and M , we introduce the

notion ρM (L) of the M resolvent set of L by:

ρM (L) = {λ ∈ C;λM − L has a single valued and bounded inverse on X}

and the bounded operator (λM − L)−1 is called the M resolvent of L.

Theorem 2.1 ([12]). Let A be a multivalued linear operator on X such that A− β

is maximal dissipative with some real number β, i.e., A satisfies

Re(f, u)X ≤ β ∥u∥2X for all f ∈ Au (1)

with the range condition

R(λ0 −A) = X for some λ0 > β. (2)

Then, ρ(A) ⊃ (β,∞) and A satisfies∥∥(λ−A)−1
∥∥
L(X)

≤ 1

λ− β
, λ > β.

By virtue of Theorem 2.1, if A is a multivalued linear operator on X with a

maximal dissipative A− β, β ∈ R, a semigroup T (t) = etA is generated by A on the

whole space X with the estimate∥∥etA∥∥
L(X)

≤ eβt.

For more details about the construction of the exponential semigroup, the

reader can refer to [12].

Theorem 2.2 ([12]). Let X be a Banach space and A be a multivalued linear op-

erator generating a c0-semigroup T (t) on X. For any f ∈ C1([0, T ];X) and any

u0 ∈ D(A), the function

u(t) = T (t)u0 +

t∫
0

T (t− s)f(s)ds

is the unique solution to the multivalued problem

u′(t) ∈ Au(t) + f(t), 0 ≤ t ≤ T,

u(0) = u0.

The following result from perturbation theory for linear operators will be help-

ful in the sequel.
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Theorem 2.3 ([10]). Let X be a Banach space and let A be the infinitesimal genera-

tor of a c0-semigroup T (t) on X. If B : XA −→ XA is a continuous linear operator,

then A+B is the infinitesimal generator of a c0-semigroup on X.

3. Main Results

Let us first consider the multivalued identification problem in a Banach space

X:

du(t)

dt
∈ Au(t) + f(t)z , 0 ≤ t ≤ τ, (3)

u(0) = u0, (4)

ϕ[u(t)] = g(t), 0 ≤ t ≤ τ, (5)

where A is a multivalued linear operator on X, z, u0 ∈ X, g ∈ C1([0, τ ];R), ϕ ∈ X∗,

X∗ being the dual space to X, and u ∈ C([0, τ ];D(A)) and f ∈ C([0, τ ];R) are the

unknown functions.

We will propose a method coupled with the perturbation theory for linear

operators for the solvability of the identification problem (3)-(5).

Theorem 3.1. Let A be a multivalued linear operator that generates a c0-semigroup

on X, z ∈ X, u0 ∈ D(A), g ∈ C1([0, τ ];R), ϕ ∈ X∗ and ϕ[z] ̸= 0. Then the

identification problem (3)-(5) possesses a unique solution in the class of functions

u ∈ C1([0, τ ];D(A)), f ∈ C1([0, τ ];R).

Proof. By applying the linear functional ϕ to both sides of (3) and using (5) we have

g′(t) ∈ ϕ[Au(t)] + f(t)ϕ[z],

and if ϕ[z] ̸= 0, we obtain

f(t) ∈ 1

ϕ[z]
(g′(t)− ϕ[Au(t)]). (6)

Substituting (6) in (3), we get

u′(t) ∈ Au(t) +
1

ϕ[z]
(g′(t)− ϕ[Au(t)])z. (7)

By defining the operator

Bx =
−1

ϕ[z]
(ϕ[Ax])z, (8)

then (7) becomes

u′(t) ∈ (A+B)u(t) +
1

ϕ[z]
g′(t)z. (9)

The boundedness of the operator B in XA, follows from the estimate
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∥B∥A = sup
∥x∥A=1

∥Bx∥

= sup
∥x∥A=1

∥∥∥∥ −1

ϕ[z]
(ϕ[A(x)])z

∥∥∥∥
≤ sup

∥x∥A=1

1

|ϕ[z]|
∥z∥ ∥ϕ∥ ∥Ax∥

≤ 1

|ϕ[z]|
∥z∥ ∥ϕ∥ .

This proves that B is a bounded linear operator on XA. By virtue of Theorem 2.3,

A + B is the infinitesimal generator of a semigroup S(t), t ≥ 0. Since u0 ∈ D(A),

Theorem 2.2 implies that the Cauchy problem (3)-(4) has a unique solution u(t)

u(t) = S(t)u0 +
1

ϕ[z]

t∫
0

S(t− s)g′(s)zds, (10)

and by (6) and (10), f(t) is uniquely determined. Therefore, the reduced problem

(3)-(5) possesses a unique solution (u, f) and the proof is completed. �

Consider now the identification degenerate problem (IP ) in the Banach space

X whereM and L are single valued closed linear operators inX withD(L) ⊂ D(M),

z ∈ X, u0 ∈ D(L), g ∈ C1([0, τ ];R), ϕ ∈ X∗ and the pair (u, f) ∈ C([0, τ ];D(L))×
C([0, τ ];R) is to be determined.

Note that M may have no bounded inverse and so the classical theory of

semigroups does not apply here.

We assume the resolvent set ρM (L) contains a region

Σγ = {λ ∈ C : Re(λ− γ) ≥ −c(|Imλ| + 1)α, γ ∈ R, (11)

and the M resolvent satisfies∥∥M(λM − L)−1
∥∥
L(X)

≤ C

(|λ− γ|+ 1)β
, λ ∈ Σγ , (12)

with some exponents 0 < β ≤ α ≤ 1 and constants c, C > 0.

We can now prove existence and uniqueness theorem of solutions to the iden-

tification problem (IP ).

Theorem 3.2. Let M and L be closed linear operators in the Banach space X with

D(L) ⊂ D(M), z ∈ X, u0 ∈ D(L), M(D(L)) is dense in X, g ∈ C1([0, τ ];R),
ϕ ∈ X∗, ϕ[z] ̸= 0 and (11) and (12) be satisfied. Then, problem (IP ) possesses a

unique solution (v, f) such that

Mv ∈ C1((0, τ ];X), Lv ∈ C((0, τ ];X), f ∈ C([0, τ ];R).
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Proof. By changing the unknown function to u(t) = Mv(t), we write the identifica-

tion problem (IP ) into the multivalued form
du(t)
dt ∈ LM−1u(t) + f(t)z , 0 ≤ t ≤ τ,

u(0) = u0,

ϕ[u(t)] = g(t), 0 ≤ t ≤ τ.

(13)

In addition, change of the unknown function to uγ(t) = e−γtu(t) yields that (13) is

regarded as a multivalued equation of the form (3)-(5) with a coefficient operator

A = LM−1 − γ. We can verify that if L and M are any two closed linear operators

in X then ρM (L) ⊂ ρ(LM−1) and M(λM − L)−1 = (λ − LM−1)−1, (see [12]). It

follows for λ+ γ ∈ ρM (L) that

(λ−A)−1 = M((λ+ γ)M − L)−1.

In this line, (11) and (12) yields directly that:

The resolvent set ρ(A) contains a region

Σ = {λ ∈ C : Reλ ≥ −c(|Imλ| + 1)α, γ ∈ R, (14)

and the resolvent (λ−A)−1 satisfies∥∥(λ−A)−1
∥∥
L(X)

≤ C

(|λ|+ 1)β
, λ ∈ Σ, (15)

with some exponents 0 < β ≤ α ≤ 1 and constants c, C > 0. (14) and (15)

ensure that the multivalued linear operator A generates an infinitely differentiable

semigroup on X, (see [2]). Therefore, the reduced multivalued problem possesses a

unique strict solution (u, f). Clearly uγ is a strict solution to (3)-(5) if and only if

v is a strict solution to the identification problem (IP ) in the sense

Mv ∈ C1((0, τ ];X), Lv ∈ C((0, τ ];X).

Finally, the uniqueness of the solution v follows from the invertibility of γM−L. �

Since D(A) = D(LM−1) = M(D(L)) the continuity of Mv(t) at t = 0 in the

topology of X is obtained as follows:

Theorem 3.3. Let u0 ∈ M(D(L) if α = β = 1 and u0 ∈ M(D(L)) on the other

case (α ̸= 1 or β ̸= 1). Then for the solution v obtained in Theorem 3.2, Mv(t) is

continuous at t = 0 in the norm of X, i.e. Mv ∈ C([0, τ ];X) with Mv(0) = u0 if

u0 ∈ M(D(L)).

Next, we consider the identification problem (IP ) in X, X being a Hilbert

space with the inner product (·, ·)X . We assume:

Re(Lv,Mv)X ≤ β ∥Mv∥2X , v ∈ D(L); (16)

R(λ0M − L) = X and (λ0M − L)−1 is single valued for some λ0 > β. (17)

Then we prove the following theorem:
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Theorem 3.4. Let M and L be linear operators in the Hilbert space X with D(L) ⊂
D(M), z ∈ X, u0 ∈ D(L), M(D(L)) is dense in X, g ∈ C1([0, τ ];R), ϕ ∈ X∗,

ϕ[z] ̸= 0 and (16) and (17) be satisfied. Then, for any u0 ∈ M(D(L)), problem (IP )

possesses a unique solution (v, f) such that

Mv ∈ C1([0, τ ];X), Lv ∈ C([0, τ ];X), f ∈ C1([0, τ ];R).

Proof. By changing the unknown function u(t) = Mv(t), we write (IP ) into a

multivalued problem of the form (3)-(5) with the operator coefficient A = LM−1.

SinceM−1 is not continuous in general, the operator A is considered as a multivalued

linear operator. To show that (1) is satisfied, let h ∈ Au, then h = LM−1u = Lv

and Mv = u for some v ∈ D(L). So that, (h, u)X = (Lv,Mv)X , which shows that

(1) follows from (16). On the other hand, for any h ∈ X, we have by (17) that

h = (λ0M −L)v for some v ∈ D(L). If we put u = Mv, then u ∈ M(D(L)) = D(A)

and h ∈ (λ0 − A)u, i.e. (2) satisfied. According to Theorem 2.1, this proves that

A − β is maximal dissipative in X and so A is the generator of a c0-semigroup on

X. Clearly, u0 ∈ D(A) if and only if u0 ∈ M(D(L)). �

4. Applications

4.1. Identification Problem of the Poisson-heat Equation

In several applications, when the temperature of a thermal body, subjected to

an external supply of heat, is to be determined, the source itself is often unknown or

scarcely known. So, we have to face with recovering both the temperature and the

unknown source. To compensate for the lack of information, suitable measurements

involving the temperature are given, as well as suitable assumptions on the source

are made. For instance, it is assumed to depend on one space variable, i.e. on time

only or, to be the product of two functions, the first depending on the temperature

and the latter on the space variable.

Consider the Poisson-heat equation:

∂m(x)v

∂t
= ∆v + f(t)h(x), (x, t) ∈ Ω× (0, T ],

v = 0, (x, t) ∈ ∂Ω× (0, T ], (18)

m(x)v(x, 0) = u0(x), x ∈ Ω,

with the supplementary condition∫
Ω
η(x)m(x)v(x, t)dx = g(t), ∀t ∈ [0, T ] (19)

in a bounded region Ω ⊂ Rn with a smooth boundary ∂Ω. Here m(x) ≥ 0 in Ω is a

given function in L∞(Ω), u0, η, h ∈ H−1(Ω), and g is continuous function on [0, T ].

We start by introducing a convenient abstract frame. Let X = H−1(Ω),

then this problem is formulated as a problem of the form (IP ) in whichM : L2(Ω) →
L2(Ω) ⊂ X is the multiplication operator by the function m(x) and L : H1

0 (Ω) →
H−1(Ω) is ∆ with the Dirichlet boundary conditions.
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For λ ∈ C, consider the sesquilinear form

aλ(u, v) = λ

∫
Ω
m(x)uvdx+

∫
Ω
∇u · ∇vdx, u, v ∈ H1

0 (Ω),

defined on H1
0 (Ω). Obviously this form is continuous on H1

0 (Ω). In addition for
π
2 < ω < π and for suitable c > 0, the following estimate

|aλ(u, v)| ≥ δ(∥u∥2H1
0
+ |λ|

∥∥√mu
∥∥2
L2), u ∈ H1

0 (Ω),

is observed to hold for each λ ∈ Σ = {λ ∈ C : |arg λ| ≤ ω or |λ| ≤ c} with some

uniform δ > 0. Then, since

aλ(u, v) = ⟨(λM − L)u, v⟩H−1×H1
0
, u, v ∈ H1

0 (Ω),

the Lax-Milgram Theorem (see [25; p. 92]) yields that λM − L, λ ∈ Σ, has a

bounded inverse from H−1(Ω) to H1
0 (Ω) with an estimate

δ(∥u∥2H1
0
+ |λ|

∥∥√mu
∥∥2
L2) ≤ ∥φ∥H−1 ∥u∥H1

0
if u = (λM − L)−1φ.

Hence, ∥Lu∥H−1 ≤ C ∥u∥H1
0
≤ C ∥φ∥H−1 . Moreover, noting the identity

λM(λM − L)−1 = 1 + L(λM − L)−1,

we obtain that∥∥M(λM − L)−1φ
∥∥
H−1 ≤ C |λ|−1 ∥φ∥H−1 , φ ∈ H−1(Ω).

This immediately yields that (14) and (15) are valid with α = β = 1, γ = 0.

From Theorem 3.2 it follows that for any u0 ∈ H−1(Ω), problem (18)-(19)

possesses a unique solution (v, f) such that

mv ∈ C1((0, T ];H−1(Ω)), v ∈ C((0, T ];H−1(Ω)), f ∈ C([0, T ];R).

In addition, Theorem 3.3 yields that mv is continuous at t = 0 if u0 = mv0 with

some v0 ∈ L2(Ω).

4.2. The Identification Problem related to the system of Maxwell

equations

Consider the system of Maxwell equations in a bounded domain Ω ⊂ R3 :

rot E = −∂B

∂t
, (20)

rot H =
∂D

∂t
+ J,

where E is the vector of electric field strength, H is the vector of the magnetic

field strength, D and B are designate the electric and magnetic induction vectors,

respectively. In what follows we denote by J the current density.

In the sequel we deal with a linear medium in which the vectors of strengths

are proportional to those of inductions in accordance with the governing laws:

D = ϵE, B = µH, (21)
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and we assume, in addition, that Ohm’s law

J = σE + I (22)

is satisfied in the domain Ω, where ϵ is the dielectric permeability of the medium, µ

is the magnetic permeability, σ is the electric conductance and I the density of the

extraneous current. Further development is connected with the initial conditions for

the vectors of the electric and magnetic inductions:

D(x, 0) = D0(x), (23)

B(x, 0) = B0(x).

The direct problem here consists of finding the functions E,D,H,B from the system

(20)-(23) for the given functions ϵ, µ, σ, I,D0 and B0 involved. The statement of an

inverse problem involves the density of the extraneous current as an unknown of the

structure

I(x, t) = f(t)p(x), (24)

here the matrix p(x) of size 3× 3 is known for all x ∈ Ω, while the unknown vector-

valued function f(t) is sought. To complete such a setting of the problem, we take

the integral overdetermination in the form∫
Ω

E(x, t)w(x) = g(t), 0 ≤ t ≤ T, (25)

where the function w(x) is known in advance. The system of equations (20)-(25)

is treated as the inverse problem for the Maxwell system related to the unknown

functions E,H and f .

By setting

v =

(
E

H

)
, c(x) =

(
ϵ(x) 0

0 µ(x)

)
, b(x) = −

(
σ(x) 0

0 0

)
, f(x, t) = −

(
I(x, t)

0

)
(26)

then system (20)-(23) can be written as

∂c(x)v

∂t
=

3∑
i=1

ai
∂v

∂xi
+ b(x)v + f(x, t), (x, t) ∈ R3 × [0, T ], (27)

with certain 6× 6 matrices ai, i = 1, 2, 3.

ϵ(x), µ(x) and σ(x) are assumed to be real matrices and the components of

which are bounded measurable functions in R3. In addition, we assume:

ϵ(x) is symmetric and ϵ(x) ≥ 0 for all x ∈ R3; (28)

µ(x) is symmetric and µ(x) ≥ δ, for some δ > 0 uniformly in x ∈ R3; (29)

({γϵ(x)+σ(x)}ξ, ξ) ≥ δ ∥ξ∥2 , ξ ∈ R3, for some δ > 0 and γ ≥ 0 uniformly in x ∈ R3.

(30)

Further treatment of the system (20)-(25) as an abstract problem is connected

with introducing the Lebesgue space

X = (L2(R3))3 × (L2(R3))3 = (L2(R3))6,
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using the bounded operator M of multiplication by c(x) acting in X (the adjoint

operator M∗of M satisfies M∗ = M) and the closed linear operator L accept for

each v ∈ D(L) the set of relations

D(L) =

{
v ∈ X :

3∑
i=1

ai
∂v

∂xi
∈ X

}

Lv =

3∑
i=1

ai
∂v

∂xi
+ b(x)v.

In doing so, the symbols v(t) and f(t)z will refer to the same functions v(x, t) and

f(t)p(x) but being viewed as abstract functions of the variable t with values in the

spaceX. The symbol u0 will be used in treating the function u0 (x) = (D0(x), B0(x))

as the element of the space X. With these ingredients, the system (20)-(25) reduces

to the inverse problem (IP ) in the Banach space X.

Condition (16) is verified as follows. Let v ∈ Y = (H1(R3))6 ⊂ D(L). Then,

(Lv, v)X = −

(
v,

3∑
i=1

ai
∂v

∂xi
+ b(x)v

)
X

+ (b(x)v, v)X + (v, b(x)v)X ;

so that,

Re(Lv, v)X = Re(b(x)v, v)X = −Re(σE,E)L2 .

In this line, (29) and (30) yield that

Re(Lv, v)X ≤ −δ(∥E∥2L2 + ∥H∥2L2) + γ(ϵ(x)E,E)L2 + (µ(x)H,H)L2

≤ −δ ∥v∥2X + λ((ϵ(x)E,E)L2 + (µ(x)H,H)L2)

= −δ ∥v∥2X + λ ∥Mv∥2X , (31)

where λ ≥ max{γ, 1}. This estimate is in fact verified for v ∈ D(L) also, because

there exists a sequence vn ∈ Y such that vn → v and Lvn → Lv in X. Thus, (1)

holds with β = max{γ, 1}.
Let us next verify (17). Since (31) yields that

∥(λM∗M − L)v∥X ≥ δ ∥v∥X , v ∈ D(L),

then (λM∗M − L) is seen to be one-to-one and to have a closed range. Therefore

it suffices to verify that R(λM∗M − L)⊥ = {0}. Let w ∈ R(λM∗M − L)⊥, then

w ∈ D(L∗) and (λM∗M −L∗)w = 0. On the other hand, since the principal part of

L is symmetric, w ∈ D(L). Therefore, (31) yields

−δ ∥w∥2X + λ ∥Mw∥2X ≥ Re(Lw,w)X = Re(w,L∗w)X = λ ∥Mw∥2X ,

and so w = 0.

As a result, if conditions (28)-(30) are satisfied, then a solution E,H, p of the

identification problem (20)-(25) exists and it is unique in the class of functions

E,H ∈ C([0, T ]; (L2(R3))3), p ∈ C([0, T ];R3).
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