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Dependence of the roots on coefficients

DEPENDENCE OF THE ROOTS ON COEFFICIENTS
Alina NIŢĂ
, Ana NIŢĂ

În aceasta notă, se dă o demonstraţie nouă pentru dependenţa continuă a rădăcinilor unui polinom algebric de coeficienţii polinomului şi se discută cazul polinoamelor cu coeficienţi aleatori [1], demonstrând existenţa unor soluţii măsurabile, ordonarea acestora şi dependenţa măsurabilă de coeficienţi [2].

In this note, we give a new proof  for the continuous dependence of an  algebraic polynomial’s roots on its coefficients and we discuss the case of polynomials with random coefficients [1], proving the existence of measurable solutions and also regarding their ordering and their measurable dependence upon coefficients, by making use of [2].

Keywords : algebraic polynomial, random polynomial, solutions depending on

                    coefficients.

1. Introduction
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This set is obviously closed ( in 
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2. The case of algebraic polynomials

We define the map 
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, the set of its roots  
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Obviously,  F is a bijective  map , and let 
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the monic polynomial 
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, identified with the 2n-dimensional system of the real and imaginary  parts of the coefficients.

Lemma 1. The map G is continuous.  


Proof: 


Using the Viète’s relations, the its coefficients of 
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Lemma 2. Let X , Y  be two metric spaces , 
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 a continuous bijective map.  Assume that for any
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  is continuous.  


Proof: 


We use the  definition of continuity by sequences. For any 
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. According to our  assumption,  there is a neighbourhood V of b and a compact 
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Since 
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  and K  being compact , we can find a subsequence 
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In order to prove that  
[image: image48.wmf]1

f

-

 is continuous in b, let W  be a neighbourhood of 
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But 
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  and we know that there is a subsequence 
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and so get a contradiction.

Lemma 3. Let 
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 be a continuous  bijective map, where  
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a) If  A is a compact set, then 
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 is continuous ;

b) Moreover , if  
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 is a bounded map ( i.e the image of any bounded set is bounded ) , then 
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 Proof:
       a) The condition from Lemma 2 is fulfilled.

       b) For any 
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 fixed, take a bounded neighbourhood U of  f(x). Then the set 
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  is  bounded and its closure is compact (being closed and bounded in 
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 and by applying the Borel-Lebesgue theorem).Using Lemma 2, it follows that 
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Proposition 1. The  map 
[image: image65.wmf]1

FG

-

=

 is continuous. 


Proof: 


Using Lemma 1 and Lemma 3,b) for 
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[image: image68.wmf]2

n

n

BM

Ì

;¡

 be a bounded subset, then there is 
[image: image69.wmf]0

M

>

, such that B is contained  in the ball 
[image: image70.wmf](0,)

BM

.
Let 
[image: image71.wmf]1

1

,....

nn

n

QBQXcXc

-

Î=+++

,  hence  
[image: image72.wmf]i

cM

£

 for any i.

For each not-null root  z of 
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 Therefore 
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; it results that the set  F(B) is bounded. 

Corollary. The roots of any algebraic polynomial depend continuously on the coefficients of that polynomial . 


We add following results :
Proposition 2. If the polynomial 
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has the complex roots 
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            Proof: 

We prove this by induction ; for n=2 it is  clear and suppose the assertion true for 
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 By developping the obtained determined by the first row and by factoring 
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Corollary.  If  the roots 
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It is enough to apply the theorem of the local inversion theorem.


3. The case the random polynomials


 Let us now consider a fixed probability field 
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The equations 
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Let us consider a deterministic polynomial
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For each integer 
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  takes place ;                             (1)

in particular, 
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         We thus obtain two double sequences of complex numbers that depend on x. 

The following fact is known: for any
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exists and is equal with one of the roots of the polynomial P. ( [ 1 ] )

We draw attention to an ordering of a finite number of complex numbers, which will be now taken into consideration. 
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Proposition 3. Let 
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Proof: 


The coefficients 
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 is a random variable and furthermore , 
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Corollary . Given a random polynom 
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Proof: 


Using Proposition 3 there is a first solution  
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By the induction hypothesis, let 
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