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Γ-HYPERMODULES: ISOMORPHISMS AND REGULAR

RELATIONS

Jianming Zhan1, Irina Cristea2

The aim of this paper is to introduce the concept of Γ-hypermodules. Some
new characterizations of this hyperstructure are investigated. In particular, we
construct three isomorphism theorems of Γ-hypermodules. Finally, the regular
relations on Γ-hypermodules are obtained.
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1. Introduction

The theory of algebraic hyperstructures (or hypersystems) is a well established
branch of classical algebraic theory. In the literature, the theory of hyperstructure
was first initiated by Marty in 1934 [15] when he defined the hypergroups and be-
gan to investigate their properties with applications to groups, rational fractions
and algebraic functions. Later on, many people have observed that the theory of
hyperstructures also have many applications in both pure and applied sciences, for
example, semi-hypergroups are the simplest algebraic hyperstructures which possess
the properties of closure and associativity. Some review of the theory of hyperstruc-
tures can be found in [7, 9, 19], respectively.

The Krasner hyperring [13] is a well known type of hyperring, with the prop-
erty that the addition is a hyperoperation and the multiplication is a binary oper-
ation. This concept has been studied in depth by many authors, for example, see
[10]. The concept of hypermodule over a Krasner hyperring has been introduced and
investigated by Massouros [16]. Zhan et al. [20] established three isomorphism the-
orems of hypermodules and derived the Jordan-Holder theorem for hypermodules.
In [3], Anvariyeh and Davvaz introduced a new strongly regular equivalence relation
on hypermodules so that the quotient is a module over a commutative ring. Further,
Anvariyeh et al. [4] considered the fundamental relation θ defined on a hypermodule
and proved some results in this respect. Also, they determined a family of subsets
of a hypermodule M and gave sufficient conditions such that the geometric space is
strongly transitive and the relation θ is transitive.

The concept of Γ-ring was introduced by Barnes [6]. This notion was dis-
cussed further by several researchers in connection with their radicals or ideals (see
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[12, 14, 17, 18]). The definition of the Γ-module was given for the first time by
Ameri et al. in [2], studying some preliminary properties of them. Besides, some
Γ-hyperstuctures have been studied by some researchers in the last years. Ameri et
al. [1] considered the concept of hyperideal of Γ-hyperrings. Recently, Anvariyeh
et al. [5] discussed the basic properties of Γ-hyperideals in Γ-semihypergroups. Af-
ter that, Dehkordi et al. [11] investigated the ideals, homomorphisms and regular
relations of Γ-semihyperrings.

In this paper, we introduce the concept of Γ-hypermodule. In particular, we
prove three isomorphism theorems of Γ-hypermodules and finally, we discuss about
the regular relations of Γ-hypermodules.

2. Preliminaries

A hypergroupoid is a non-empty set H together with a mapping ◦ : H×H → P∗(H),
where P∗(H) is the set of all the non-empty subsets of H.

A quasicanonical hypergroup (not necessarily commutative) is an algebraic
structure (H,+) satisfying the following conditions:

(i) for every x, y, z ∈ H,x+ (y + z) = (x+ y) + z;
(ii) there exists an element 0 ∈ H such that 0 + x = x, for all x ∈ H;
(iii) for every x ∈ H, there exists a unique element x′ ∈ H such that 0 ∈ (x+x′)∩

(x′ + x) (we denote it by −x and call it the opposite of x);
(iv) z ∈ x+ y implies that y ∈ −x+ z and x ∈ z − y.

The quasicanonical hypergroups are also called polygroups.
We note that, if x ∈ H and A,B are non-empty subsets of H, then by A+B,

A + x and x + B we mean that A + B =
⋃

a∈A,b∈B
a + b, A + x = A + {x} and

x+B = {x}+B, respectively. Also, for all x, y ∈ H, we have −(−x) = x, −0 = 0,
and −(x+ y) = −y − x.

A subhypergroup A ⊂ H is said to be normal if x+A− x ⊆ A, for all x ∈ H.
A normal subhypergroup A of H is called left (right) hyperideal of H if xA ⊆ A
(Ax ⊆ A, respectively), for all x ∈ H. Moreover A is said to be a hyperideal of H if it
is both a left and a right hyperideal of H. A canonical hypergroup is a commutative
quasicanonical hypergroup.
Definition 2.1. [13] A hyperring is an algebraic hyperstructure (R,+, ·), which
satisfies the following axioms:

(1) (R,+) is a canonical hypergroup;
(2) Relating to the multiplication, (R, ·) is a semigroup having zero as a bilaterally

absorbing element, that is, 0 · x = x · 0 = 0, for all x ∈ R;
(3) The multiplication is distributive with respect to the hyperoperation ′′+′′ that

is, z · (x+ y) = z · x+ z · y and (x+ y) · z = x · z + y · z, for all x, y, z ∈ R.

Definition 2.2. [6] Let M and Γ be two additive abelian groups. Then M is called
a Γ-ring if there is a mapping (a, α, b) 7−→ aαb from M ×Γ×M to M satisfying the
following conditions, for all a, b, c ∈M and α, β, γ ∈ Γ:

(i) aαb ∈M ;
(ii) (a+ b)αc = aαc+ bαc, a(α+ β)b = aαb+ aβb, aα(b+ c) = aαb+ aαc;

(iii) aα(bβc) = (aαb)βc.
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In [2], Ameri et al. introduced the concept of Γ-module and investigated some basic
properties.
Definition 2.3. [2] Let R be a Γ-ring. A left Γ-module is an additive abelian group
M together with a mapping from R×Γ×M to M (the image of the triple (r, γ,m)
being denoted by rγm), such that, for all m,m1,m2 ∈M and γ, γ1, γ2 ∈ Γ, r, r1, r2 ∈
R, the following relations hold:

(1) rγ(m1 +m2) = rγm1 + rγm2;
(2) (r1 + r2)γm = r1γm+ r2γm;
(3) r(γ1 + γ2)m = rγ1m+ rγ2m;
(4) r1γ1(r2γ2m) = (r1γ1r2)γ2m.

A right Γ-module is defined in an analogous manner. In this paper, a Γ-module
means a left Γ-module.
In [1], Ameri et al. generalized it to Γ-hyperrings and obtained some related prop-

erties.
Definition 2.4. [1] Let (R,⊕) and (Γ,⊕) be two canonical hypergroups. Then R
is called a Γ-hyperring, if there is a mapping (x, α, y) 7−→ xαy from R× Γ×R to R
satisfying the following conditions, for all x, y, z ∈ R and for all α, β ∈ Γ,

(i) xαy ∈ R;
(ii) (x⊕ y)αz = xαz ⊕ yαz, xα(y ⊕ z) = xαy ⊕ xαz;
(iii) xα(yβz) = (xαy)βz.

In the sequel, unless otherwise stated, (R,⊕,Γ) always denotes a Γ-hyperring.
Definition 2.5. [1] A subset A in R is said to be a left (right) Γ-hyperideal of R if
it satisfies the following conditions:

(1) (A,⊕) is a normal subhypergroup of (R,⊕);
(2) xαy ∈ A (yαx ∈ A, respectively), for all x ∈ R, y ∈ A and α ∈ Γ.

A is said to be a Γ- hyperideal of R if it is both a left and a right Γ-hyperideal
of R.

3. Γ-hypermodules

In this section, we introduce the concept of Γ-hypermodules, which is a gener-
alization of hypermodules and Γ-modules. We concentrate our study on the Γ-
hypermodules and give three isomorphism theorems of them.
Definition 3.1. Let (R,⊕,Γ) be a Γ-hyperring and (M,⊕) be a canonical hy-
pergroup. M is called a Γ-hypermodule over R if there exists a mapping f :
R × Γ × M → M (the image of (r, α,m) being denoted by rαm) such that, for
all a, b ∈ R,m1,m2 ∈ M , and α, β ∈ Γ, we have (i) aα(m1 ⊕m2) = aαm1 ⊕ aαm2;
(ii) (a⊕ b)αm1 = aαm1 ⊕ bαm1;

(iii) a(α⊕ β)m1 = aαm1 ⊕ aβm1; (iv)(aαb)βm1 = aα(bβm1).
Throughout this paper, R and M are a Γ-hyperring and a Γ-hypermodule,

respectively, unless otherwise specified.
Example 3.2. Let (R,+,Γ) be a Γ-ring and G be a Γ-subsemigroup of the Γ-
semigroup (R,Γ) which satisfies, for all a, b ∈ R, the condition aαGγbβG = aαγbβG.
Let (M,+,Γ) be a Γ-module. Define the following equivalence on M :

xρy ⇔ ∃t ∈ G and α ∈ Γ such that x = yαt.
Define the hyperoperation ⊕ on M/ρ:
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R/G × Γ ×M/ρ → M/ρ by (r, α, x) 7→ rαx, for all r ∈ R/G, x ∈ M/ρ and
α ∈ Γ. Then M/ρ is a Γ-hypermodule.
Example 3.3. Let M = R2 and (Γ,⊕) be a canonical hypergroup with the following
property: for all a ∈ R and α ∈ Γ,

aα(x, y) =

{
{(u, v)} ∈ R2|xαu = yαv}, if (x, y) ∈ R2 − {(0, 0)},
{(0, 0)} otherwise

Then R2 is a Γ-hypermodule.
Definition 3.4. A subset A in M is said to be a Γ-subhypermodule of M if it satisfies
the following conditions:

(1) (A,⊕) is a subhypergroup of (M,⊕);
(2) rαx ∈ A, for all x ∈ R, α ∈ Γ and x ∈ A.

A Γ-subhypermodule A of M is called normal if x+A−x ⊆ A, for all x ∈M .
Definition 3.5. If M and M ′ are Γ-hypermodules, then a mapping f : M −→ M ′

such that f(x⊕ y) = f(x)⊕ f(y) and f(rαx) = rαf(x), for all r ∈ R, α ∈ Γ and
x ∈M , is called a Γ-hypermodule homomorphism.

Clearly, a Γ-hypermodule homomorphism f is an isomorphism if f is injective
and surjective. We write M ∼= M ′ if M is isomorphic to M ′.
The following proposition is obvious, therefore the proof is omitted.

Proposition 3.6. Let f : M −→M ′ be a Γ-hypermodule homomorphism, then the
kernel Kerf = {x ∈M |f(x) = 0} is a Γ-subhypermodule of M .
If A is a normal Γ-subhypermodule of M , then we define the relation A∗ by

xA∗y(modA)⇐⇒ (x− y)
⋂
A 6= ∅.

The following proposition is obtained exactly from the definitions.
Proposition 3.7. Let A be a normal Γ-subhypermodule of M , then

(1) A∗ is an equivalence relation.
(2) If A∗[x] is the equivalence class of the element x ∈M , then A⊕ x = A∗[x].
(3) For all x, y ∈M,A∗[A∗[x]⊕A∗[y]] = A∗[x]⊕A∗[y].
(4) For all r ∈ R,α ∈ Γ and x ∈M,A∗[A∗[rαx]] = A∗[rαx].

Let A be a normal Γ-subhypermodule of M , then set [M : A∗] = {A∗[x]|x ∈M}.
Define a hyperoperation � and an operation �α on [M : A∗] by

A∗[x] �A∗[y] = {A∗[z]|z ∈ A∗[x]⊕A∗[y]},

A∗[x]�α A∗[y] = A∗[xαy],

for all r ∈ R, α ∈ Γ and x ∈M .
From the above discussion, we can get the following result.

Theorem 3.8. ([M : A∗],�,�α) is a Γ-hypermodule.
Next, we establish three Isomorphism Theorems of Γ-hypermodules.

Theorem 3.9 (First Isomorphism Theorem). Let f be a Γ-hypermodule ho-
momorphism from M1 into M2 with the kernel K, such that K is a normal Γ-
subhypermodule of M1. Then we have [M1 : K∗] ∼= Imf.
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Proof. Define ρ : [M1 : K∗]→ Imf by considering ρ(K∗[x]) = f(x), for all x ∈ M1.
Then ρ is clearly well-defined. Moreover, if we suppose that xK∗y, then x−y

⋂
K 6=

∅. This means that there exists z ∈ x−y
⋂
K, and therefore f(z) = 0. It follows now

that 0 = f(z) ∈ f(x) − f(y), and so f(x) = f(y). This shows that ρ is surjective.
In order to show that ρ is injective, we let f(x) = f(y). Then we have 0 ∈ f(x− y),
and this means that there exists z ∈ x − y with z ∈ Kerf . Thus, x − y

⋂
K 6= ∅,

which implies that K∗[x] = K∗[y], and hence ρ is indeed injective. Moreover, we
can deduce the following equalities:

(1)

ρ(K∗[x] �K∗[y]) = ρ({K∗[z]|z ∈ K∗[x]⊕K∗[y]}) = {f(z)|z ∈ K∗[x]⊕K∗[y]}

= f(K∗[x])⊕ f(K∗[y]) = f(x)⊕ f(y) = ρ(K∗[x])⊕ ρ(K∗[y]);

(2)

r �α ρ(K∗[x]) = ρ(K∗[rαx]) = f(rαx) = rαf(x) = rαρ(K∗[x])

.
Hence, ρ is an isomorphism.

From the above theorem, we can easily get the following two theorems.
Theorem 3.10 (Second Isomorphism Theorem). IfA andB are Γ-subhypermodules
of M with B normal in M , then we have

[A : (A
⋂
B)∗] ∼= [(A+B) : B∗].

Theorem 3.11. (Third Isomorphism Theorem). If A and B are normal Γ-sub-
hypermodules of M such that A ⊆ B, then [B : A∗] is a normal Γ-subhypermodule
of [M : A∗] and

[[M : A∗] : [B : A∗]] ∼= [M : B∗].

Finally, we consider the Jordan-Holder Theorem of Γ-hypermodules. The proof
is similar to that of Theorem 2.15 in [20] and we omit here the details. First we
introduce the following notion:
Definition 3.12. A finite chain of n+1 Γ-hypermodules of M is a composition series
of M with the length n, M = A0 ⊃ A1 ⊃ A2 ⊃ . . . ⊃ An = 0, where [Ai−1 : A∗i ] is
simple (i = 1, 2, . . . , n), that is, every term of the chain is maximal in its predecessor.
Theorem 3.13. (Jordan-Holder Theorem). If a Γ-hypermodule M has some
composition series, then any two of them are equivalent, which means that the
composition quotient Γ-hypermodules are isomorphic in pairs, though they may
occur in different orders in the sequences.

4. Regular relations

Let M be a Γ-hypermodule and θ be an equivalence relation on M . Then one may

extend θ to the subsets of M by θ and θ as follows.
Let A,B be non-empty subsets of M . Define
AθB ⇔ ∀a ∈ A,∃b ∈ B such that aθb and ∀b ∈ B, ∃a ∈ A, such that bθa

AθB ⇔ ∀a ∈ A,∀b ∈ B, one has aθb,
where by aθb, we mean (a, b) ∈ θ.
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An equivalence relation θ on M is called regular(respectively strongly regular)
if, for all a, b, x ∈M, r ∈ R and α ∈ Γ, we have

(i) aθb⇒ (a+ x)θ(b+ x) and (x+ a)θ(x+ b)

(respectively, aθb⇒ (a+ x)θ(b+ x) and (x+ a)θ(x+ b));

(ii) aθb⇒ (rαa)θ(rαb) (respectively, aθb⇒ (rαa)θ(rαb)).
Recall the results from [11], we can get the following results.

Theorem 4.1. Let M be a Γ-hypermodule and θ a regular relation on M . Then
M/θ = {θ(a)|a ∈M} is a Γ-hypermodule with respect to the following hyperopera-
tions: θ(a) � θ(b) = {θ(c)|c ∈ θ(a)⊕ θ(b)},θ(a)�α θ(b) = θ(a)αθ(b).
Proof. Firstly we show that {θ(c)|c ∈ θ(a)⊕θ(b)} = θ(a⊕b) and θ(a)αθ(b) = θ(aαb).

Let x ∈ a ⊕ b, then x ∈ θ(a) ⊕ θ(b). Hence θ(a ⊕ b) ⊆ {θ(c)|c ∈ θ(a) ⊕ θ(b)}.
On the other hand, let x ∈ θ(a)⊕θ(b); then there exist x1 ∈ θ(a) and x2 ∈ θ(b) such
that x ∈ x1 ⊕ x2. Since θ is a regular relation and having x1θa and x2θb, it follows
that (x1 ⊕ x2)θ(a ⊕ b). Hence, since x ∈ x1 ⊕ x2, there exists c ∈ a ⊕ b such that
θ(x) = θ(c), which implies that {θ(c)|c ∈ θ(a)⊕ θ(b)} ⊆ θ(a⊕ b). In the same way,
one proves that θ(a)αθ(b) = θ(aαb).

Secondly, we show that the hyperoperations � and �α are well-defined. Let
a, b, a1, b1 ∈M, r ∈ R and α ∈ Γ such that θ(a) = θ(a1) and θ(b) = θ(b1). Since θ is
a regular relation and aθa1, bθb1, it follows that (a⊕ b)θ(a1⊕ b1). This means that,
for any u ∈ a⊕b, there exists v ∈ a1⊕b1 such that θ(u) = θ(v) ∈ θ(a1⊕b1). thereby
θ(a⊕ b) ⊂ θ(a1 ⊕ b1). The converse inclusion may be proven in a similar way.

Finally, by a similar procedure, one proves that θ(a) = θ(a1) implies that
(rαa)θ(rαa1) and thus θ(rαa) = θ(rαa1).

Now, the conditions of Definition 3.1 follow directly.
Corollary 4.2. Let M be a Γ-hypermodule and θ a strong regular relation on M .
Then M/θ = {θ(a)|a ∈M} is a Γ-module with the above operations.
Definition 4.3. If M and M ′ are Γ and Γ′-hypermodules, respectively, then (ϕ, f)
is called a (Γ,Γ′)-hypermodule homomorphism if, for all r ∈ R, α ∈ Γ and x, y ∈
M , the following relations are satisfied: ϕ(x ⊕ y) = ϕ(x) ⊕ ϕ(y), ϕ(rαx) =
rf(α)ϕ(x) and f(x⊕ y) = f(x)⊕ f(y).
Theorem 4.4. Let M1 be a Γ1-hypermodule and θ be a regular relation on M1.
Then π : M1 → M1/θ is a canonical Γ-hypermodule homomorphism. Suppose
that M2 is a Γ-hypermodule and (φ, f) : M1 → M2 is a (Γ1,Γ2)-hypermodule
homomorphism. Then the relation θ = {(a, b) ∈M1×M2 | φ(a) = φ(b)} is a regular
relation on M1 and there exists a (Γ1,Γ2)-hypermodule homomorphism (ψ, id) :
M1/θ →M2 such that ψπ = φ.
Proof. Let us consider r ∈ R, α ∈ Γ and a, b ∈M . Then

π(x⊕ y) = {π(t)|t ∈ x⊕ y} = {θ(t)|t ∈ x⊕ y} = θ(x) � θ(y) = π(x) � π(y)

and

π(rαx) = θ(rαx) = rαθ(x) = rαπ(x).

Hence, π is a canonical Γ-hypermodule homomorphism.
Clearly, θ is an equivalence relation. In order to show that θ is a regular

relation, we set aθa1 and bθb1; then φ(a) = φ(a1) and φ(b) = φ(b1). Hence, for every
α ∈ Γ1, r ∈ R, we have φ(a⊕ b) = φ(a1 ⊕ b1) and φ(rαa) = φ(rαa1), which implies
that (a⊕ b)θ(a1 ⊕ b1) and (rαa)θ(rαa1).
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Define ψ : M1/θ → M2 by ψ(θ(a)) = φ(a). Since θ(a) = θ(b) if and only if
φ(a) = φ(b) if and only if ψ(θ(a)) = ψ(θ(b)), it follows that ψ is well-defined.

For all a, b ∈M, r ∈ R and α ∈ Γ, we have

ψ(θ(a) � θ(b)) = {ψ(θ(a⊕ b))} = ψ{θ(t) | t ∈ a⊕ b} = ψ((θ(a))⊕ ψ(θ(b))

and

ψ(rαθ(a)) = ψ(θ(rαa)) = φ(rαa) = rf(α)φ(a) = rf(α)ψ(θ(a)).

Thus, (ψ, id) is a (Γ1,Γ2)-hypermodule homomorphism.
Theorem 4.5. Let θ be a regular relation on a Γ-hypermodule M and (φ, f) :
M1 → M2 be a (Γ1,Γ2)-hypermodule homomorphism such that θ ⊆ {(a, b)|φ(a) =
φ(b)}. Then there exists a unique (Γ1,Γ2)-hypermodule homomorphism (ψ, id) :
M1/θ →M2 such that ψπ = φ, where π : M1 →M1/θ is a canonical Γ-hypermodule
homomorphism.
Proof. Define ψ : M1/θ → M2 by ψ(θ(a)) = φ(a). As in the proof of Theorem
4.4, one proves that ψ is well-defined and a (Γ1,Γ2)-hypermodule homomorphism.
Finally, it is obvious that ψ is a unique homomorphism such that ψπ = φ.

5. Conclusions

In this paper, we have considered the Γ-hypermodules as a generalization of the
notion of Γ-module. In particular, we have given three isomorphism theorems of
Γ-hypermodules and we have discussed about regular relations on Γ-hypermodules.

In our future research concerning the Γ-hypermodules, the following topics
could be considered: 1) To define n-ary Γ-hypermodules; 2) To define soft Γ-
hypermodules.
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