U.P.B. Sci. Bull., Series C, Vol. 76, Iss. 1, 2014 ISSN 2286-3540

SOLVING EXPERIMENT REPRODUCIBILITY IN AMBIENT
INTELLIGENCE

Andrei-Adnan Ismail', Adina-Magda Florea?

Ambient Intelligence is an active research field that studies embed-
ding computing elements into the environment - Weiser’s concept of disap-
pearing computer.

Practical experiments are complex to orchestrate, because of the technical
expertise required in hardware, software engineering and machine learning.
The entry barrier for running such an experiment is very high, requiring
coordinated efforts at all levels in a research team, and an actual laboratory
with sensors in order to collect the data.

In this work, we show how the power of Amazon’s EC2 cloud can be lever-
aged in conjunction with a record and replay system for sensor data in order
to allow researchers from anywhere in the world to run such experiments.
The software infrastructure used for the experiments is open-source and
freely available at https: // github. com/ami-1lab/AmI-Platform. This
platform is used in the AmI Laboratory (EF 210) of the University Po-
litehnica of Bucharest.

Keywords: ambient intelligence, cloud computing, software framework,
experiment reproducibility

1. Introduction

Experiment reproducibility is a requirement when publishing an article
in areas of research such as databases or operating systems. Research results
are vetted by the community and further extended because there is a clear
sequence of steps for anyone who wishes to execute it. In Ambient Intelligence,
the situation is quite the opposite: most experiments are based on simulations
and theoretical scenarios are one of the main ways to showcase importance of
the results. In this work, we aim to improve this by proposing an open-source

'PhD Student, Department of Computer Science and Engineering, Faculty of Automatic
Control and Computers, University Politehnica of Bucharest, e-mail: iandrei@gmail.com

2Professor, Department of Computer Science and Engineering, Faculty of
Automatic Control and Computers, University Politehnica of Bucharest, e-mail:
adina.florea@cs.pub.ro

17

https://github.com/ami-lab/AmI-Platform

18 Andrei-Adnan Ismail, Adina-Magda Florea

software infrastructurd] that allows researchers to record sensor data and to
easily run experiments by using such recordings on top of the Amazon EC2
cloud.

One of the major obstacles in rapidly prototyping practical AmI appli-
cations is not being able to reuse the work done in other consacrated systems
such as [20] or [4], leading to an impractical effort necessary for setting up even
the most basic Aml experiment [8]. Several of the steps of this effort include:

S1 having access to a dedicated laboratory - a big administrative problem in
itself, having to go through an approval and maintenance procedure at
the university level

S2 having a sensor array and a scalable software infrastructure for consuming
the data in a simple manner

S3 staying up-to-date with the latest trends in sensing platforms, buying
them and integrating them into the system

S4 developing algorithms on top of this distributed system in order to im-
plement different scenarios such as distributed tracking or context-aware
communications

This can easily be a full-time job for several researchers, without ob-
taining too many results, as it requires multi-disciplinary skills ranging from
identifying the important research topics at the moment to software engineer-
ing of robust components. The problem is even worse due to the limited ability
of reusing software from other projects, as it is usually too specific to the sce-
nario implemented [8]. Moreover, not all scenarios can be implemented with
all types of sensors; since some scenarios require specialized sensors that take
months to order and to install, the need for such a sensor can delay an ambient
intelligence project significantly. And the need of such a sensor can come as
the unexpected conclusion of months of experimenting with other sensors that
fail to deliver on the expected results.

We propose a software infrastructure that has three basic capabilities: it
can record and replay sensor data, it offers simple primitivies for consuming
it in real-time and it is able to run experiments based on recorded data in the
cloud, by automatically renting computing power from Amazon EC2[2].

2. Previous Work in Software Infrastructures for Aml

The existing platforms for developing Ambient Intelligence applications
are focused on the following topics:

"https://github.com/ami-lab/AmI-Platform

https://github.com/ ami-lab/AmI-Platform

Solving Experiment Reproducibility in Ambient Intelligence 19

e publishing software services in a marketplace structure, where end users
who already own a deployed Ambient Intelligence system can discover and
buy such services

e dissemination of information in a context-aware manner; subscribers to
information buses should only receive information that is relevant to their
context

e modelling interactions between users, sensors and the environment in a
semantically rich way that is query-able through standard methods such
as SPARQL or graph database queries

Most of these platforms are written in Java. What makes Java a good
choice for this kind of task is the large variety of interpreters (JVMs), available
on different hardware platforms and its proven stability.

OSAmlI Commons is an open source, universal networking platform
enabling vertical application domains. It is built around the concept of SOA
(Service Oriented Architecture), with a focus on interoperability and open-
source[4]. OSGi[l] is one of its core technologies. Its philosophy is that ”one of
the ways to reduce the development cost is to reuse existing software as much
as possible” [I1]. The physical architecture of an OSAmI system is structured
into four types of entities: nodes, systems, support infrastructure elements and
background systems (OSGi wrappers for in house legacy systems). A system
is modelled like a dynamically changing set of nodes, who self-organize into
groups acting together as a single service provider.

One important aspect of OSAmI Commons is its toolchain for assisting
developers in writing software on top of it: tools for new service creation,
editing code in an OSAmI specific environment (a plugin for Eclipse) and for
packaging applications in the deployment stage.

The main player in the Ambient Assisted Living (AAL) software frame-
work market is the OpenA AL framework|[20], the byproduct of a series of
European projects such as SOPRANO—IPE], universAA, and PERSONA AAL
[10]. The framework has a holistic approach, offering software components for
all stages in the lifecycle of an AAL project, from developing the software in
an integrated editor (it has an Eclipse plugin as well), to a marketplace to
connect possible customers with OSGi services to be deployed by professionals
in their homes. It provides a smart distributed services layer on top of the
following concepts:

“http://www.soprano-ip.org
*http://www.universaal.org/

http://www.soprano-ip.org
http://www.universaal.org/

20 Andrei-Adnan Ismail, Adina-Magda Florea

AAL space - the environment in which users interact with the embedded
computer artifacts, and are supported by their reasoning and context
awareness
e channels - abstract communication pipes between system components that
are used to deliver semantically annotated messages between them
e actuator - a device that can provoke changes in the physical world, similar
to the artifact concept from the agents and artifacts model[15]
® sensor
e context - data that can be shared between components in order to increase
their situational awareness
The communication between the components is done by using ontologies
specially developed for the purpose of this project, that provide an uniform
semantic annotation, allowing reasoning components to provide uniform con-
clusions regardless of the source and destination of the message.
Just as the OSAmI Commons project, the code is open source and pub-
licly available for reuse, however, it is in its early beta phases.

2.1. AmICiTy

AmICiTy[I3] is an interesting hybrid system between an ambiental in-
telligence solution and a multi-agent system. Even though compared to the
previous two frameworks it was only deployed in academic settings, it is a
very interesting model of an ambiental intelligence interaction. Environmental
resources (artifacts) are translated into local contextual graphs managed by
resource-manager agents, who use an information dissemination middleware
in order to share information with each other; moreover, certain agents have
preferences for certain types of facts (represented as subgraphs). Goals of a
person interacting with this kind of environment are realized by having the
person’s associated personal agent constantly interact with the environmental
agent and other personal agents.

3. The UPB Aml Laboratory

We will continue by describing the functionality of the experiment run-
ning in the UPB Aml Laboratory, powered by the platform proposed here. In
this laboratory, there are more than 50 audio, video, proximity, humidity and
temperature sensors, laid out in 9 keypoints (figure 1} page 21). The keypoints
are spread out throughout the room at the same height in order to optimally
cover its viewing angles (figure 2 page [21)).

Solving Experiment Reproducibility in Ambient Intelligence 21

FIGURE 2. Layout of
the keypoints in the

FIGURE 1. Keypoint - laboratory

1 Kinect and 2 Arduino
boards with sensors

On top of this array of sensors, formed mainly from Microsoft Kinect[16]
depth cameras and Arduino[l4] boards, the AmI-Platform software frame-
Workﬁ is running. The currently deployed experiment performs real-time per-
son tracking with a precision of 10 cm and aggregates multiple measurements
of different types for the same person in real time. Developing this kind of
experiment required us to try multiple versions of the algorithms on the same
dataset, both from the laboratory and from the cloud, and has led us to solving
the experiment reproducibility problem in Aml.

4. Why Work on Real Data Instead of Simulations While De-
veloping Algorithms?

Why cannot a researcher work on simulations and needs to access real
sensory data in order to create new algorithms, architectures and concepts?
While building our system, we have encountered twice the situation where we
developed an algorithm on synthetic data, and it needed major modifications
in order to run on real-world data:

e when we were implementing AndroAR [5], the system for augmenting
the camera image on the smartphone screen with information about the
real-world buildings recognized using GPS location and visual features
of the artifacts. In this case, standard feature-matching algorithms from
computer vision literature did not perform well on buildings that were
quite different, but did so on official benchmarks with predictable lighting
and viewing angles. Even when matching the same building against a
slightly changed image of itself, windows from the top floor were mistaken
for windows on the bottom floor. We employed geometric reasoning in

4h‘ctps ://github.com/ami-lab/AmI-Platform

https://github.com/ami-lab/AmI-Platform

22 Andrei-Adnan Ismail, Adina-Magda Florea

order to ensure that groups features matched belonged to the same region
of the objects.

e when implementing AndroRemoteﬂ, we tested the object detection service
on the COIL-100 database [12]. Even though when we initially developed
the algorithms, we devised complex scenarios on top of this dataset, they
could not discern between two very different real-world objects: a com-
puter monitor, and an air conditioning system. The elaborate training
scheme for the algorithms turned out to work on the COIL dataset be-
cause the amount of data we had used for training was unrealistic: the
dataset had pictures from tens of angles, with normalized lighting and
image size. We realised that this is an unreasonable requirement with
respect to the deployment of an Aml system, just like the authors warn
in [18].

The conclusion is simple: the researcher needs to work on real data
as soon as possible, because more problems than initially planned will arise
anyway. In order to be able to do that, a researcher needs a simple way to
record and consume such recorded data.

5. A Record and Replay Component

In AmI—PlatformEL the acquisition and processing of sensor data in real-
time is done using a loosely coupled infrastructure based on the concept of PDU
(Processing Data Unit). The PDU is an independent entity which processes
messages delivered to it by an omni-present queue system. A computation
is represented by a directed graph of PDUs running independently, sending
messages to one another. One example of such a graph can be found in figure
(page [23). This concept is called in the literature stream processing[19].

In order to allow the system to record sensor data and replay it at a
later time, the whole architecture was split into two conceptual halves: the
data acquisition and the data processing (figure , page . According to
this scheme, all data enters the system through a single entry point (the mea-
surements queue) and can be therefore recorded by a separate system before
entering it. We decided to record the sensor data in files, with one measurement
per line, in JSON format. The full format of these measurements is described
in[7]. Measurements are recorded according to a set of active experiments,
which specify a set of filtering criteria (such as sensor type or measurement

type).

SImplementation by Mircea Triichioiu, a BSc. student, as part of his AI-MAS
(http://aimas.cs.pub.ro) internship in the summer of 2011
6h‘ctps ://github.com/ami-lab/AmI-Platform

https://github.com/ami-lab/AmI-Platform

23

Solving Experiment Reproducibility in Ambient Intelligence

aa
pieoqyseq

aa
sjuawpuadxy

Yy

dsol3xs)

iamoddl

wooy

pleoqyseq

uopubooay

A

N

uonisod
wiooy

19pioday

doap aoe
pesH (\q . 4
A
1ajnoy
) aa
SIUBLIAINSe3|n]
FESTITN =)
obuop > w“

uonisinbay
ejeq
eupy

uopnisinboy
ejeq
ounpay

sajdwes
2ceg
apeabdn

Idv
uojjuboday
aose4

F1GURE 3. Graph of PDUs used for the deployed UPB Aml Lab

experiments

24

Andrei-Adnan Ismail, Adina-Magda Florea

Arduino
Platform RGBD

data

Sensor Data Acquisition

audio +
proximity
data

Raw

Data

Rec

PDU

"measurements"”

Data Crunching
PDUs

ording

Raw
Sensor
Data

Raw
Sensor
Experiment Data Replay
Data Dump |—>]

h PDU
File

FI1GURE 4. Record and Playback System

In order to replay the recorded data, the data acquisition circuit (rep-

resented in red in figure |4 on page must be deactivated first. The replay
system (represented in blue in the same figure) will afterwards feed input data

to the graph of PDUs by using a playback algorithm and an input file with

recorded data. The main challenge is to feed the measurements at the exact

same rate as they were recorded in the first place. Two types of problems can

appear for the replay circuitry:

it cannot process the data file quickly enough in order to feed measure-
ments at the requested rate. There are 2 solutions to this: scale the replay
system by allocating more resources to it (impractical in most cases, since
the replay system will usually run on the researcher’s working machine),
or skip some measurements until the replay system has caught up. De-
pending on the algorithm to be tested, the researcher should be able to
choose whether real-time or data completeness is more important.

it can feed data to the data crunching system processes data too quickly.
This means that the sensors generated the data values at a slower rate
than the replay system can feed them. Therefore, it has to slow down
in order to adapt to the sensor data generation rate. An artificial delay
will be introduced, equivalent to the time left until the next measurement
should arrive. One interesting aspect related to waiting for this time is
that system calls for waiting for a certain amount of time (called sleep
in POSIX[9] operating systems) guarantee that the current process will
sleep for at least the requested amount of time, not exactly it. The cause

Solving Experiment Reproducibility in Ambient Intelligence 25

for this is the nedeterminism found in process schedulers of the operating

systems. While in general it should not be a problem, it might become one

for sensor recordings where measurements are very close to one another.

When replaying the measurements, we cannot expect the processing sys-
tem to work in relative time (it is possible, but very hard to achieve). This
means that the timestamps of the measurements must be modified to the mo-
ment when they enter the system (as opposed to the moment when they were
initially recorded). While data fed to the system will be purposely inaccurate,
the relative time differences between measurements fed into it will remain al-
most the same.

6. Using a Cloud Infrastructure to Replay an Experiment

Due to the resource-intensive nature of our system (and probably of other
Aml systems as well, in a similar setting), it is not reasonable to assume that
the whole system can be ran on a researcher’s computer. Moreover, both [6]
and [8] have noticed the exagerated assumptions the creators of Aml systems
make about people trying to use them in their own experiments - no good
guidelines on how to install and configure the systems. If they have to install
our own infrastructure and the numerous components needed to make it work,
it might be a very difficult task. Therefore, we have opted for an approach
that is very easy to use for another researcher but costs them money: renting
servers automatically from a cloud provider and provisioning the cluster of
servers to set-up everything needed for experimenting with our own platform
and sensor recordings.

We have chosen Amazon’s EC2 (Elastic Compute Cloud) as our provider
for virtual servers. It ”is a web service that provides resizable compute ca-
pacity in the cloud. It is designed to make web-scale computing easier for
developers’ﬂ. It offers a wide range of machine types that can be rented for an
hourly cost. These differ in storage capabilities, CPU cores and RAM mem-
ory. In Table [I} on page [26] we give a few examples of machine types, their
capabilities and hourly costs as of September 2013.

We have created an automated system for renting these machines, in-
stalling the software needed on them and playing back an experiment (fig-
ure , page . The number of machines, types of modules and their role in
the system is specified in an experiment profile (one such example profile can
be found in listing , page . The explanation for the fields present in the
experiment profile:

"http://aws.amazon.com/ec2/

Andrei-Adnan Ismail, Adina-Magda Florea

Machine Type Hourly Cost Compute Units Memory
t1.micro $0.02 2 (only for short bursts) 0.60 GB
m1.small $0.06 1 (1 core x 1 unit) 1.70 GB
ml.medium $0.12 2 (1 core X 2 units) 3.50 GB
cl.medium $0.14 5 (2 cores x 2.5 units) 1.70 GB
m1.large $0.24 4 (2 cores X 2 units) 7.50 GB
cl.xlarge $0.58 20 (8 cores x 2.5 units) 7.00 GB

TABLE 1. Amazon EC2 machine types

e Name is the name of the machine, and it is used to uniquely identify
it in the group of started machines. This name will be displayed in the
web interface next to the machine capabilities in the researcher’s Amazon
account.

e machine_type refers to the type of machine, several valid values are pro-
vided in table [

e ami_id refers to the Amazon Machine Image from the marketplace for such
images: https://aws.amazon.com/marketplace. It is a file containing
the disk image of a virtual machine with all the necessary software in-
stalled for the purpose it declares. We are currently using a stock Ubuntu
12.04 image, and plan to create our own AMI images for Ambiental In-
telligence Applications.

e security_group is the group of machines to which this new machine belongs
to, from a security point of view. Amazon Web Services (AWS) offers
an interface for managing such machine groups together, by specifying
firewall rules that apply to all of them as a whole. For example, the
default security group that comes with an EC2 account will give access
only to port 22 (SSH) for the opened machines.

e manifest refers to the Puppet[I7] manifest to be applied to that machine,
a file containing descriptions of resources such as files, packages and ser-
vices written in a domain-specific language. Such files are executed by
an interpreter which is functional in nature (so one describes the desired
state of the machine, rather than the steps necessary to reach that state)
in order to provision the machine correctly.

e type refers to the type of machine. In our Ambient Intelligence plat-
form, valid types are: crunch (generic data processing node), mongo (a
MongoDBJ3] storage node for measurements), redis (a Redis cache node
for sharing global state between PDUs) or kestrel (a queue server node).

e modules refers to the data crunching modules that should be ran on that
node. Notice, how, in our example, the queue system node does not run

https://aws.amazon.com/marketplace

Solving Experiment Reproducibility in Ambient Intelligence 27

any module, even though it might be beneficial to do so (being close to
the queue system would yield a faster interaction with it).

1| [

2 {

3 "Name": "crunch_01",

4 "meta": {

5 "machine_type": "cl.xlarge",

6 "ami_id": "ami-d0f89fbo",

7 "security_group": "sg-82df60e8",
8 "keypair": "ami-keypair",

9 },

10 "manifest": "crunch_O1.pp",

1 "type": "crunch",

12 "modules": "ami-router,ami-room-position"
13 },

14

15 {

16 "Name": "queues",

17 "meta": {

18 "machine_type": "ml.large",

19 "ami_id": "ami-d0f89fbo",

20 "security_group": "sg-82df60e9",
21 "keypair": "ami-keypair",

22 1,

23 "manifest": "kestrel.pp",

24 "type": "kestrel",

25 "modules": ""

26 }

27 |]

Listing 1: Experiment profile with 2 machines

Once the machines are rented from the cloud provider, the workflow
from figure |5| (page [28]) will be executed by our provisioning system in order
to ensure that the servers are ready for running an experiment. At the end of
the workflow, the servers will have the correct software installed and will know
the addresses of other servers they need, and will be ready for executing an
experiment.

The first experiment run takes 15 minutes (time which includes starting
up the machines and provisioning them correctly), while the subsequent ones
take only 1-2 minutes (the time necessary to download the experiment file and
load it into memory).

28 Andrei-Adnan Ismail, Adina-Magda Florea

Crunch
MNodes

4, Provision |
machines
using Puppet MEJZ%C;ES)B
Experiment
Provisioning
1. Analyze System]
experiment
profile
Redis
2. Rent Modes
machines from
the cloud
Experiment provider I
Profile
Amazon Kestrel
EC2 Cloud Nodes
Provider

available for
Am| experiments

FiGURE 5. Experiment Provisioning System flow from renting
servers to experimenting

7. Conclusions and Future Work

We have identified a major problem preventing researchers from across
the world to develop robust Ambient Intelligence systems: experiment repro-
ducibility. This manifests itself in many ways, ranging from slow and costly
development to lack of reusable components for building such applications and
to publications with experiments that cannot be verified (in contrast to other
areas of research in computer science).

In order to solve this problem, we created a cloud infrastructure able to
replay experiments previously recorded with another tool for recording. We
have presented architectural diagrams and details about how we implemented
all these functionalities. The end result is an open-source platformﬁ which

Ehttps ://github.com/ami-lab/AmI-Platform

https://github.com/ami-lab/AmI-Platform

Solving Experiment Reproducibility in Ambient Intelligence 29

manages to open a set of 8 servers and install everything correctly on them in
less than 15 minutes, at the cost of 0.50$ per hour.

We argue that this system in combination with a platform for efficiently

disseminating sensor recordings from laboratories using it around the world is

a complete solution to the problem of experiment reproducibility in Ambient
Intelligence.

8. Acknowledgements

This paper has been funded by:

e Sectorial Operational Programme Human Resources Development 2007-

2013 of the Romanian Ministry of Labour, Family and Social Protection
through the Financial Agreement POSDRU 76813.

e ERRIC FP7 Project, number 264207, FP7T-REGPOT-2010-1, led by the

1]
2]

3]
[4]

=

7]

8]
[9]

[10]

University Politehnica of Bucharest

REFERENCES

OSGi Alliance. Osgi service platform, core specification, release 4, version 4.1. OSGi
Specification, 2007.

EC Amazon. Amazon elastic compute cloud (amazon ec2). Amazon Elastic Compute
Cloud (Amazon EC?2), 2010.

Kyle Banker. MongoDB in action. Manning Publications Co., 2011.

Naci Dai, Wolfgang Thronicke, Alejandra Ruiz Lépez, Félix Cuadrado Latasa, Elmar
Zeeb, Christoph Fiehe, Anna Litvina, Jan Krueger, Oliver Dohndorf, Isaac Agudo,
et al. Osami commonsan open dynamic services platform for ambient intelligence. In
Emerging Technologies & Factory Automation (ETFA), 2011 IEEE 16th Conference
on, pages 1-10. IEEE, 2011.

Alexandru Damian. Android-based crowd sourcing of landmark metadata, 2012.
Adrian Friday, Manuel Roman, Christian Becker, and Jalal Al-Muhtadi. Guidelines
and open issues in systems support for ubicomp: reflections on ubisys 2003 and 2004.
Personal and Ubiquitous Computing, 10(1):1-3, 2006.

Andrei-Adnan Ismail, Cosmin Marian, and Adina-Magda Florea. A framework for con-
sistent experimentation in ami. In The International Workshop on Agent Technology
for Ambient Intelligence, 2013.

Rui José, Helena Rodrigues, and Nuno Otero. Ambient intelligence: Beyond the inspir-
ing vision. J. UCS, 16(12):1480-1499, 2010.

Donald Lewine. POSIX programmer’s quide: writing portable UNIX programs with the
POSIX. 1 standard. O’Reilly, 1991.

Guido Matrella Ferdinando Grossi Stefania Baratta Michele Amoretti, Giorgia Copelli.
The persona aal platform: Deployment in the italian pilot site of bard. In AALIANCE
conference, Malaga, Spain, 2010.

Tatsuo Nakajima. Case study of middleware infrastructure for ambient intelligence en-
vironments. In Handbook of Ambient Intelligence and Smart Environments, pages 229—
256. Springer, 2010.

30

Andrei-Adnan Ismail, Adina-Magda Florea

[12]

[13]

[19]

[20]

SK Nayar, SA Nene, and H. Murase. Columbia object image library (coil 100). Tech-
nical report, Tech. Report No. CUCS-006-96. Department of Comp. Science, Columbia
University, 1996.

Andrei Olaru. A context-aware multi-agent system for ami environments. Technical
report, Technical report, University Politehnica of Bucharest, University Pierre et Marie
Curie Paris, 2010.

E. Ramos. Arduino basics. Arduino and Kinect Projects, pages 1-22, 2012.

A. Ricci, M. Viroli, and A. Omicini. Give agents their artifacts: the a&a approach for
engineering working environments in mas. In Proceedings of the 6th international joint
conference on Autonomous agents and multiagent systems, page 150. ACM, 2007.

J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,
and A. Blake. Real-time human pose recognition in parts from single depth images. In
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages
1297-1304. IEEE, 2011.

Jason A Smith, John S De Stefano Jr, John Fetzko, Christopher Hollowell, Hironori Ito,
Mizuki Karasawa, James Pryor, Tejas Rao, and William Strecker-Kellogg. Centralized
fabric management using puppet, git, and glpi. In Journal of Physics: Conference
Series, volume 396, page 042056. IOP Publishing, 2012.

Pallavi Kaushik Stephen S. Intille and Randy Rockinson. Deploying context-aware
health technology at home: Human-centric challenges. In Human-Centric Interfaces
for Ambient Intelligence, pages 479-503. Elsevier, 2010.

Michael Stonebraker, Uur Cetintemel, and Stan Zdonik. The 8 requirements of real-time
stream processing. ACM SIGMOD Record, 34(4):42-47, 2005.

P. Wolf, A. Schmidt, J.P. Otte, M. Klein, S. Rollwage, B. Konig-Ries, T. Dettborn,
and A. Gabdulkhakova. openaal-the open source middleware for ambient-assisted living
(aal). In AALIANCE conference, Malaga, Spain, 2010.

	1. Introduction
	2. Previous Work in Software Infrastructures for AmI
	2.1. AmICiTy

	3. The UPB AmI Laboratory
	4. Why Work on Real Data Instead of Simulations While Developing Algorithms?
	5. A Record and Replay Component
	6. Using a Cloud Infrastructure to Replay an Experiment
	7. Conclusions and Future Work
	8. Acknowledgements
	REFERENCES

