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MULTI-SENSOR DATA FUSION BY AVERAGE CONSENSUS 

ALGORITHM WITH FULLY-DISTRIBUTED STOPPING 

CRITERION: COMPARATIVE STUDY OF WEIGHT 

DESIGNS  

Martin KENYERES1, Jozef KENYERES2 

The average consensus tends to be used as a complementary mechanism for 

multi-sensor data fusion in modern applications. This paper addresses a 

comparative study of its weight designs with a fully-distributed stopping criterion 

implementable into the wireless sensor networks. Two parameters of the examined 

stopping criterion, namely, accuracy and counter threshold, are changed to analyze 

which weight design achieves the best performance in terms of the precision 

(quantified by the MSE) and the convergence rate. It is shown how the values of 

both parameters affect the mentioned aspects as well as mutual comparison of the 

examined weight designs is provided. 

Keywords: Distributed computing, wireless sensor networks, average consensus, 

stopping criterion 

1. Introduction 

Wireless sensor networks (WSNs) have attracted the attention of both the 

academy and the industry sector in the last years. WSNs are often formed by 

hundreds of geographically distributed entities (referred to as sensor nodes) for 

cooperative monitoring the adjacent environment and are assumed to work 

autonomously for long-lasting periods [1]. The sensor nodes, often deployed in 

large-scale areas, consist of hardware components such as a wireless transceiver, a 

sensor unit, the central processor, an energy source etc., which allows them to 

sense a particular environmental quantity (known as sensor reading), process the 

measured data, and mutually communicate in order to fulfill a specific 

functionality [2]. WSNs find an application in many areas such as agriculture, 

environmental monitoring, military surveillance, natural disaster 

detection, inventory tracking, pollution monitoring, medical systems, robotic 

exploration, acoustic detection, health care etc. ([3-4]). In many of these 

applications, the operation of WSNs is affected by negative factors (e.g. an 

electromagnetic noise, defectiveness of the nodes, radiation temperature, output 

correlations etc.) that can significantly decrease the precision of the sensor 
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readings [5]. Thus, the modern applications based on WSNs are often equipped 

with mechanisms for multi-sensor data fusion, whereby the negative impacts on 

the quality of these applications are minimized [5]. Consensus-based algorithms 

(primarily those for distributed averaging) find wide usage in WSNs as a 

technique for multi-sensor data fusion and have become an attractive research 

field in the signal processing during the last decades [6]. Their goal is to make the 

states at all the sensor nodes identical via a neighbor-to-neighbor communication 

and local updates [7]. Consensus-based algorithms find a wide usage not only in 

WSNs but also in other areas such as the blockchains, cloud computing, the 

Internet of Things etc. (they are assumed to be applied also in the integration of 

WSNs, IoT, and cloud computing) ([8-11]). 

In this paper, the average consensus algorithm (AC), a distributed linear 

iterative algorithm asymptotically converging to the arithmetic average of all the 

inner states, is addressed [12]. The algorithm is multi-functional, i.e. it can 

estimate not only the average but also fulfills other functionalities [12]. Each 

sensor node is typically aware of its neighbors and has only limited information 

about the whole network [6]. At each iteration, it adapts its inner state according 

to the inner states collected from the adjacent area and the state from the previous 

iteration. As mentioned earlier, AC asymptotically convergences to the average 

and therefore, many real-life applications require the implementation of a 

stopping criterion, which ensures the consensus achievement in a finite time, 

however with a limited precision [14]. In this paper, our attention is focused on 

the stopping criterion from [13] and frequently discussed also in other papers ([3-

4], [14]). In this paper, we deal with four frequently quoted weight designs 

(namely, the Maximum Degree, the Metropolis-Hastings, the Local Degree, and 

the Best Constant weights) and change the parameters of the examined stopping 

criterion (accuracy and counter threshold) to verify which design achieves the 

best performance using two metrics: the mean square error (MSE) [dB] and the 

number of the required iterations for the consensus. 

In the next section of the paper, we provide a model of AC over WSNs, its 

basic properties, the convergence conditions etc. and introduce the implemented 

stopping criterion. Section 3 deals with the analyzed weight design of AC and 

their mathematical definitions. Section 4 is concerned with the experimentally 

obtained results and a discussion about them. Section Future research introduces 

our future plans and insight into the application of consensus-based algorithms in  

WSNs, IoT, and Cloud Computing and their integration. 

2. Problem formulation 

WSNs can be modeled as finite indirect graphs determined by two sets 

G = (V, E) [12]. The vertex/node set V gathers all the vertices, representing the 
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sensor nodes in the network (the sensor nodes are identified by the unique identity 

number V = {v1, v2, …. vN}, where N = |V| is the size of the network). The 

edge/link set E ⊂ VxV contains all the edges, whose existence indicates the direct 

connection between two corresponding sensor nodes {vi, vj}, and so, these two 

sensor nodes are one another’s neighbor. Subsequently, a set gathering all the 

neighbors of vi can be defined as Ɲi = {vj : {vi, vj} ∈ E}. It is assumed that each 

sensor node is allocated the initial scalar value xi(0) ∈ R in the beginning of the 

algorithm (in our case, binary AC is assumed, i.e. the initial states take either one 

or zero [14]). All the inner states at each iteration are gathered in the column 

vector variant over the iterations x(k) ∈ RNx1.  

As mentioned earlier, AC is a set of rules ensuring that each sensor node 

acquires an approximate value (referred to as an estimate) of the estimated 

aggregate function (in our case the arithmetic average). It is achieved by iterative 

exchanges of the local inner states among adjacent sensor nodes and updating the 

inner state for the next iteration using the linear update scheme modeled as 

follows [15]: 

    NikxWkxWkx
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From a global point of view, it is possible to reformulate (1) as [12]: 

)()1( kk xWx =+ ,                                                       (2) 

Here, W is the weight matrix, whose elements are determined by the used 

weight design. It affects several aspects such as the convergence rate, the 

robustness, the initial configuration etc. [12]. The limits of its sparsity pattern can 

be expressed as W ∈ S, where S is defined as follows [15]: 
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The choice of the weight matrix is crucial for the convergence 

conservation, i.e. the vector of the inner states x(0) converges to the value of the 

arithmetic average, i.e. [16] 
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Here, 1 is a column vector whose all coefficients are equal to one (known 

as an all-ones vector) [12]. Equivalently to (4), one can write the followings [15]: 
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Then, we can define the asymptotic convergence factor and its associated 

convergence time, measures for performance evaluation, as follows [15]:  
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As discussed in [15], the convergence of the algorithm is ensured if and 

only if the limits in (4) exists. Its existence is conditioned by holding these 

necessary and sufficient conditions (see [17] for a proof): 
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Here, ρ(∙) is the spectral radius of the corresponding matrix. The 

implementation of the stopping criterion proposed in [13] is assumed in this 

paper, which guarantees a finite time execution of AC. The examined stopping 

criterion is fully-distributed (thereby finds the application in WSNs) and requires 

that the sensor nodes store two constants: accuracy and counter threshold (both 

have to be pre-set before the beginning of AC). Each sensor node has its own 

counter that is incremented by one at the iterations when the difference between 

two subsequent inner states is smaller than the pre-set accuracy. When not, its 

value is set to zero. If y subsequent comparisons of the inner states are smaller 

than accuracy, AC is considered to be completed at the corresponding sensor 

node - it does not participate in AC any longer and does not update its inner state. 

The value y is determined by the pre-set counter threshold. The iteration when the 

last sensor node completes the algorithm is labeled as kl – it represents the number 

of the iterations for the consensus. Eventually, a formalization of asymptotic AC 

(Algorithm 1) and AC with the stopping criterion (Algorithm 2) are provided.  

Algorithm 1: Distributed Linear Average Consensus Algorithm 

In the beginning, each sensor node vi initiates its inner state with a scalar value 

(1 TRUE/0 FALSE in our case) labeled as xi(0). 

At each iteration 

1. Each sensor node vi ∊ V sends a broadcast message containing its current inner state (i.e. 

xi(k) to ∀vj ∊ Ɲi) 

2. Each node sensor vi ∊ V receives the inner states from ∀vj  ∊ Ɲi 

3. Each sensor node vi ∊ V multiplies all the states with the corresponding weight [W]ij 

4. Each sensor node vi  ∊ V adapts its current inner state using a linear update scheme as 

follows: xi(k+1) = [W]ii . xi(k) + j [W]ij . xj(k) 

Algorithm 2: Distributed Linear Average Consensus Algorithm with Stopping Criterion [13] 

In the beginning, each sensor node vi initiates its inner state with a scalar value xi(0) (1 TRUE / 

0 FALSE in our case) and counter with zero. (a node is active until it completes AC) 

At each iteration as long as k ≠ kl 

1. Each active sensor node vi ∊ V sends a broadcast message containing its current inner 

state (i.e. xi(k) to ∀vj ∊ Ɲi) 

2. Each active node sensor vi ∊ V receives the inner states from ∀vj  ∊ Ɲi 

3. Each active sensor node vi ∊ V multiplies all the states with the weight [W]ij 

4. Each active sensor node vi  ∊ V adapts its current inner state using a linear update scheme 
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as follows: xi(k+1) = [W]ii . xi(k) + j [W]ij . xj(k) 

5. Each active sensor node vi ∊ V computes |∆xi(k)| = |xi(k+1) - xi(k)| and increments 

counter by one if |∆xi(k)| < accuracy, otherwise, sets counter to zero  

6. Each active sensor node vi ∊ V verifies whether counter = counter threshold and 

considers the algorithm to be completed if the condition is valid (and becomes inactive) 

3. Examined weight designs 

This section addresses four frequently cited weight designs for AC further 

examined in this paper. The first one is the Maximum Degree weight design 

(abbreviated as MD), which requires the information about the degree of the best-

connected sensor node (this information can be assessed for example by the 

distributed max-consensus algorithm or pre-set in some networks). Its weight 

matrix is defined as follows [12]:  
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Here, di is the degree of a vertex and so, the number of neighbors of the 

corresponding sensor node. Another weight design of our interest is the 

Metropolis-Hastings weight design (abbreviated as MH). Its initial setup requires 

only locally available information, i.e. the own degree and the degrees of the 

sensor nodes from the adjacent area (i.e. for vi, the degrees of ∀vj ∊ Ɲi). 

Subsequently, its weight matrix is composed as follows [12]: 
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Another analyzed design is the Local Degree weight design (abbreviated 

as LD), which is optimized MH in such a way that the weights for the edges are 

increased by omitting one in the denominator. Its weight matrix is defined as [15]:   
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The last design of our interest is the Best Constant weight design 

(abbreviated as BC), which requires the exact values of the largest (λ1) and the 
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second smallest (λN-1) eigenvalue of the corresponding Laplacian matrix L 

(a mathematical tool for a description of network topologies (see [12] for a 

definition)) for its optimized variant. This weight design is considered to be the 

most efficient among the uniform-weight designs [15].  
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4. Experiments and discussion 

This section is concerned with the results obtained from numerical 

experiments (the simulations are carried out in Matlab 2016a) and a discussion 

about the observed phenomena. As mentioned above, this paper addresses a 

comparative study of four AC weight designs (namely, MD, MH, LD, and BC) 

with the fully-distributed stopping criterion for WSNs presented in [13], ensuring 

a finite execution time of the algorithm. The parameters of the stopping criterion 

are varied: accuracy (takes these values: 10-1, 10-2, 10-3, 10-4, 10-5, 10-6) and 

counter threshold (takes these values: 3, 5, 7, 10, 20, 40, 60, 80, 100) to examine 

their impact on the precision of the final states quantified using an MSE-metric 

(mean square error) and the convergence rate expressed in the number of the 

iterations necessary for the consensus (a lower value means a higher rate). Thus, 

the main goal of this paper is to find the most appropriate weight designs for the 

examined stopping criterion (for the varied values of the mentioned parameters) in 

terms of the precision and the convergence rate. As shown in ([16-18]), the MSE 

is a reasonable metric frequently used for an analysis (not only) of consensus-

based algorithms and is defined as follows: 
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Our intention is demonstrated on 60 random geometric graphs (30 sparsely 

and 30 densely connected) whose sensor nodes have randomly generated initial 

inner states of the Bernoulli distribution with Pr(x = 1) = 0.5 and Pr(x = 0) = 0.5. 

The size of all the networks is the same - 200 sensor nodes. No negatives factors 

are assumed. In all the experiments, only the averaged MSE over 30 networks of 

the same connectivity is shown. See Appendix for detailed information. 
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In the first experiment, the asymptotic convergence factor and the 

associated convergence time for each weight design are examined. As mentioned 

above, due to the limited range of the paper, only the average value over all 30 

networks for the densely and the sparsely connected networks is shown separately 

(see Fig. 1).  

 

In the densely connected networks, MD takes the highest values of both 

parameters and so, is the worst among the examined weight designs (a smaller 

value means a higher convergence rate). The second worst is MH, the third one is 

LD, and the best results are observed for BC. In the sparsely connected network, 

the highest values of both parameters are taken by MD, the second highest one by 

MH, the third one by BC, and the lowest values are taken by LD (thus, LD 

outperforms BC compared to the densely connected networks). Generally, it can 

be seen that the algorithm is slower in the sparsely connected networks than in the 

densely connected ones regardless of the used weight design. Higher performance 

is caused by the fact that the second largest eigenvalue of W in magnitude is 

generally lower in graphs with more edges.   
The next experiment is concerned with a performance analysis of the 

mentioned weight designs with the implemented examined stopping criterion 

quantified by an MSE-metric (the MSE is converted into dB). The results 

obtained in the densely connected networks are shown in Fig. 2 (the y-axis is 

reversed). It can be seen from the results that an increase in counter threshold and 

a decrease in the value of accuracy result in lower values of the MSE and so, a 

higher precision of the final estimates regardless of the used weight design. 

Moreover, for each accuracy with each counter threshold, BC achieves the 

 

 
Fig. 1. Asymptotic convergence factor and convergence time averaged over 30 randomly 

generated densely and sparsely connected networks for each weight design 
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highest performance, LD is the second most precise, MH is the third one, and the 

lowest precision is achieved by MD. 

 

 

In the sparsely connected networks (Fig. 3), an increase in counter threshold and a 

decrease in accuracy cause that lower values of the MSE can be observed again. 

For accuracy = 10-1 with each value of counter threshold, the highest precision is 

achieved by LD, the second highest one by BC, the third one by MH, and the 

lowest precision is achieved by MD. For accuracy = 10-2 – 10-5 with counter 

threshold = 3 – 40, BC achieves the highest precision, LD the second highest one, 

MH the third one, and the lowest one is achieved by MD. For the other values of 

counter threshold (i.e. {60, 80, 100}), LD outperforms BC and so, is the most 

precise (BC is the second one), MH is the third most precise, and MD is the most 

imprecise. For accuracy = 10-6 with each counter threshold, the order of the 

weight designs sorted according to the precision is the same as in the densely 

connected networks, i.e. BC is the best one, LD is the second, MH is the third one, 

 

 

 

 
Fig. 2. MSE in decibels averaged over 30 randomly generated densely connected networks as 

function of counter threshold for each accuracy 
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and MD is the worst. Moreover, it is seen that the precision is higher in the 

densely connected networks in general. 

 

The following paragraphs address the convergence rate of the examined weight 

designs in both sets of the networks. The convergence rates of all the examined 

weight designs in the densely connected networks are shown in Fig. 4. An 

increase in counter threshold and a decrease in accuracy (and so, factors ensuring 

a higher precision of the final estimates) result in a deceleration of the algorithm 

regardless of the used weight design. For accuracy = 10-1 with each counter 

threshold, the highest convergence rate is achieved by MH and LD (both achieve 

the same average convergence rate), the third fastest is MD, and the lowest 

convergence rate is observed for BC. For accuracy = 10-2 – 10-4 with each counter 

threshold, LD is the fastest, MH is the second, MD is the third, and BC is the 

slowest again. For accuracy = 10-5, BC outperforms MD for each value of counter 

threshold and is thus the third fastest (MD is the slowest), MH is the second 

fastest, and LD the fastest one. For accuracy = 10-6 with counter threshold = 3 – 

20, the highest convergence rate is achieved by BC, the second highest one by 

 

 

 

 
Fig. 3. MSE in decibels averaged over 30 randomly generated sparsely connected networks as 

function of counter threshold for each accuracy 



36                                                     Martin Kenyeres, Jozef Kenyeres 

 

LD, the third one by MH, and the lowest one by MD. For counter threshold = 40 

– 100, BC is outperformed by LD (the fastest weight designs in this interval) and 

MH (the second fastest) and MD is slowest again. 

 

In the sparsely connected networks, an increase in counter threshold and a 

decrease in accuracy cause a deceleration of the algorithm regardless of the used 

weight design like in the densely connected networks. Furthermore, for accuracy 

= 10-1 – 10-2 with each counter threshold, MH achieves the highest performance, 

LD is the second, MD is the third, and BC is the slowest. For all other examined 

values of accuracy with each counter threshold, LD is the fastest, MH is the 

second fastest, MD is the third, and BC is the slowest. In general, the convergence 

rate is higher in the densely connected networks.  

Furthermore, we prove the unpredictability of BC, whose convergence rate 

and precision are also the most significantly affected by factors such as the 

network topology, the connectivity, the distribution of the initial states ([14], 

[19]), also when the algorithm is bounded by the stopping criterion from [13]. The 

weight design is the slowest for most of the stopping criterion parameters, 

 

 

 

 
Fig.4. Convergence rate (expressed as iterations for consensus) averaged over 30 randomly 

generated densely connected networks as function of counter threshold for each accuracy 
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however, we can see that it is also the fastest one for some configuration of the 

parameters in the densely connected networks.  

The novelty of our paper compared to other papers: we analyze four 

frequently weight designs of AC bounded by the stopping criterion from [13] 

proposed for WSNs. Only in [13], this stopping criterion is experimentally 

analyzed, however, this paper is concerned with the Constant weight design and 

also a significantly different research methodology is applied. Thus, the other 

papers focused on the same problems either theoretically discuss the implemented 

stopping criterion ([3], [14], [26-33]) or a comparative study is carried out using a 

different research methodology (e.g. no/another stopping criterion is 

implemented) ([19], [34-35]). 

As mentioned earlier, the only paper focused on an experimental analysis 

of the implemented stopping criterion is [13]. The other papers ([3], [14], [26-27], 

[29-33]) citing the paper where this stopping criterion is proposed only 

theoretically discuss its advantages/disadvantages without any simulation 

evaluation. In [13], the stopping criterion is implemented into a hardware platform 

from Memsic. The authors focus their attention on the Constant weight design 

 

 

 

 
Fig.5. Convergence rate (expressed as iterations for consensus) averaged over 30 randomly 

generated sparsely connected networks as function of counter threshold for each accuracy 
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with a modifiable mixing parameter. They show that an increase in the mixing 

parameter ensures a higher convergence rate until it reaches the threshold value 

determined by the size of a network - then, the convergence rate decreases. 

Moreover, they prove that lower values of the mixing parameter result in higher 

robustness of the algorithm to collisions (however, the character is, in general, the 

exact opposite when the link failures are assumed). It is also shown that lower 

values of accuracy decelerate the algorithm (this statement is proven also in our 

paper). In the paper [28], the authors confirm the same results as in [13]. 

5. Future research 

Our future research related to the examined stopping criterion is going to 

be focused on finding the most appropriate weight design also in terms of other 

aspects (the robustness, other functionalities etc.) and its optimization. 

Furthermore, our plans also include experimental verification of whether the 

examined stopping criterion is suitable for the distributed gossip-based algorithms 

– this research can provide a sufficient background for a mutual comparison. 

As mentioned above, consensus-based algorithms find the application in 

WSNs, IoT, and Cloud Computing and their integration. In this paragraph, we 

provide a brief overview of this topic. There are many papers concerned with 

these technologies and their mutual integration in the literature ([8], [20-25]). In 

[20], an approach based on Timed Colored Petri Net and Ontology. The authors of 

the paper address the controlling of the logical correctness of the context-aware 

services, which is considered to be one of the most important challenges in the 

IoT technology. Some approaches are based on merging of artificial intelligence 

with IoT. The authors of [21] propose and present a hybrid model consisting of 

IoT and artificial neural networks taught by the back-propagation algorithm. 

It allows heterogeneous technologies to act as intelligent entities that are able to 

make independent decisions and interact with human beings or other smart 

devices. In paper [22], the premise that the residential houses will evolve into 

modern households with own solar panels and wind turbines able to sell or buy 

energy to or from the smart power grid is addressed. The authors propose a 

holistic framework for the integration of smart home objects in a cloud-centric 

IoT solution is proposed. This hybrid serves not only for collecting and storing the 

data but works as a gateway to third-parties that develop applications. In [23], the 

authors propose a low-cost automation system based on WSNs incorporating IoT. 

This mechanism provides a cost-effective solution to Home Automation. The 

authors of [8] integrate WSNs, IoT, and Cloud Computing and propose a concept 

for controlling and monitoring an irrigation system that is connected to an IoT 

platform. The authors of [24] propose a cloud computing and fog computing 

architecture for effectively processing IoT data. A classification mechanism for 
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IoT data types is presented. The data placement problem is cast by the authors as 

an optimization problem so that the latency in accessing the data can be 

minimized. The authors of [25] conclude that the current trends in WSNs are to 

embrace IP-based sensor network using standards such as 6LoWAN and IPv6. 

Moreover, the authors propose a framework to harmonize new installations and 

non-IP based ones and preserve the possibility to migrate to an all-IP 

environment. Our future goals will also include an effort to find the applicability 

of the average consensus algorithm in the integration of WSNs, IoT, and Cloud 

Computing in order to increase QoS (Quality of Service) of the executed 

applications.  

6. Conclusion  

This paper addresses a comparative study of four weight designs of AC 

(MD, MH, LD, BC) with a fully-distributed stopping criterion proposed for WSNs 

and finds out which weight design achieves the highest/the lowest precision 

(using an MSE-metric) and the highest/the lowest convergence rate for various 

accuracy and counter threshold over 30 densely and 30 sparsely connected 

random geometric graphs.  

It is seen that the precision of the final estimates and the convergence rate 

is higher in the densely connected networks for each weight design (when the 

results for same accuracy and same counter threshold are mutually compared). 

Thus, it is shown that the theoretical assumptions (that higher performance is 

achieved in networks with a higher connectivity - demonstrated among others by 

Fig. 1 in this paper, i.e. a smaller asymptotic convergence time and associated 

time are achieved in the densely connected networks) valid for AC, whose 

execution is not bounded, are valid also for AC with the implemented stopping 

criterion. Moreover, it can be seen that an increase in counter threshold and a 

decrease in accuracy ensure a lower MSE (and so, a higher precision) at a cost of 

a deceleration of the algorithm in both sets of the networks and regardless of the 

used weight design. Moreover, it can be seen that BC is the most precise in the 

densely connected networks (it maximally outperforms MD by approx. 39 dB, 

MH by approx. 27 dB, and LD by approx. 25 dB). This design has also a 

significantly lower rasym and asym in these networks than the concurrent ones. The 

lowest precision is achieved by MD, which has also the highest rasym and asym. In 

terms of the convergence rate, the best performance is in general achieved by LD 

(it maximally outperforms MD by approx. 86 iterations, MH by approx. 11 

iterations, and BC by approx. 82 iterations) and the worst one by BC. 

Paradoxically, BC outperforms all the concurrent weight designs for lowest 

examined accuracy with lower counter threshold (it maximally outperforms 

fastest LD by approx. 10).  
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In the sparse networks, the highest precision is achieved by BC (primarily, 

either for lower values of counter threshold or lower values of accuracy - it 

maximally outperforms MD by approx. 12 dB, MH by approx. 7.5 dB, and LD by 

approx. 6 dB) and LD (primarily, either for higher values of counter threshold or 

higher values of accuracy - it maximally outperforms MD by approx. 8 dB, MH 

by approx. 3 dB, and LD by approx. 1 dB). Regarding rasym and asym, LD has the 

lowest values of these parameters in the sparsely connected networks, meanwhile, 

BC the second lowest. Like in the densely connected networks, MD (the highest 

rasym and asym) has the lowest precision again. The highest convergence rate is 

achieved by LD except for lower values of accuracy, when it is slightly (less than 

2 dB) outperformed by MH (the second highest rasym and asym) (LD maximally 

outperforms MD by approx. 441 iterations, MH by approx. 102 iterations, and BC 

by approx. 1296 iterations). Furthermore, BC is significantly slower in the 

sparsely connected networks than the concurrent weight designs. So, BC achieves 

generally the highest performance in terms of the precision, meanwhile, LD is the 

fastest in general among the examined weight designs. The unpredictable 

character of BC, i.e. this weight design is more significantly affected by the 

network topology, the initial states, the connectivity etc., is confirmed also in this 

paper. In our work, we show that this weight design is the slowest in the most of 

the cases, however, also the fastest one for some configuration of the stopping 

criterion parameters in the densely connected networks. 
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Appendix 

Table 1 

Summarization of simulation setup parameters 

SIMULATION PARAMATERS 

Simulation tool 

Matlab 2016a (all the used simulation software was developed by the authors of this paper) 

Used Environment 

Random Geometric Graphs 

Graph Size 200 vertices 

Connectivity Dense / Sparse 

Number of graphs in each graph set 30 unique graphs 

Topology Time-invariant 

Implemented stopping criterion 

Character Fully-distributed 

Values of accuracy 10-1, 10-2, 10-3, 10-4, 10-5, 10-6 

Values of counter threshold 3, 5, 7, 10, 20, 40, 60, 80, 100 

Initial inner states 

Random variables of Bernoulli distribution xi(0) ~ B(1, 0.5) 

Analyzed parameters 

Asymptotic convergence factor averaged over 30 densely/sparsely connected networks 

Associated convergence time averaged over 30 densely/sparsely connected networks 

Mean square error averaged over 30 densely/sparsely connected networks 

Convergence rate expressed as the number of the iterations for the consensus achievement 

averaged over 30 densely/sparsely connected networks 

Restrictions and presumptions 

The algorithm execution is affected by no negative factors such as communication interference, 

potential link/node failures, communication delays, noises etc. Moreover, the sensor nodes are 

homogenous in all the aspects and synchronized. 

 


