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COMPARISON OF NEURAL NETWORK CORRECT
CLASSIFICATION RATE USED IN A WIRELESS ROBOT
CONTROL SYSTEM

Robert-Bela NAGY?, Florin POPENTIU-VLADICESCU?

In this paper the comparison of correct classification rate (CCR) of two
neural networks (NNs) will be presented. A wearable human-computer interface
(HCI) robot control scenario with visual feedback loop was set up, employing
electro-oculographyc (EOG) bio-signals to command the robot wirelessly. It can be
used by people with neuro-degenerative diseases or high-level spinal cord injuries -
used as an alternative way to move or communicate and it can be used in assistive
robotics. It has a CCR of 94%, control speed (CS) of 3 commands/minute, relative
control speed (RCS) of 2,82 commands/minute and precision (P) of 0,94.

Keywords: Neural Network, Human Computer Interface (HCI), robot control,
electrooculography (EOG), visual feedback, synchronous robot
control, classification comparison

1. Introduction

In recent years the field of human-computer interfaces (HCIs) registered
an explosive-like growth. These HCI systems can be used to extend the existing
communication means with computers, users not being limited to keyboards,
mouse and joysticks as inputs. The command signals used in these HCI systems
can employ electromyographyc (EMG), electrooculographyc (EOG),
electroencephalographyc (EEG) or any other, user-controlled signals.

Electromyography (EMG) bio-signal based HCIs are recording their
command signals from muscle activation. A muscle’s activity (onset or cessation)
is recorded and can be translated into a “yes-no” or in a more complicated set of
commands. Electrooculography (EOG) domain is measuring the eye’s angular
movement [1]. Electroencephalography (EEG) records the signals created by the
brain’s activity from the scalp. The brain signals can be willingly and consciously
modified, so the recording system can observe the small EEG signal modifications
and act accordingly.
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In this article the EOG signals will be employed and the proposed physical
setup is using Linear Discriminant Analysis (LDA) and Support Vector Machine
(SVM) classification Neural Networks (NNs). LDA’s and SVM’s Correct
Classification Rate (CCR), Control Speed (CS), Relative Control Speed (RCS)
and Precision (P) will be presented and compared, that will be used in the future
in a wireless robot control scenario.

NNSs are complex systems inspired by the nature and the biology. They are
an elaborate framework for different machine learning algorithms to learn (by
taking examples) and later to process or classify complex new data inputs. NNs
automatically generate identifying and specific characteristics from the provided
learning material. The used NNs in this article are integrated in Matlab® 2017a.

LDA is used mainly in statistics, pattern recognition and machine learning.
It can find a linear combination of features that characterizes or separates different
classes of inputs. LDA explicitly tries to find the difference between the different
classes of data and it can be used when the groups are known a-priori. LDA
reduces the data’s dimensions before later classification. It explicitly tries to find
linear combinations of variables which describes and separates the best the data
and it tries to model the discrepancy between the different classes of data. It is
very sensitive to the size of the smallest data group used to teach it - all the time
this group must be larger than the number of predictor variables used by LDA.

SVMs are supervised learning models and they are analyzing the data used
for classification. Each input dataset used for training must be marked as
belonging to a category and the SVM’s training algorithm finds a model to assign
all new inputs to an existing category. SVMs can solve various real-world
problems. A drawback of SVM is that it needs full labeling of the training data.
SVMs are part of generalized linear classifiers and can be seen as an extension of
the original idea of the perceptron. They can simultaneously minimize the
classification errors and also maximize the distance between two or more groups
of labeled data - SVMs are also known for this as maximum margin classifiers.

EOG signals can be considered as command signals, but also as artifacts
that can modify other types of input signals and act as noise, like in the case of
EEG. Articles [2-7] present different methods in Brain-Computer Interface (BCI)
use cases to reduce the effects of EOG-generated noise in the recorded EEG
signals. In other articles the EOG signals are used as command and/or control
signals for the developed HClIs, like in [8-10]. In case of reference [8], two
channels EOG based HCI was set up, with success rate being around 91%. In [9]
the authors investigated EOG-based eye-writing or a real-time robot control
system integrating an EOG measuring device in the HCI was developed in [10].

Hybrid EOG-EEG control paradigms also do exist, like in [11] and [12]. A
hybrid simultaneous acquisition of EOG, jaw EMG, EEG, and head movement
with consumer-grade wearable devices or a multi-modal EEG-EOG system with
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visual feedback was described in [11] and [12]. Other applications of EOG use
involves insomnia observation [13], automated wake/sleep classification [14],
simultaneous fMRI and recordings of polysomnography (including EOG signals)
during sleep [15], comparison between EOG and infrared video-oculography
(VOG) by eye movement velocity measurement [16]; also, comparative studies
were done regarding finding new methods for EOG classification in order to use it
as control signal [17] or soft electrode skin design, sensing and stimulation used in
various HMIs, including EOG was presented in [18].

An EMG-EOG-EEG field review is presented in [19]. Children with
ADHD underwent to a blink-rate, blink-modulation and blink-timing test in [20].
A robust eyeblink detection algorithm is presented in [21] and in [22] the authors
compared eye tracking, EOG and an auditory BCI for binary communication.

This paper is organized as follows: Chapter 2 describes the EOG
measuring process, Chapter 3 explains the EOG commands; in Chapter 4 and 5 is
presented the system’s layout and the CCR of the employed NN’s; the statistical
results can be seen in Chapter 6 and Chapter 7 contains the final conclusions.

2. EOG measurement

Our EOG application is based on EMG - it records and evaluates the
electrical activity created by the muscles near the eyes. Intentional eye movements
are a possibility in controlling the target electronic device(s). The only mandatory
need for the (disabled) user is to be able to control his/her right eye in left and
right direction in our application. The eye movement patterns are identified by the
program written in Matlab® and are used to control the NI Starter Kit 2.0 robot
that is connected to it. This is the working concept of our proposed EOG-based
HCI. However, a greater accent is put on the testing and comparison of
classification accuracies and presenting the CCRs of the NNs then on the physical
system itself.

This article is the continuation of other papers presented earlier ([23], [24]
and [25]). Reference [23] was focused on the signal processing/filtering part, [24]
on the physical setup, and [25] presented only one NN’s preliminary capabilities
in EOG classification and showed that this concept is suitable to build on it a real
EOG-based wheelchair control system.

This article is presenting the results regarding commanding and
controlling the system described before. It uses two different NNs than in [25] and
also compares the Correct Classification Rate (CCR) of the two used NNs,
namely LDA and SVM in the online control scenario application. In [23], [24]
and [25] there were four eye-movement directions and blink recorded - in this
article this number was reduced only to two: left-right eye-movement command
issuing system only and other NNs were used, as compared to [25].
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This paper’s novelty and the author’s contribution relies in setting up the
whole system, making hundreds of measurements to teach with them the used
NNSs and presenting the setup’s evaluation of real-life usability metrics (CCR, CS,
RCS, P), and describing the real-life testing of the system with real (online) EOG
signals (even if the robot final effector was not connected all time - it does not
change the usability metrics and real-life online functionality of the system).

This article has the potential to have an impact in the research field by
showing a real-life comparison of LDA’s and SVM’s CCR and other metrics, and
also in creating a real system to assist people in their wheelchair to be able to
move around in their homes or even outside of it.

The EOG bio-signals were recorded with two active electrodes, as shown
in Fig. 1. Figs. 2 and 3 present one eye movement to left or right, it’s raw signal
form and the same filtered signal, each recording sessions being 10 seconds long.
During measurements it was observed that the two channels record mostly
identically formed EOG signals, so only one channel was used in the final testing
setup, to reduce the computational needs and required time.

Ground/reference electrode

Horizontal eye movement
recording position

Vertical eye movement
recording position

Fig. 1. Points of recording of the EOG signals

After recording the EOG bio-signals, those were filtered and reduced in
size and we trained with these signals the two Artificial Neural Networks (ANNS):
LDA and SVM. The results of signal filtering can be seen in Figs. 2 and 3, and in
Fig. 4 is presented the EOG signal’s filtering process.

It is worth to mention that our EOG bio-signal recording application is
based on EMG or surface EMG (SEMG) domain, because both fields record and
later evaluate the same electrical activity created by the muscles near the eyes.
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Fig. 2. One eye movement to right, raw signal and the same processed signal, 10 seconds long
recording session, signal form found on both channels
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Fig. 3. One eye movement to left, raw signal and the same processed signal, 10 seconds long
recording session, signal form found on both channels

Initialization
Recording 512.000 Samples
Fast Fourier Transform
Cutting the FFT high frequencies
Inverse FFT
Selecting each 10.000" sample
Normalize

Fig. 4. EOG signal recording and pre-processing steps

3. EOG command description

After recording and pre-processing the EOG bio-signals, we created a
database with 800 sessions. This meant 100 eye movement-emitted control
commands per each direction or command type. In the preparing session both
vertical and horizontal electrodes were used. The command types and also the 100
eye movement-emitted control commands were as follows (each action was
represented by a 10 seconds long recording session): one eye movement to the
right, one eye movement to the left, eye movement up, two movements down
(which is equivalent to two movements to right), two blinks (it is equivalent to
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two movements to left), right-and-left eye movement, left-and-right eye
movement, right movement three times and finally left movement three times.
Looking up was not conclusive, probably because of electrode contact failure, so
this movement type was discarded.

After inspection of the diagrams, it was chosen to use only five signals
from the above presented list. It was also decided to use only the left-right eye
movements, because signal-form redundancies, as mentioned above. The LDA
and SVM in our application is analyzing only the pre-processed EOG bio-signal’s
form, not it’s amplitude, nor uses pre-set threshold levels, so if the user cannot
move his or her eyes angularly too much, the system can still be controlled. We
trained with these signals both of the ANNS, as can be seen in Fig. 5.

Filtering of the EOG bio-signal

Training both the Neural Networks

Classification of the recorded signal

Results from both NNs
If results are the same s Command

Fig. 5. Training steps of both LDA and SVM NN’s and the HCI system’s logic/working principle
of command issuing, adapted from [24]

4. System layout

The concept of the system was twofold: firstly, setting up a HCI for people
with movement problems, and, secondly, to compare the classification results
between the two trained NNs (LDA and SVM). Though, a bigger emphasize is put
in this article on the CCR and other parameters of both LDA and SVM NNs than
on the physical HCI setup. The EOG signal-based HCI has a closed-loop design.
The user’s EOG were recorded from the vertical position of his or her eye (one
active electrode under the eye, one ground/reference electrode in the forehead).
This one channel concept was realized in order to reduce the computational needs
of pre-processing and also the processing time required for each EOG signal.

The bio-signal is converted by the used NI-9234 Analog-to-Digital
Converter (ADC) and transferred to the main PC. On this main PC are 3 programs
running in parallel: LabVIEW Robotics 12 program is the first, which is
responsible to create a web-server interface on the robot and to maintain the
communication channel; the second program is Matlab, which is responsible of
receiving the converted EOG bio-signals from the ADC, to pre-process it and to
employ the LDA and SVM networks to classify the input signals. If both NNs
gave the same classification result for the input signal, then Matlab calls the third
program, which is the default web-browser of the PC, in our case Mozzilla.
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Matlab calls the command’s afferent local intranet link, and the robot executes the
issued command. On the robot is an action camera, used to see where the robot is
positioned, providing a real-time visual feedback about the robot’s whereabouts
through Wi-Fi on the screen of the second computer.

The final setup is a synchronous and online HCI, with visual feedback to
the user and offering an audio cue signal at the session’s beginning each time
when the bio-signals are being recorded. Fig. 6 presents the HCI system’s
conceptual schematic, including the employed ADC, Computer 1 running
LabVIEW, Matlab and Mozzilla, the robot and the visual feedback part
(represented by Computer 2), while Fig. 7 shows an actual moment while
recording EOG bio-signals to train the NNs. The whole physical setup was tested
too in the testing and evaluation environment, not only Matlab’s NNs. It was
tested in a “reduced state”- the robot was not moving too many times or for a
prolonged period of time. This physical testing phase was not the main goal of
this article. It moved only for a few times/commands in all directions, to prove the
viability of the whole setup and of the concept. The robot was roaming in the
laboratory, with some furniture in the laboratory. Each time the robot was moving
forward or backward, it was set to move for 2 seconds — it is equivalent to
approximately 1 meters of movement. Turning left or right or wait/stop periods
were also tried. It was an easy-to-use system, if the commands were correctly
learned and issued by the user.

The future work will be to test the robot’s real-life behavior and the
system and also to measure the maximum distance to what it can be controlled.

5. Learning and classification results

During the NN’s teaching process and EOG signal’s classification test, the
robot was not connected to the system, only for proof-of-concept purposes. It is
functional but is not necessary for our proposed work to compare CCR of LDA
and SVM. After the offline teaching/learning process, at the test step of the
trained NNs, the LDA had a CCR of 74,5% and SVM had a CCR of 89% on the
same test dataset EOG signals. The setup can be employed in a real situation in
two ways: firstly, when both LDA and SVM has to give the same classification
result for the same input signal (overall it has higher safety, but it is slower), or,
secondly, when only the SVM is used to classify the EOG signals (it is faster, but
a little more less safe overall). The same database with the same 800 examples for
learning and testing was used in both NNs. The LDA in the real online testing
process had a CCR of 69,8%, while the SVM had a success rate of 94%.

Three types of symbols were used to note the results of the EOG signal’s
classification. These notations are: “I”, when both LDA and SVM classified the
input EOG signal correctly; “”, when only SVM succeeded; and “x” when both
LDA and SVM failed to classify correctly. From the 500 commands 100 were
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“forward” commands, 100 were “backward”, 100 were “left”, 100 were “right”
and 100 were “stop/wait” commands. The results of classification are in Table 1.

Audio signal for EOG command generation synchronization
al

- - re v —2> Connection through Wi-Fi
Nl-?234, AD( USB Cable e \L\Tul...\n
Ch. 1 GND Recording

LabVIEW
Set up the Web server
on the robot and the
communication
between the computer

—(-—. and robot

Filtering

Intent observation

Command issuing
(Accessing specific
Intranct sites)

Robot movement (left,

right, forward, backward)
or stop
Computer 2 S —
Real-time visual feedback P : Action camera
and information about the robot's| ~ Zgma® "o placed on the robot
position presented to the user L)

Fixed part of the setup Mobile part of the setup

Fig. 6. The proposed system layout, modified from [24]

From the total of 500 real online measurements, that were made to try the
setup, 349 times the classification’s result was “I”, 121 times the result was “s”
and there were 30 times when the result was “x”. This means that the grand total
Correct Classification Result (CCR) for LDA was 69,8%, while for the SVM this
value increased to 94% of correct EOG signal classification. The 500
measurements were not made in a single day, but in 5 days. In each day 100
movements were measured, in a semi-random order of commands.

In Table 1 must be observed that SVM’s CCR is the sum of percentages of
columns with the symbols “/” and “+”; LDA’s CCR 1is only the first column (only
the column noted with “I”").

Computer
k T —
A
\*7»-
Action Camera “:‘:\ . TL-WR702N Router

s> 6 NI Robot

Fig. 7. Moment while recording the EOG bio-signals [25]
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Fig. 8. Effective filtered command signals of the system: once to right and once to left eye
movement for forward movement (left above), once to left and once to right for backward
movement (right above), twice to right for right turn (middle left), twice movement to left for left
turn (middle right), three times to right to stop/pause (down)

Table 1
Different directions and the afferent CCR of LDA and SVM

From From From SVM LDA

which | which « | which x | success rate | success rate
Torl Fonard =1 100 (100%) | 0(0%) | 0(0%) | 100% 100%
Tol Back="1 g5 @6%) | 130%) | 1(1%) 99% 86%
ToRlRON= | 73(73%) | 23(%) | 4(a%) | 9% 73%
ToRILeM= | s3(s3%) | 38(%) | 9(9%) | 91% 53%
TR SIOP= | 37 (37%) | 45 (45%) | 18 (18%) |  82% 37%

It is also important to mention that in time the results were better and
better (from day to day), due to the learning process of commands to be issued to
the system by the user. In a real scenario, after some days of accommodation, it is
possible that the real-world values in case of a real user could reach higher values.

6. Statistical results

As can be seen, the CCR for LDA was 69,8%, while for the SVM this
value increased to 94% in the case of all the 500 online EOG measurements.
These values can be translated also into other values to evaluate this setup, by
taking into account other parameters: time, Control Speed (commands/min),
Relative Control Speed ((commands/min)*CCR) and Performance (Precision) can
be also calculated and evaluated this system’s performances.
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Control Speed (CS or Information Transfer Rate (ITR)) is defined simply
as commands/minute. This is calculated as the number of commands that can be
issued in a minute. In our case the EOG signal’s recording time length is set to 10
seconds; this time is added together to the signal’s processing time, command
issuing to the robot and movement execution.

The total time per command summed up is approximately 20 seconds per
cycle, until the program can start the EOG recording process again, so the Control
Speed (CS or ITR) is approximately 3 commands/minute. This value does not
have anything to do with the type of NNs used in EOG signal classification.

Relative Control Speed (RCS) is a derivative of Control Speed/ITR, and it
takes into account also the CCR of the system. In this case, the possibility that the
NN classifies correctly the input EOG signal is taken into account. This is why,
now the values for LDA and SVM NNs will change. The formula for RCS is:

RCS = CS*CCR [commands/minute] 1)

In case of LDA, the 3 commands/minute values have to be multiplied with
the probability of 69,8%. The result in this case is RCS = 2,094 commands/minute
and in case of SVM, this value will be 2,82 command/minute average Control
Speed in the long-term use.

Performance (Precision) is also different for LDA and SVM and it is:

P= NCorrect/ (NCorrect+ Nlncorrect) (2)

Because our system can only have two results (correct selection or wrong
selection), the sum of NCorrect and Nincorrect equals to all the 500
measurements. In this case, LDA’s and SVM’s P will be calculated as:

PLoa = 349 /500 = 0,698 (LDA) 3)
Psvm = 470 / 500 = 0,94 (SVM) (4)

PLpa of 0,698 is acceptable but is less than Psym of 0,94. This Psvm value
is a good result and it is comparable to other setup’s results.

7. Conclusions

An innovative and non-invasive HCI robot control setup was presented in
this article, using EOG bio-signals, and also comparing CCR of LDA and SVM
NNs in a real wireless robot control scenario integrating also visual feedback to
the user. The setup is conceived to have five navigation commands (moving
forward, backward, turn left, turn right and no movement/wait state).

The experimental results show that this system has a Performance of
LDA’s NN (P.pa) of 0,698 (69,8%), and Performance of SVM (Psvm) of 0,94
(94%). The Psvm value is a relatively good result and it is comparable to other
described and used setup’s results in this field.
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This experimental application can be used in healthcare, assistive robotics
or even in the rehabilitation fields and also presented the limitations of LDA and
SVM NNs in terms of CCR, CS, RCS and Precision. The high CCR and
Performance/Precision values of SVM NN are a very promising sign that show
that this setup can be used in the afore mentioned fields with good results, high
reliability and high precision.

This article has the potential to have an impact in the research field by
showing a real-life comparison of LDA’s and SVM’s CCR and other metrics, and
also in creating a real system to assist people in their wheelchair to be able to
move around in their homes or even outside of it.

The future work will be to test the robot’s real-life behavior and also to
measure the maximum distance to what it can be controlled. It also needs to be
mentioned that the user has to adapt to the system too, so in time the Precision and
other values can increase significantly, both in the case of the Precision of LDA
and Precision of SVM.
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