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EXISTENCE OF FRACTALS BY OPTIMAL POINTS FOR A CLASS OF
DISCONTINUOUS MAPPINGS

Shagun Sharma1 and Sumit Chandok2

 In this paper, we focus on the existence of the best proximity points in binormed 
linear spaces. We also provide some illustrations to support our claims. As con-
sequences, we derive various fixed point r esults. We present an approach to the existence 
of fractals through best proximity points as applications.
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1. Introduction and Preliminaries

The idea of a fixed point is not appropriate when the intersection of nonempty subsets
E1 and E2 of a metric space (χ,d) is empty, because in this case FP equations Γu = u may
not have a solution. If intersection of E1 and E2 is nonempty and FP equation Γu = u
has solution, then Γ has a FP. Banach contraction theorem (BCT) plays an important role
in nonlinear analysis. Due to its simplicity and applicability, it helps solve many kinds
of nonlinear problems such as the existence of solutions of integral equation, differential
equation and matrix equation so on.
Mandelbrot [15] gave a notion of fractals which describe a large family of irregular patterns
in nature. Self similar sets are regarded as a valuable category of fractals due to their
utility in mathematically modeling various physical phenomena. In 1981, Hutchinson [12]
conducted an analysis of objects exhibiting self similarity, resulting in the establishment of
an iterated function system which is one of the most common ways of building fractals.
Barnsley [3] worked on this system to produce fractal sets within any given metric space by
employing a finite collection of BCT. Garg and Chandok [11] also worked on this system
and obtained some new results using contraction conditions.

In 1968, Maia established a very interesting and beautiful generalization of BCT
using assumptions on two comparable metrics defined on the set χ . The beautiful idea of
Maia’s FP-theorem still attracts the interest of researchers working in FP-theory (see [1, 6]
and references cited therein).
Consider the case when the FP equation Γu = u has no solution. In this case d(E1,E2)> 0.
In this affairs it is interesting to find an approximate solution u such that the error d(u,Γu)
is minimum in some sense. For a nonself mapping Γ : E1 → E2 a point u, known as a best
proximity point (BPP) if satisfies the following condition

d(u,Γu) = d(E1,E2) = inf{d(u,v) : u ∈ E1,v ∈ E2}.
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In 1969, Fan [10] gave the classical best approximation theorem in the context of a Haus-
dorff locally convex topological vector space χ . After that, many authors studied the best
approximation problems in metric spaces and normed spaces (see [5, 18] and references
cited therein). In 2006, Eldred and Veeramani [9] proved the existence of a best proximity
point for cyclic contraction mappings. Thereafter, various authors obtained many best prox-
imity point results using different types of contractions (see [8, 13, 17, 19] and references
cited therein).
In this paper, we investigate the existence of best proximity points in the context of bi-
normed linear spaces and derive various fixed point results as a result of our observations.
Also, as an application, we give a method for the existence of fractals using the BPP. We
provide some numerical examples to back up our findings.
Throughout this paper, we denote the set of natural numbers and real numbers by N, R re-
spectively, and the set of all nonempty compact subsets of χ by C(χ).
Now, we recall some definitions to be used in the sequel.

Definition 1.1. [3] Let (χ,d) be a metric space. A mapping h : C(χ)×C(χ)→ R, defined
as

h(E1,E2) = max{D(E1,E2),D(E2,E1)} ; where D(E1,E2) = sup
x∈E1

inf
y∈E2

d(x,y),

is a metric on C(χ), called the Hausdorff metric h induced by metric d.
Here, it is interesting to note that if (χ,d) is complete and compact, then (C(χ),h) is

also complete and compact.

Definition 1.2. [3] Let Γi : χ → χ be self maps on a complete metric space (χ,d) such that
d(Γix,Γiy) ≤ lid(x,y); li ∈ [0,1) for all x,y ∈ χ . Then the system {χ : Γi, i = 1,2, · · · ,k} is
called iterated function system (IFS).

Definition 1.3. [3] Let (χ,d) be a complete metric space and {χ : Γi, i = 1,2, · · · ,k} be IFS.
Then Hutchinson mapping F on C(χ) is defined as F(E1) = ∪k

i=1Γ∗
i (E1), where Γ∗

i (E1) =
{Γi(c) : c ∈ E1}. If F(A) = A, then A ∈C(χ) is called an attractor or a fractal of IFS.

Definition 1.4. [7] A normed vector space χ is said to be a uniformly convex Banach space
(UCBS) if for every 0< ε ≤ 2 there is some δ > 0 such that for any two vectors with ||d||= 1
and ||e||= 1, the condition

||d − e|| ≥ ε,

implies ∣∣∣∣∣∣∣∣d + e
2

∣∣∣∣∣∣∣∣≤ 1−δ .

To prove the main result of the paper, we need the following interesting results of [3]
and [9].

Lemma 1.1. [3] If {Ai : 1 ≤ i ≤ k} and {Bi : 1 ≤ i ≤ k} are two finite collections of subsets
of C(χ) for some k ∈ N then

h(∪k
i=1Ai,∪k

1=iBi)≤ max
1≤i≤k

{h(Ai,Bi)} . (1)

Lemma 1.2. [9] Let E1,E2 be nonempty closed subsets of an UCBS χ with E1 convex. Let
{dn} and { fn} be sequences in E1 and {en} be a sequence in E2 satisfying:
(i) || fn − en|| → d(E1,E2),
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(ii) for every ε > 0 there exists N0 such that for all m > n ≥ N0, ||dn −en|| ≤ d(E1,E2)+ε .
Then, for every ε > 0 there exists N1 such that for all m > n ≥ N1, ||dn − fn|| ≤ ε .

Lemma 1.3. [9] Let E1,E2 be nonempty closed subsets of an UCBS χ with E1 convex. Let
{dn} and { fn} be sequences in E1 and {en} be a sequence in E2 satisfying:
(i) || fn − en|| → d(E1,E2),

(ii) ||dn − en|| → d(E1,E2).
Then ||dn − fn|| converges to zero.

2. Main result

First, we prove an approximation result.

Theorem 2.1. Let E1 and E2 be nonempty closed subsets of a metric space (χ,d). Suppose
that Γ : E1 ∪E2 → E1 ∪E2 is an operator fulfilling the following hypotheses:

(T1) Γ(E1)⊆ E2 and Γ(E2)⊆ E1,
(T2) 0 < a ≤ d(u,v)≤ b < ∞ implies d(Γu,Γv)≤ ζa,b(d(u,v))+(1−ζa,b) d(E1,E2),
for all u∈E1, v∈E2, ζa,b : [0,∞]→ [0,∞] is a non-decreasing mapping such that lim

n→∞
ζ n

a,b(s)=

0, 0 < ζa,b(s)< s for each s > 0, and ζ n
a,b(s) is the nth iterate of ζa,b.

If u0 ∈ E1 ∪E2 and un+1 = Γun where n ∈ N∪{0}, then d(un,Γun)→ d(E1,E2).

Proof. Since u0 ∈ E1 ∪E2, u0 ∈ E1 or u0 ∈ E2.
Case (i): Take u0 ∈ E1. By (T1), we have u1 = Γu0 ∈ E2. Suppose that d(E1,E2)> 0, then
there exist u0 ̸= u1 and a large integer n0, we get 1

n0
≤ d(u0,u1) ≤ n0. Also d(E1,E2) =

inf{d(u,v) : u ∈ E1,v ∈ E2}, we obtain d(E1,E2)≤ d(u0,u1). Using (T2), we have

d(Γu0,Γu1)≤ζ1/n0,n0(d(u0,u1))+(1−ζ1/n0,n0) d(E1,E2)

≤ζ1/n0,n0(d(u0,u1))+(1−ζ1/n0,n0) d(u0,u1)

=d(u0,u1).

Since u1 ∈ E2 by (T1), u2 = Γu1 ∈ E1. Again suppose that there exist u1 ̸= u2 and a large
integer n1, we have 1

n1
≤ d(u1,u2)≤ n1, so by (T2),

d(Γu1,Γu2)≤ ζ1/n0,n0(d(u1,u2))+(1−ζ1/n0,n0)d(u1,u2)≤ d(u1,u2).

Continuing this process, we construct the sequences {us} for a large integer ns such that

d(Γus,Γus−1)≤ ζ1/ns,ns(d(us,us−1))+(1−ζ1/ns,ns)d(us,us−1)≤ d(us,us−1).

Therefore, {d(un,un+1)} is a bounded below and non-increasing sequence, so there exists
r ≥ 0 such that

r = lim
n→∞

d(un,un+1).

Now, we shall prove that r = d(E1,E2). Thus, by contradiction, suppose that r > d(E1,E2)>
0. Then, for large N, we obtain

r ≤ d(uN+s−1,uN+s)≤ r+1, for all s = 1,2, · · · ,

which imply by (T2) that

d(ΓuN+s−1,ΓuN+s)≤ ζr,r+1(d(uN+s−1,uN+s))+(1−ζr,r+1)d(E1,E2), for all s = 1,2, · · · .
(2)
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Again by (T2), we have d(uN+s−1,uN+s)= d(ΓuN+s−2,ΓuN+s−1)≤ ζr,r+1(d(uN+s−2,uN+s−1))+
(1−ζr,r+1)d(E1,E2). Since ζr,r+1, is non-decreasing mapping, we obtain

ζr,r+1(d(uN+s−1,uN+s))≤ ζr,r+1(d(uN+s−2,uN+s−1)+(1−ζr,r+1)d(E1,E2)). (3)

Put (3) in (2), we have

d(ΓuN+s−1,ΓuN+s)≤ ζ
2
r,r+1(d(uN+s−2,uN+s−1))+(1−ζ

2
r,r+1)d(E1,E2).

Thus, by induction, we get

d(uN+s,uN+s+1)≤ ζ
s
r,r+1(d(uN ,uN+1))+(1−ζ

s
r,r+1)d(E1,E2), for all s = 1,2, · · · .

Since ζ s
r,r+1(r+1)→ 0 as s → ∞, d(uN+s,uN+s+1)→ d(E1,E2) as s → ∞, which implies a

contradiction. This shows that d(un,un+1)→ d(E1,E2).
Case (ii) If u0 ∈ E2. In Similar way, we obtain

d(un,un+1)→ d(E1,E2).

□

Next, we prove an existence result for a BPP.

Theorem 2.2. Suppose that all the assumptions of Theorem 2.1 hold. Additionally if u0 ∈
E1, χ is complete and {u2n} has a convergent subsequence in E1 then Γ has a BPP.

Proof. Let
{

u2n(s)
}

be a subsequence of {u2n} which converges to a point u ∈ E1. Now

d(u,u2n(s)−1)≤ d(u,u2n(s))+d(u2n(s),u2n(s)−1). (4)

Taking n → ∞ in (4), we get

d(u,u2n(s)−1)→ d(E1,E2).

Since d(E1,E2)≤ d(u2n(s),Γu)≤ d(u2n(s)−1,u). Then Γ has a BPP. □

Next, we are ready to prove the main result, which gives existence, uniqueness and
convergence for best proximity points in binormed linear space.

Theorem 2.3. Let E1,E2 be nonempty closed subsets of a uniformly convex binormed linear
space (χ, ||.||1, ||.||2) with E1 convex and ||.||2 ≤ ||.||1. Suppose that χ is complete with
respect to ||.||2 and Γ : E1 ∪E2 → E1 ∪E2 is an operator fulfilling the following hypotheses:

(T1) Γ(E1)⊆ E2 and Γ(E2)⊆ E1,
(T2) 0< a≤ ||u−v||1 ≤ b<∞ implies ||Γu−Γv||1 ≤ ζa,b(||u−v||1)+(1−ζa,b) ||E1−E2||1,
for all u∈E1, v∈E2, ζa,b : [0,∞]→ [0,∞] is a non-decreasing mapping such that lim

n→∞
ζ n

a,b(s)=

0, 0 < ζa,b(s)< s for each s > 0, and ζ n
a,b(s) is the nth iterate of ζa,b.

If u0 ∈ E1 and un+1 = Γun where n ∈ N, then Γ has a unique BPP in E1 where ||E1 −
E2||1 = inf{||u− v||1 : u ∈ E1,v ∈ E2}.

Proof. By Theorem 2.1, we have

||u2n −u2n+1||1 → ||E1 −E2||1 and ||u2n+2 −u2n+1||1 → ||E1 −E2||1. (5)

Since χ is a uniformly convex binormed linear space by Lemma 1.3, we get

||u2n −u2(n+1)||1 → 0. (6)
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We now show that for every ε > 0 there exists N0 such that for all M > N ≥ N0, ||u2M −
Γu2N ||1 < ||E1 −E2||1 + ε = r1. Suppose not, then, for sufficiently large N and M, we have

r1 ≤ ||u2(M+s)−Γu2(N+s)||1 ≤ r1 +1, for all s = 1,2, · · · .
This M can be chosen such that it is the least integer greater than N to satisfy the above
inequality. Now

||E1 −E2||1 + ε ≤ ||u2(M+s)−Γu2(N+s)||1
≤ ||u2(M+s)−u2(M−1+s)||1 + ||u2(M−1+s)−Γu2(N+s)||1
< ||u2(M+s)−u2(M−1+s)||1 + ||E1 −E2||1 + ε.

Using (6) and taking s → ∞ in above inequality we have, ||u2(M+s)−Γu2(N+s)||1 = ||E1 −
E2||1 + ε . Consider,

||u2(M+s)−Γu2(N+s)||1 ≤||u2(M+s)−u2(M+1+s)||1 + ||u2(M+1+s)−Γu2(N+1+s)||1
+||Γu2(N+1+s)−Γu2(N+s)||1
≤||u2(M+s)−u2(M+1+s)||1 + ||Γu2(N+1+s)−Γu2(N+s)||1
+ζ

2
r1,r1+1||u2(M+s)−Γu2(N+s)||1 +(1−ζ

2
r1,r1+1)||E1 −E2||1. (7)

Taking s → ∞ in (7) and using (6) we get,

||E1 −E2||1 + ε ≤ ζ
2
r1,r1+1(||E1 −E2||1 + ε)+(1−ζ

2
r1,r1+1)||E1 −E2||1

= ||E1 −E2||1 +ζ
2
r1,r1+1ε,

which is a contradiction because ζ 2
r1,r1+1(ε) = ζr1,r1+1(ζr1,r1+1(ε))< ζr1,r1+1(ε)< ε . There-

fore, {u2n} is a Cauchy sequence in E1 with respect ||.||1. Since ||.||2 ≤ ||.||1, {u2n} is a
Cauchy sequence in E1 with respect ||.||2. As E1 is a closed subset of χ , it is a complete
subspace. By the completeness of E1, {u2n} converges to a point u in E1, then by Theorem
2.2, we get Γ has a BPP, ||u−Γu||2 = ||E1 −E2||2 in E1.

Next, we have to prove that Γ has a unique BPP. Suppose that u,v ∈ E and u ̸= v
such that ||u−Γu||2 = ||E1 −E2||2 and ||v−Γv||2 = ||E1 −E2||2 where necessarily, Γ2u = u
and Γ2v = v. Also, ||u−Γv||2 ≤ ||u− v||+ ||E1 − E2||2. This shows 0 < ||E1 − E2||2 <
||u−Γv||2 ≤ ||u− v||+ ||E1 −E2||2. Therefore,

||Γu− v||2 = ||Γu−Γ
2v||2 ≤ ||u−Γv||2.

Similarly, ||Γv − u||2 ≤ ||v − Γu||2, which implies ||Γv − u||2 = ||v − Γu||2. Since ||v −
Γu||2 > ||E1−E2||2, this shows ||Γv−u||2 < ||v−Γu||2, which is a contradiction. Therefore,
Γ has a unique BPP. □

If E1 = E2 = χ in Theorem 2.3, we get following FP result:

Corollary 2.1. [6] Assume that Γ is fulfilling the following assumption:
• 0 < a ≤ ||u− v||1 ≤ b < ∞ implies ||Γu−Γv||1 ≤ ζa,b(||u− v||1),

for all u,v ∈ χ , ζa,b : [0,∞]→ [0,∞] is non-decreasing a mapping such that lim
n→∞

ζ n
a,b(s) = 0,

0 < ζa,b(s)< s for each s > 0, and ζ n
a,b(s) is the nth iterate of ζa,b.

If u0 ∈ χ and un+1 = Γun where n ∈ N, then Γ has a FP.

If E1 = E2 = χ and ζa,b(s) = rs;r ∈ (0,1),s ∈ [0,∞) in Theorem 2.3, we get following
FP result:
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Corollary 2.2. [14] Assume that Γ is fulfilling the following condition:
• ||Γu−Γv||1 ≤ r||u− v||1,

for all u,v ∈ χ , r ∈ (0,1) and un+1 = Γun where n ∈ N. Then Γ has a FP.

3. Numerical Illustrations

We give several illustrations that support our findings in this section.

Example 3.1. Consider χ = R, define ||.||1, ||.||2 : χ → R+ by

||u||1 = |u| and ||u||2 =
|u|
2

for all u ∈ χ . It is easy to see that ||u||2 < ||u||1, for all u ∈ χ . Suppose E1 = [−3,−1] and
E2 = [1,3] are two subsets of χ , then ||E1−E2||1 = 2 and ||E1−E2||2 = 1. Define a mapping
Γ : E1 ∪E2 → E1 ∪E2 by

Γ(u) =

{
−u+3

4 , u ∈ [−3,−1]
−u−3

4 , u ∈ [1,3]

for all u ∈ E1 ∪E2. Since ||u−v||1 ∈ [2,6] that is 2 = a ≤ ||u−v||1 ≤ b = 6. Next, we prove
that Γ satisfies the following inequality,

||Γu−Γv||1 ≤ ζa,b(||u− v||1)+(1−ζa,b) ||E1 −E2||1
for all u ∈ E1 and v ∈ E2. Let ζa,b(s) = s

b−a ;s > 0.

||Γu−Γv||1 =
∣∣∣∣∣∣∣∣−u+3

4
− −v−3

4

∣∣∣∣∣∣∣∣
1

≤
∣∣∣∣v−u

4

∣∣∣∣+ 3
2
= ζa,b(||u− v||1)+(1−ζa,b) ||E1 −E2||1.

It implies

||Γu−Γv||1 ≤ ζa,b(||u− v||1)+(1−ζa,b) ||E1 −E2||1, (8)

for all u ∈ E1, v ∈ E2, and Γ(E1)⊆ E2, Γ(E2)⊆ E1 see Figure 1. Since ||u||2 < ||u||1, for all
u ∈ χ , we have

||Γu−Γv||2 ≤ ζa,b(||u− v||2)+(1−ζa,b) ||E1 −E2||2.
Starting with point u0 = 0 ∈ E1, we construct a sequence as

un+1 u0 u1 u2 u3 u4 u5 u6 u7 · · ·
Γun −1 1 −1 1 −1 1 −1 1 · · ·

We found that {u2n} has a subsequence (−1,−1,−1,−1, ...), which converges to −1. All
the conditions of Theorem 2.3 satisfied, Γ has a BPP −1.

Example 3.2. Suppose a two-dimensional real sequence space χ = ℓ2 induced with norms

||z1||1 =
√

u2
1 + v2

1 and ||z1||2 =
1√
2
(|u1|+ |v1|)

for all z1 = (u1,v1) ∈ χ and

E1 =

{
(0,u1) : −2 ≤ u1 ≤−1

2

}
and E2 =

{
(0,u1) :

1
2
≤ u1 ≤ 2

}
,
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FIGURE 1. This graph shows the left and right side of inequality 8

are two subsets of χ . Here, ||E1 −E2||1 = 1. Define a mapping Γ : E1 ∪E2 → E1 ∪E2 by

Γ(u) =

{
−u+1

3 , u ∈ [−2,−1
2 ]

−u−1
3 , u ∈ [1

2 ,2]

If z1,z2 ∈ E1, 1 = a ≤ ||z1 − z2|| ≤ b = 4. Next, we show that Γ satisfies the following
inequality,

||Γz1 −Γz2||1 ≤ ζa,b(||z1 − z2||1)+(1−ζa,b) ||E1 −E2||1
for all z1 ∈ E1 and z2 ∈ E2. Let ζa,b(s) = s

(b−a) ;s > 0. Consider

||Γz2 −Γz1||1 = ||(0,v1)− (0,v2)||1

=

∣∣∣∣v2 − v1 +2
3

∣∣∣∣
≤
∣∣∣∣v2 − v1

3

∣∣∣∣+ 2
3
= ζa,b(||z1 − z2||1)+(1−ζa,b) ||E1 −E2||1.

It shows that Γ satisfies the following inequality,

||Γz1 −Γz2||1 ≤ ζa,b(||z1 − z2||1)+(1−ζa,b) ||E1 −E2||1 (9)

for all z1 ∈ E1, z2 ∈ E2 and Γ(E1) ⊆ E2, Γ(E2) ⊆ E1 see Figure 2. Since ||u||2 ≤ ||u||1, for
all u ∈ χ , we have

||Γu−Γv||2 ≤ ζa,b(||u− v||2)+(1−ζa,b) ||E1 −E2||2.

Starting with point u0 = (0,1) ∈ E1, we construct a sequence as
un+1 u0 u1 u2 u3 u4 u5 u6 · · ·
Γun (0,−1

2) (0, 1
2) (0,−1

2) (0, 1
2) (0,−1

2) (0, 1
2) (0,−1

2) · · ·

We found that {u2n} has a subsequence ((0,−1
2),(0,−

1
2),(0,−

1
2),(0,−

1
2), ...), which con-

verges to (0,−1
2). All the conditions of Theorem 2.3 satisfied, Γ has a (BPP) (0,−1

2).
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FIGURE 2. This graph shows the left and right side of inequality 9

4. Application to Fractals

In this section, we present a approach to fractals through (BPP) using contraction
condition. Now, we establish a lemma which is useful to prove our application part.

Lemma 4.1. [2] Let (χ,d) be a metric space and E1,E2 ⊆ χ with E10 ̸= /0. Then, we have
H(C(E1),C(E2)) = d(E1,E2), where

E10 = {x ∈ E1 : there exists some y ∈ E2 such that d(x,y) = d(E1,E2)} and

H(C(E1),C(E2)) = inf
{

h(U ′,V ′);U ′ ∈C(E1) and V ′ ∈C(E2)
}
.

Lemma 4.2. Let E1,E2 ∈C(χ) be two subsets of a metric space (χ,d). Then

sup
x∈E1

inf
y∈E2

ℑ(d(x,y))≤ ℑ(h(E1,E2)),

where ℑ : [0,∞)→ [0,∞) is a non-decreasing mapping.

Proof. Since E1 and E2 are compact, there exists y1 ∈ E2 such that

inf
y1∈E2

d(x,y) = d(x,y1).

Then

ℑ(d(x,y1)) =ℑ( inf
y∈E2

d(x,y))

≤ℑ(sup
x∈E1

inf
y∈E2

d(x,y))

=ℑ(D(E1,E2))

≤ℑ(h(E1,E2)).

□
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Theorem 4.1. Let E1,E2 be subsets of metric space (χ,d) with E10 ̸= /0, Γ : E1∪E2 → E1∪E2
be a map such that ΓE1 ⊆ E2, ΓE2 ⊆ E1 and satisfying

0 < a ≤ d(u,v)≤ b < ∞ implies d(Γu,Γv)≤ ζa,b(d(u,v))+(1−ζa,b) d(E1,E2), (10)

with respect to E1 and E2, ζ : [0,∞] → [0,∞] is a mapping such that lim
n→∞

ζ n(s) = 0, 0 <

ζ (s)< s for each s > 0 and ζ n(s) is the nth iterate of ζ .
Then Γ∗ :C(E1)∪C(E2)→C(E1)∪C(E2) is a map such that Γ∗(C(E1))⊆C(E2),Γ

∗(C(E2))⊆
C(E1) and satisfying

0 < a ≤ h(U,V )≤ b < ∞ implies d(Γ∗U,Γ∗V )≤ ζa,b(h(U,V ))+(1−ζa,b) H(C(E1),C(E2)),
(11)

between C(E1) and C(E2) with respect to the Hausdorff metric h.

Proof. Suppose that E1 and E2 are closed, so infimum and supremum exist in E1∪E2. There-
fore, inf

u∈E1,v∈E2
d(u,v)≤ d(u,v)≤ sup

u∈E1,v∈E2

d(u,v). Therefore, d(u,v) is bounded, that is, there

exist two real numbers a,b such that 0 < a ≤ d(u,v)≤ b < ∞. We know that a finite union
of compact sets is a compact set. Therefore, C(E1)∪C(E2) =C(E1 ∪E2) is compact. It is a
trivial observation that for all U ∈C(E1) and V ∈C(E2), then Γ∗(U) ⊆ (V ), Γ∗(V ) ⊆ (U).
Next we prove that Γ∗ satisfying (11) between C(E1) and C(E2) with respect to the Haus-
dorff metric h. Since C(E1) and C(E2) are compact then max{D(U,V ),D(V,U)} exist in
C(E1)∪C(E2). Therefore, h(U,V ) is bounded that is there exist two real numbers a,b such
that 0 < a ≤ h(U,V )≤ b < ∞. Consider

D(Γ∗U,Γ∗V ) =D({Γu : u ∈U} ,{Γv : v ∈V})
= sup

u∈U
inf
v∈V

d(Γu,Γv)

≤ sup
u∈U

inf
v∈V

(ζa,b(d(u,v))+(1−ζa,b) d(E1,E2))

= sup
u∈U

inf
v∈V

(ζa,b(d(u,v)))+(1−ζa,b) H(C(E1),C(E2)), by Lemma 4.1

≤ζa,b(h(U,V ))+(1−ζa,b) H(C(E1),C(E2)), by Lemma 4.2.

Similarly,

D(Γ∗V,Γ∗U)≤ ζa,b(h(V,U))+(1−ζa,b) H(C(E1),C(E2)).

This shows that

h(Γ∗U,Γ∗V ) =max{D(Γ∗U,Γ∗V ),D(Γ∗V,Γ∗U)}
≤ζa,b(h(U,V ))+(1−ζa,b) H(C(E1),C(E2)).

Hence Γ∗ satisfying (11) between C(E1) and C(E2) with respect to the Hausdorff metric
h. □

Theorem 4.2. Let Γ1,Γ2, · · · ,Γk be a finite family of mappings such that Γi(E1)⊆E2,Γi(E2)⊆
E1;1 ≤ i ≤ k : k ∈ N, satisfying (10), for some ζ1(a,b) , · · · ,ζk(a,b) respectively with respect to
E1 and E2 with E10 ̸= /0, where ζi(a,b) : [0,∞]→ [0,∞] is a non-decreasing mapping such that
lim
n→∞

ζ n
i(a,b)

(s) = 0, 0 < ζi(a,b)(s)< s for each s > 0 and ζ n
i(a,b)

(s) is the nth iterate of ζi(a,b) .

Then F = ∪k
i=1Γ∗

i is a mapping such that F(C(E1)) ⊆ (C(E2)), F(C(E2)) ⊆ (C(E1)), sat-
isfying (11) between C(E1) and C(E2) with respect to the Hausdorff metric h induced by
d.
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Proof. From the construction of F it is immediate that for all U ∈ C(E1) and V ∈ C(E2),
F(U)⊆V,F(V )⊆U . Consider

h(FU,FV ) =h(∪k
i=1Γ

∗
i U,∪k

i=1Γ
∗
i V )

≤ max
1≤i≤k

h(Γ∗U,Γ∗V )

≤ max
1≤i≤k

ζi(a,b)(h(U,V ))+(1−ζa,b) H(C(E1),C(E2))

≤ζa,b(h(U,V ))+(1−ζa,b) H(C(E1),C(E2)),

where ζi(a,b)(s) = max1≤i≤k ζi(a,b)(s). □

Now, we are ready to present our result for the existence of best proximity point.

Theorem 4.3. Let E1, E2 be two closed subsets of complete metric space (χ,d) with E10 ̸= /0
and Γ1,Γ2, · · · ,Γk be a finite family of mappings such that Γi(E1) ⊆ E2,Γi(E2) ⊆ E1;1 ≤
i ≤ k : k ∈ N, satisfying (10), for some ζ1(a,b) , · · · ,ζk(a,b) respectively with respect to E1 and
E2 where ζi(a,b) : [0,∞] → [0,∞] is a non-decreasing mapping such that lim

n→∞
ζi(a,b)(s) = 0,

0 < ζi(a,b)(s) < s for each s > 0 and ζ n
i(a,b)

(t) is the nth iterate of ζi(a,b) . Then F = ∪k
i=1Γ∗

i
defined in Theorem 4.2, has a (BPP).

Proof. By Theorem 4.2, F is a mapping such that F(U)⊆V,F(V )⊆U and satisfying (11),
for all U ∈C(E1) and V ∈C(E2). Again, since (χ,d) is complete metric space (C(χ),h) is
also complete metric space. On the other hand, E1,E2 are closed subsets of χ , they are also
complete. Also C(E1)∪C(E2) =C(E1 ∪E2) is compact subset of C(χ) thus closed, then it
is complete subspace. By Theorem 2.2, F has a (BPP). □

If we take E1 = E2 in Theorem 4.3 then we get following (FP) result:

Corollary 4.1. Let (χ,d) be a complete metric space and Γ1,Γ2, · · · ,Γk be a finite fam-
ily of mappings satisfying (10), for some ζ1(a,b) , · · · ,ζk(a,b) respectively with respect to χ ,
where ζi(a,b) : [0,∞] → [0,∞] is a non-decreasing mapping such that lim

n→∞
ζ n

i(a,b)
(s) = 0 and

0 < ζi(a,b)(s) < s for each s > 0 and ζ n
i(a,b)

(s) is the nth iterate of ζi(a,b) . Then F = ∪k
i=1Γ∗

i
defined in Theorem 4.2, has a attractor.

If we take ζi(a,b)(s) = ris where 1 ≤ i ≤ k, for some ri ∈ (0,1),s ∈ [0,∞), then we get
following result:

Corollary 4.2. Let (χ,d) be a complete metric space and Γ1,Γ2, · · · ,Γk be a finite family
of mappings satisfying

d(Γu,Γv)≤ r′d(u,v)+(1− r′) d(E1,E2). (12)

Then F = ∪k
i=1Γ∗

i defined in Theorem 4.2, has an attractor where r′(s) = max1≤i≤k ri(s).

Example 4.1. Let χ = R, be endowed with the metric d : χ ×χ → R defined by

d(u,v) = |u− v|.

Consider

E1 = [−0.5,1.3] and E2 = [0,
2
3
],
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FIGURE 3.

the two compact subsets of χ . Also d(E1,E2) = 0. Take r1(s) =
s
2

and r2(s) =
s
3

for all
s > 0. Define Γ1,Γ2 : E1 ∪E2 → E1 ∪E2 by

Γ1(u) =
u
4

and Γ2(u) = 1− u
4
,

for all u ∈ E1 ∪E2 with Γ1(E1) ⊂ E2,Γ1(E2) ⊂ E1 and Γ2(E1) ⊂ E2,Γ2(E2) ⊂ E1. Next we
prove that Γ1,Γ2 satisfies the (12). If u ∈ E1 and v ∈ E2 then

d(Γ1u,Γ1v) =d(
u
4
,

v
4
)

=
|u− v|

4
≤ 1

2
d(u,v) = r1(d(u,v).

This shows that Γ1 satisfies the (12). Similarly Γ2 satisfies the (12). By Corollary 4.2
mapping F = ∪2

i=1Γ∗
i has a unique fractal. If A1 = [0,1] , then :

A2 = [0,
1
4
]∪ [

3
4
,1],

A3 = [0,
1
16

]∪ [
3
4
,
13
16

],

A3 = [0,
1
64

]∪ [
51
64

,
13
16

],

...

The first few iterations are shown in Figure 3.

5. Conclusion

We find some novel best proximity point results in binormed linear spaces. Many
known results in the literature are also generalized by our findings. We also discuss an ap-
proach to the existence of fractals through best proximity points as applications.
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