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KINEMATICS, WORKSPACES AND STIFFNESS OF A 
PLANAR CLASS-2 TENSEGRITY MECHANISM 

Zhifei JI1, Tuanjie LI2, Min LIN3 

In this paper, the kinematics, singular configurations, workspaces and 
stiffness of a planar class-2 tensegrity mechanism are studied. Firstly, the solutions 
to the kinematic problems are found by using a method of reduced coordinates. 
Then, the singular configurations are discussed and the workspaces are mapped. 
Afterwards, the stiffness of the mechanism is detailed with actuators locked. It is 
demonstrated that the stiffness is at a maximum when the mechanism is in 
equilibrium. Moreover, the stiffness always diminishes when subjected to external 
loads for the given actuator lengths.  
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List of symbols 
ρ1, ρ2: Lengths of active prismatic actuators;        L: Length of rigid rods 
k1, k2, k3, k4: Spring constants;              l1, l2, l3, l4: Current lengths of springs 
x, y: Cartesian coordinates of node D;        U: Potential energy of the system 
J: Mechanism Jacobian;             τ: External torque applied on node D 
K: Stiffness of the mechanism 

1. Introduction 
The term tensegrity was created by Fuller [1] as a combination of the words 

tensional and integrity. It seems that he was inspired by some novel sculptures 
completed by Snelson [2]. The detailed history of tensegrity systems was 
reviewed by Motro [3]. Tensegrity systems are formed by a set of compressive 
components and tensile components. In this paper, we use the term rigid rods to 
represent compressive components and the term springs to represent tensile 
components. Tensegrity systems have advantages [4] of light-weight, 
deployability, easily tunable, etc. Due to these attractive characteristics, tensegrity 
systems have been used in several disciplines such as architecture, biology, 
aerospace, mechanics and robotics during the last fifty years [4]. 

The applications of tensegrity systems can be divided into two main branches. 
One application is used as structures and the other one is used as mechanisms. In 
addition, the research of tensegrity structures has two main issues, which are the 
form-finding problem and the behaviors under external loads. The form-finding of 
a tensegrity structure corresponds to the computation of the structure’s 

                                                            
1 Ph. D Candidate, School of Electro-Mechanical Engineering, Xidian University, CHINA.  
E-mail: zfji18@163.com 
2 School of Electro-Mechanical Engineering, Xidian University, CHINA. 
3 School of Electro-Mechanical Engineering, Xidian University, CHINA. 



54                                             Zhifei Ji, Tuanjie Li, Min Lin 

equilibrium shape for a given set of parameters. This problem has been studied by 
many authors [5-7]. Moreover, a review of form-finding methods is given by 
Tibert [5]. The behaviors of tensegrity structures under external loads have also 
been researched by many researchers [8-9]. A static analysis of tensegrity 
structures was given by Juan and Tur [10]. 

When some components (rigid rods or springs) are actuated, tensegrity 
mechanisms can be obtained. In the past twenty years, several tensegrity 
mechanisms have been proposed [11-14]. The proposed applications of tensegrity 
mechanisms range from a flight simulator [15], a robot [16], and a space telescope 
[17] to a sensor [18]. During the past twenty years, considerable research has been 
performed on the control, statics and dynamics of class-1 tensegrity mechanisms. 
However, there are few articles relating to class-2 tensegrity mechanisms, 
especially on the study of them. The main objective of this article is to perform an 
analytical investigation of the kinematics and statics of a planar class-2 tensegrity 
mechanism. The definitions of class-1 and class-2 tensegrity systems are given by 
Skelton and Oliveira [4]. 

For conventional mechanisms, the kinematic analysis is often performed using 
geometric methods. Moreover, Staicu [19] developed a recursive matrix approach 
in kinematics modelling of serial mechanisms. However, for tensegrity 
mechanisms, the kinematics and statics of tensegrity mechanisms should be 
considered simultaneously [13]. Considering this characteristic, we used a method 
of reduced coordinates [20] to find the analytical solutions to the forward and 
inverse kinematic problems due to its convenient physical interpretation.  

The use of springs as tensile components allows tensegrity mechanisms 
generate deformations with actuators locked. Several examples of the force-
displacement relationships have been demonstrated numerically in [21-22]. 
However, the analytical relations between the external loads and the 
corresponding deformations of tensegrity systems were developed by using an 
energy method in [23]. The method was used in this paper to analyze the stiffness 
of the planar class-2 tensegrity mechanism. 

2. Mechanism description 

 
Fig. 1 Planar class-2 tensegrity mechanism 
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A diagram of the planar class-2 tensegrity mechanism is shown in Fig. 1. It 
consists of four compressive components and four tensile components. The 
compressive components are rigid rods joining node pairs AE, CE, BD and BF 
while the tensile components are springs joining node pairs EF, BE, DE and CD. 
The prismatic actuators are used to vary the distances between node pairs AB and 
BC.  

From Fig. 1, it can be seen that node A is fixed to the ground. Nodes B and C 
are allowed to translate without friction along the X axis while node F is allowed 
to translate without friction along the Y axis. The angle between the X axis and the 
rigid rod joining nodes A and E is defined as α while the angle between the X axis 
and the rigid rod joining nodes B and D is defined as β. Moreover, the 
components are connected to each other at each node by 2-d rotational joints with 
frictionless and the whole mechanism lies in a horizontal plane. The rigid rods 
have the same length L. The actuator lengths, denoted by ρ1 and ρ2, are chosen as 
the mechanism’s input variables while the Cartesian coordinates of node D, 
expressed by x and y, is chosen as the mechanism’s output variables.  

It is assumed that the springs are linear with ki lengths li (i=1, 2, 3, 4) and zero 
free lengths. The last hypothesis is not problematic since, as was explained by 
Gosselin [24] and Shekarforoush et al. [25], virtual zero-free-length spring can be 
created by extending the actual spring beyond its attachment point. In this work, 
the Cartesian coordinates of nodes D and E are always chosen to be positive. For 
this reason, 0 ≤ α ≤ π/2, 0 ≤ β ≤ π. 

3. Kinematic analysis 

For a tensegrity mechanism, the kinematics and statics of tensegrity 
mechanisms should be considered simultaneously [13]. For this reason, it is 
assumed that the mechanism considered here is always in an equilibrium 
configuration. 

3.1 Forward kinematic analysis 

The forward kinematic analysis of the mechanism studied here consists in 
computing the Cartesian coordinates of node D for the given actuator lengths ρ1 
and ρ2. According to the method of reduced coordinates, the equilibrium 
configuration of the mechanism can be obtained by minimizing its potential 
energy with respect to a minimal number of parameters representing the shape of 
the mechanism. To obtain the potential energy of the mechanism, the coordinates 
of all nodes of the mechanism should be firstly computed. 

As shown in Fig. 1, a cosine law for the triangle formed by nodes A, C and E 
can be written as follows. 
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Considering the range imposed to α, we obtain 2sin 1 cosα α= − . Moreover, 
the coordinates of nodes B, C, D, E, and F can be computed as follows. 
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The mechanism’s configuration can be expressed as function of three 
independent parameters: two active variables ρ1, ρ1 and a redundant variable β. 

Since the coordinates of node D are chosen as the output variables of the 
mechanism, we have 
 1 cosx Lρ β= +  (3) 
 siny L β=  (4) 

With the coordinates of nodes B, C, D, E and F now known, the lengths of the 
four springs can be expressed as a function of ρ1, ρ2 and β. Therefore, the potential 
energy of the mechanism can be computed as follows. 
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By differentiating the potential energy U with respect to the angle β and 
equating the result to zero, the following equation is generated. 
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Due to the range imposed to β, computing the arctangent of Eq. (6) generates a 
unique solution. Moreover, by substituting this result into Eqs. (3) and (4), a 
solution to the kinematic analysis is found. Especially, since the potential energy 
reaches its minimum when the mechanism is in equilibrium, the second derivative 
of U with respect to β is always positive. 

3.2 Inverse kinematic analysis 

The inverse kinematic analysis corresponds to the computation of the actuator 
lengths (ρ1 and ρ2) for the given Cartesian coordinates (x and y) of node D. 

From Eqs. (3) and (4), the following equations can be derived. 
 ( )2 2 2

1x y Lρ− + =  (7) 
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Solving Eq. (7) for ρ1 yields 
 2 2

1 1x L yρ δ= + −  (9) 
where δ1= ±1. Generally, when 0≤ β ≤ π/2, δ1= -1. When π/2 ≤ β ≤ π, δ1= 1. By 
combining Eq. (6) with (8), the following equation is generated. 
 2
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Solving Eq. (10) for ρ2, we obtain 
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where δ2= ±1. From Eq. (14), two solutions for ρ2 are obtained. Furthermore, 
considering the two solutions for ρ1 given by Eq. (9), four solutions to the inverse 
kinematic analysis are found. 

4. Singularity anlaysis 

4.1. Mechanism Jacobian 

For the mechanism considered here, the relationships between the input and 
output velocities can not be established since there are more degrees of freedom 
than actuators. However, because the mechanism is always assumed to be in 
equilibrium, its Jacobian, J, can be defined as follows. 
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where v=[x, y]T and ψ=[ρ1,  ρ2]T. Moreover, δv represents the infinitesimal 
changes of the mechanism’s input variables while δψ represents the infinitesimal 
changes of the mechanism’s output variables. The elements of the Jacobian can be 
derived using Eqs. (3) and (4). As a consequence, the determinant of J can be 
obtained.  
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By examining the determinant of J, the singular configurations can be 
obtained. These singular configurations will be detailed in the following section. 

4.2. Singular configurations 

These singular configurations correspond to situations where the determinant 
of J is zero, goes to infinity or is indeterminate. With the elements of J computed 
from Eqs. (21)-(25), the determinant of J can be derived. By examining the Eq. 
(16), the expressions corresponding to singular configurations can be extracted. 
These expressions and the corresponding mechanism’s behaviors are as follows. 

i. cos 0β =  and 2 0ρ ≠  
 The rigid rod joining nodes B and D is parallel to the Y axis. 
 Finite movements of node D along the X axis are possible with the 

actuators locked. 
 Infinitesimal movements of node D along the Y axis can not be generated. 
 External forces applied at node D in a direction parallel to the Y axis can 

be resisted by the mechanism without generating any forces at the 
actuators. 

ii. ( )22
1 24 0L ρ ρ− + =  

 Node A is coincident with node F while node B is coincident with node E. 
In addition, node C is coincident with node D. Furthermore, all the nodes 
are located on the X axis. 

 Infinitesimal movements of node D along the X axis can not be generated. 
 Finite movements of node D along the Y axis are possible with actuators 

locked. 
 External forces applied at node D in a direction parallel to the Y axis can 

not be resisted by the actuators. However, external forces applied at node 
D in a direction parallel to the X axis can be resisted by the mechanism 
without generating any forces at the actuators. 

iii. ( )3 2 2 2 12 0k k kρ ρ+ − =  and 2 0ρ =  
 The nodes A, B and C are coincident with each other. All the mechanism’s 

nodes are locked on the Y axis. 
 Infinitesimal movements of node D along the Y axis can not be generated. 
 Finite movements of node D along the X axis are possible with actuators 

locked. 
 External forces applied at node D in a direction parallel to the X axis can 

not be resisted by the actuators. However, external forces applied at node 
D in a direction parallel to the Y axis can be resisted by the mechanism 
without generating any forces at the actuators. 
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From Fig. 1, it can be seen that the condition 0≤ρ1≤L should be always 
satisfied. Especially, considering 0≤ρ1≤L and 0≤ρ1+ρ2≤2L, the following 
expression can be derived. 
 ( )( ) ( ) ( ) ( )2 2

1 2 3 1 2 3 2 2 3 3 22 2 2 2 2 0k k L k k L k k L L k kρ ρ ρ+ + − + ≤ ⋅ + ⋅ − + <  (17) 
Therefore, the situation ρ1(k2+k3)(ρ1+ρ2)-2L2(2k3+k2)=0 does not correspond to 

any singular configuration. However, when k3→0, ρ1(k2+k3)(ρ1+ρ2)-2L2(2k3+k2)=0 
corresponds to the singular point (ρ1=ρ2=L) in the actuator workspace. 

5. Workspaces 

5.1 Actuator workspace 

 
Fig. 2 Actuator workspace and singularity curves for a class-2 tensegrity mechanism with k2=250 

N/m, k3=50 N/m and L=2 m. 
 

For the mechanism, its actuator workspace is defined as the region that the 
actuators can reach. From section 4, it can be seen that each singular configuration 
is expressed in terms of the actuator lengths. As a consequence, the boundaries of 
the actuator workspace and the singular curves inside the actuator workspace can 
be mapped according to the singular configurations. An example of such a plot is 
shown in Fig. 2. In this figure, each curve is identified according to the singularity 
configurations listed in section 4 except curves iv, v and vi. From Fig. 1, it can be 
seen the prismatic actuator AB will reach its boundaries when ρ1=0 or ρ1=L. 
Therefore, the curves expressed by ρ1=0 and ρ1=L correspond to the boundaries of 
the actuator workspace. From Fig. 2, it can be observed that curve iv corresponds 
to ρ1=0 while curve vi corresponds to ρ1=L.  In Fig. 1, the range imposed to ρ2 is 
0≤ρ2≤2L-ρ1. Therefore, ρ2=0 represent a part of the actuator workspace boundary 
to which curve v in Fig. 2 belongs. From Fig. 2, it should be noted that the 
singularity configuration described by item iii in section 4 corresponds to a point 
(ρ1=ρ2=0) of the actuator workspace boundary. 
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5.2 Cartesian workspace 

The Cartesian workspace of the mechanism corresponds to the range of output 
variables. Since the actuator workspace of the mechanism was computed in 
section 5.1, the Cartesian workspace can be obtained by mapping the boundaries 
of the actuator workspace and the singular curves inside the actuator workspace 
into the Cartesian domain. An example of the mechanism’s Cartesian workspace 
is shown in Fig. 3. The curves in Fig. 3 can be identified by the following 
expressions. 

i    y L=       (18) 
ii    0y =       (19) 
iv    2 2 2x y L+ =      (20) 
vi             ( )2 2 2x L y L− + =      (21) 

 

 
Fig. 3 Cartesian workspace for a class-2 tensegrity mechanism with k2=250 N/m, k3=50 N/m and 

L=2 m. 
From Fig. 3, it can be seen that curves i and ii correspond to the singular 

configurations i and ii respectively. Moreover, curve iv corresponds to the 
situation ρ1=0 while curve vi corresponds to the situation ρ1=L. Especially, in the 
Cartesian domain, curves iv and vi can be described by Eqs. (20) and (21) 
respectively. In Fig. 3, it can also be observed that the singular curve i inside the 
actuator workspace corresponds to a part of the boundaries of the Cartesian 
workspace identified by curve i in the Cartesian domain. Furthermore, there are 
no singular curves inside the Cartesian workspace of the mechanism. This nature 
is attractive during the design of such mechanism. 

6. Stiffness 

From Fig. 1, it can be seen that the mechanism can generate deformation 
under the application of external loads with the actuators locked. The stiffness of a 
mechanism is defined as the ability to resist the deformation caused by external 
loads. An energy based method was used in [23] to develop the relationships 
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between the external loads and the corresponding deformations for a given 
tensegrity system. The method was employed in this work to evaluate the stiffness 
of the planar class-2 tensegrity mechanism. 

When both actuators are locked, the only possible deformation of the 
mechanism is a rotation of the rigid rod joining node pairs B and D centered on 
node B. A relationship between an external torque applied to the rod BD and the 
corresponding deformation quantified by β can be found by differentiating U with 
respect to β (see Eq. (5)) as follows: 

 ( )22 2 2
3 2 1 1 2sin 4 2 cos

2 2 2
k k k L

k L Lτ ρ ρ β ρ ρ β
⎡ ⎤⎛ ⎞= + − − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (22) 

where τ is defined as being positive when it tends to increase β. Moreover, the 
stiffness can be obtained as the slope of the torque profile. 
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k k k L

K k L Lρ ρ β ρ ρ β
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From Eqs. (5), (22) and (23), it can be seen that U, τ and K can be considered 
as functions of β. For the planar class-2 tensegrity mechanism, plots of U, τ and K 
as functions of β are shown in Figs. 6, 7 and 8, respectively with k1=k2=k3=k4=100 
N/m, L=2 m, ρ1=1 m and ρ2=1.5 m. From Figs. 6 and 7, it can be seen that the 
potential energy U will reach its minimum when τ=0. Therefore, β0 corresponds to 
the equilibrium configuration for the given actuator lengths. The condition K ≥ 0 
should be satisfied since the mechanism is always in a tensegrity configuration. 
Considering this condition, the maximum of β can be determined. As shown in 
Fig. 6, the maximum of β is identified by βc. 
 

 
Fig. 4 Potential energy U as a function of β for 

the mechanism with k1=k2=k3=k4=100 N/m, L=2 
m, ρ1=1 m and ρ2=1.5 m. 

Fig. 5 Torque τ as a function of β for a class-2 
tensegrity mechanism with 

k1=k2=k3=k4=100N/m  L=2 m, ρ1=1 m and 
ρ2=1.5 m 
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Fig. 6 Stiffness K as a function of β for a class-
2 tensegrity mechanism with k1=k2=k3=k4=100 
N/m, L=2 m, ρ1=1 m and ρ2=1.5 m.

Fig. 7 Stiffness distribution in the actuator 
workspace for a class-2 tensegrity mechanism 
with k2=250 N/m, k3=50 N/m and L=2 m. 

 
Fig. 8 Stiffness distribution in the Cartesian workspace for a class-2 tensegrity mechanism with 

k2=250 N/m, k3=50 N/m and L=2 m. 
 

From Fig. 6, it can be observed that the stiffness K is at its maximum when the 
mechanism is in equilibrium and the stiffness decreases as the external torque 
increases. Furthermore, from Figs. 7 and 8, it can also be observed that the 
stiffness eventually becomes negative by increasing the external torque. The value 
of τ where K=0 is denoted τc. Should τ be increased slightly past τc and kept 
constant, the mechanism would collapse upon itself. From Figs. 6 and 7, it can be 
seen that the potential energy U increases with the external torque when β < βc. 
However, when β > βc, the external torque required to raise the potential energy of 
the mechanism is diminishing. Therefore, the mechanism will collapse upon itself 
when β > βc. 

When the mechanism is in equilibrium, it is necessary to analyze the 
distribution of the stiffness at equilibrium (τ=0) throughout the mechanism’s 
workspaces. As mentioned in section 3, when the mechanism is in equilibrium, 
Eq. (6) can be obtained. Considering the range imposed to β, Eq. (6) gives a 
unique solution to β. By substituting this result into Eq. (23), the expression for K 
as a function of ρ1 and ρ2 can be obtained. Plot of K as a function of ρ1 and ρ2 is 
shown in Fig. 7. Fig. 7 illustrates the distribution of K in the actuator workspace. 
Furthermore, by plotting these distribution curves inside the actuator workspace 
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into the Cartesian domain, the distribution of K in the Cartesian workspace can be 
obtained as shown in Fig. 8. From Figs. 9 and 10, it can be seen that the stiffness 
varies considerably throughout the workspaces. This fact needs to be considered 
during the design and use of the mechanism. 

7. Conclusion 

An adaptive method of reduced coordinates was used in this paper to find the 
analytical solutions to the forward and inverse kinematic problems. According to 
the method of reduced coordinates, the equilibrium configurations can be obtained 
by minimizing the potential energy with respect to a minimal number of 
parameters representing the shape of the mechanism. Afterwards, the 
mechanism’s Jacobian was computed. By examining the determinant of the 
Jacobian, the singular configurations were obtained. On the basis of the singular 
configurations, the actuator and Cartesian workspaces were mapped. It is revealed 
that there are no singular curves inside the Cartesian workspace. Then the 
relationship between the external load and the corresponding deformations was 
developed by an energy based method. As a consequence, the stiffness of the 
mechanism was evaluated. It was demonstrated that the stiffness is always at its 
maximum when the mechanism is in equilibrium. Furthermore, an increase in the 
external load leads to a decrease in the stiffness of the mechanism. Finally the 
stiffness distributions of the mechanism throughout its actuator and Cartesian 
workspaces were researched. Such stiffness distributions should be considered 
during the use of the mechanism. 
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