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KINEMATICS, WORKSPACES AND STIFFNESS OF A
PLANAR CLASS-2 TENSEGRITY MECHANISM

Zhifei JI', Tuanjie LI?, Min LIN®

In this paper, the kinematics, singular configurations, workspaces and
stiffness of a planar class-2 tensegrity mechanism are studied. Firstly, the solutions
to the kinematic problems are found by using a method of reduced coordinates.
Then, the singular configurations are discussed and the workspaces are mapped.
Afterwards, the stiffness of the mechanism is detailed with actuators locked. It is
demonstrated that the stiffness is at a maximum when the mechanism is in
equilibrium. Moreover, the stiffness always diminishes when subjected to external
loads for the given actuator lengths.
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List of symbols

p1, p2: Lengths of active prismatic actuators; L: Length of rigid rods

ki, ka, ks, k4: Spring constants; 11, b5, I3, I;: Current lengths of springs
x, y: Cartesian coordinates of node D; U: Potential energy of the system
J: Mechanism Jacobian; 7: External torque applied on node D

K: Stiffness of the mechanism

1. Introduction

The term tensegrity was created by Fuller [1] as a combination of the words
tensional and integrity. It seems that he was inspired by some novel sculptures
completed by Snelson [2]. The detailed history of tensegrity systems was
reviewed by Motro [3]. Tensegrity systems are formed by a set of compressive
components and tensile components. In this paper, we use the term rigid rods to
represent compressive components and the term springs to represent tensile
components. Tensegrity systems have advantages [4] of light-weight,
deployability, easily tunable, etc. Due to these attractive characteristics, tensegrity
systems have been used in several disciplines such as architecture, biology,
aerospace, mechanics and robotics during the last fifty years [4].

The applications of tensegrity systems can be divided into two main branches.
One application is used as structures and the other one is used as mechanisms. In
addition, the research of tensegrity structures has two main issues, which are the
form-finding problem and the behaviors under external loads. The form-finding of
a tensegrity structure corresponds to the computation of the structure’s
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equilibrium shape for a given set of parameters. This problem has been studied by
many authors [5-7]. Moreover, a review of form-finding methods is given by
Tibert [5]. The behaviors of tensegrity structures under external loads have also
been researched by many researchers [8-9]. A static analysis of tensegrity
structures was given by Juan and Tur [10].

When some components (rigid rods or springs) are actuated, tensegrity
mechanisms can be obtained. In the past twenty years, several tensegrity
mechanisms have been proposed [11-14]. The proposed applications of tensegrity
mechanisms range from a flight simulator [15], a robot [16], and a space telescope
[17] to a sensor [18]. During the past twenty years, considerable research has been
performed on the control, statics and dynamics of class-1 tensegrity mechanisms.
However, there are few articles relating to class-2 tensegrity mechanisms,
especially on the study of them. The main objective of this article is to perform an
analytical investigation of the kinematics and statics of a planar class-2 tensegrity
mechanism. The definitions of class-1 and class-2 tensegrity systems are given by
Skelton and Oliveira [4].

For conventional mechanisms, the kinematic analysis is often performed using
geometric methods. Moreover, Staicu [19] developed a recursive matrix approach
in kinematics modelling of serial mechanisms. However, for tensegrity
mechanisms, the kinematics and statics of tensegrity mechanisms should be
considered simultaneously [13]. Considering this characteristic, we used a method
of reduced coordinates [20] to find the analytical solutions to the forward and
inverse kinematic problems due to its convenient physical interpretation.

The use of springs as tensile components allows tensegrity mechanisms
generate deformations with actuators locked. Several examples of the force-
displacement relationships have been demonstrated numerically in [21-22].
However, the analytical relations between the external loads and the
corresponding deformations of tensegrity systems were developed by using an
energy method in [23]. The method was used in this paper to analyze the stiffness
of the planar class-2 tensegrity mechanism.

2. Mechanism description

D (x,»)
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Fig. 1 Planar class-2 tensegrity mechanism
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A diagram of the planar class-2 tensegrity mechanism is shown in Fig. 1. It
consists of four compressive components and four tensile components. The
compressive components are rigid rods joining node pairs AE, CE, BD and BF
while the tensile components are springs joining node pairs EF, BE, DE and CD.
The prismatic actuators are used to vary the distances between node pairs AB and
BC.

From Fig. 1, it can be seen that node A is fixed to the ground. Nodes B and C
are allowed to translate without friction along the X axis while node F is allowed
to translate without friction along the Y axis. The angle between the X axis and the
rigid rod joining nodes A and E is defined as a while the angle between the X axis
and the rigid rod joining nodes B and D is defined as f. Moreover, the
components are connected to each other at each node by 2-d rotational joints with
frictionless and the whole mechanism lies in a horizontal plane. The rigid rods
have the same length L. The actuator lengths, denoted by p; and p,, are chosen as
the mechanism’s input variables while the Cartesian coordinates of node D,
expressed by x and y, is chosen as the mechanism’s output variables.

It is assumed that the springs are linear with k; lengths /; (i=1, 2, 3, 4) and zero
free lengths. The last hypothesis is not problematic since, as was explained by
Gosselin [24] and Shekarforoush et al. [25], virtual zero-free-length spring can be
created by extending the actual spring beyond its attachment point. In this work,
the Cartesian coordinates of nodes D and E are always chosen to be positive. For
this reason, 0 <a <m/2,0<p<m.

3. Kinematic analysis

For a tensegrity mechanism, the kinematics and statics of tensegrity
mechanisms should be considered simultaneously [13]. For this reason, it is
assumed that the mechanism considered here is always in an equilibrium
configuration.

3.1 Forward kinematic analysis

The forward kinematic analysis of the mechanism studied here consists in
computing the Cartesian coordinates of node D for the given actuator lengths p,
and p;. According to the method of reduced coordinates, the equilibrium
configuration of the mechanism can be obtained by minimizing its potential
energy with respect to a minimal number of parameters representing the shape of
the mechanism. To obtain the potential energy of the mechanism, the coordinates
of all nodes of the mechanism should be firstly computed.

As shown in Fig. 1, a cosine law for the triangle formed by nodes A, C and E
can be written as follows.
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PP
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Considering the range imposed to a, we obtain sing =+/1—cos’ o - Moreover,

the coordinates of nodes B, C, D, E, and F can be computed as follows.
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The mechanism’s configuration can be expressed as function of three
independent parameters: two active variables p;, p; and a redundant variable £.
Since the coordinates of node D are chosen as the output variables of the
mechanism, we have
x=p,+Lcosp 3)
y=Lsinf 4)
With the coordinates of nodes B, C, D, E and F now known, the lengths of the
four springs can be expressed as a function of py, p, and B. Therefore, the potential
energy of the mechanism can be computed as follows.

2k tk) ki ko kgl ke _k]\/(L2 -pAL (o +p)]
2 2 2 2
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By differentiating the potential energy U with respect to the angle f and

equating the result to zero, the following equation is generated.

kz\/4L2 _(pl +pz)2 (6)
(2, + k) p, — ko

Due to the range imposed to 5, computing the arctangent of Eq. (6) generates a
unique solution. Moreover, by substituting this result into Egs. (3) and (4), a
solution to the kinematic analysis is found. Especially, since the potential energy
reaches its minimum when the mechanism is in equilibrium, the second derivative
of U with respect to S is always positive.

U

)

tan f =

3.2 Inverse kinematic analysis

The inverse kinematic analysis corresponds to the computation of the actuator
lengths (p; and p;) for the given Cartesian coordinates (x and y) of node D.
From Egs. (3) and (4), the following equations can be derived.

(x—pl)2+y2=L2 (7)
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tan f =

(8)

xX=p
Solving Eq. (7) for p; yields

P =x+SL =y 9)
where d;= £1. Generally, when 0< f < w/2, §,= -1. When /2 < f <&, 6,= 1. By
combining Eq. (6) with (8), the following equation is generated.

Aopr + A+ 7y =0 (10)

where
=k [ypr - (x=p ) (42 = p7 )] (11)
/11:2k2p1|:k2(x—p1)2—(2k3+k2)y2:| (12)
A=y 2k, + k) + k2 (x—p,) (13)

Solving Eq. (10) for p,, we obtain

p, = %[ A+ SR 40 | (14)
where d,= =1. From Eq. (14), two solutions for p, are obtained. Furthermore,
considering the two solutions for p; given by Eq. (9), four solutions to the inverse
kinematic analysis are found.

4. Singularity anlaysis
4.1. Mechanism Jacobian

For the mechanism considered here, the relationships between the input and
output velocities can not be established since there are more degrees of freedom
than actuators. However, because the mechanism is always assumed to be in
equilibrium, its Jacobian, J, can be defined as follows.

ox o O

ov | Op Op
J=—= ' (15)

v | ¥ ¥

o Op,

where v=[x, y]" and y=[p1, p»]". Moreover, &v represents the infinitesimal
changes of the mechanism’s input variables while dy represents the infinitesimal
changes of the mechanism’s output variables. The elements of the Jacobian can be
derived using Egs. (3) and (4). As a consequence, the determinant of J can be
obtained.

2k2Lcos3ﬂ[p] ky + ) (py + py ) =207 (2k; + k) |
[(2k + k) s —kopy | 4L ~(p1 +0,)

det(J)=

(16)
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By examining the determinant of J, the singular configurations can be
obtained. These singular configurations will be detailed in the following section.

4.2. Singular configurations

These singular configurations correspond to situations where the determinant
of J is zero, goes to infinity or is indeterminate. With the elements of J computed
from Egs. (21)-(25), the determinant of J can be derived. By examining the Eq.
(16), the expressions corresponding to singular configurations can be extracted.
These expressions and the corresponding mechanism’s behaviors are as follows.

1. cosp=0 and p, #0

® The rigid rod joining nodes B and D is parallel to the Y axis.

® Finite movements of node D along the X axis are possible with the
actuators locked.

® Infinitesimal movements of node D along the Y axis can not be generated.

® External forces applied at node D in a direction parallel to the Y axis can
be resisted by the mechanism without generating any forces at the
actuators.

. 40 —(p, +,02)2 =0

® Node A is coincident with node F while node B is coincident with node E.
In addition, node C is coincident with node D. Furthermore, all the nodes
are located on the X axis.

® Infinitesimal movements of node D along the X axis can not be generated.

® Finite movements of node D along the Y axis are possible with actuators
locked.

® External forces applied at node D in a direction parallel to the Y axis can
not be resisted by the actuators. However, external forces applied at node
D in a direction parallel to the X axis can be resisted by the mechanism
without generating any forces at the actuators.

1i. (2k,+k,)p, —k,p, =0 and p, =0

® The nodes A, B and C are coincident with each other. All the mechanism’s
nodes are locked on the Y axis.

® Infinitesimal movements of node D along the Y axis can not be generated.

® Finite movements of node D along the X axis are possible with actuators
locked.

® External forces applied at node D in a direction parallel to the X axis can
not be resisted by the actuators. However, external forces applied at node
D in a direction parallel to the Y axis can be resisted by the mechanism
without generating any forces at the actuators.
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From Fig. 1, it can be seen that the condition 0<p;<L should be always
satisfied. Especially, considering 0<p;<L and 0<p;+p,<2L, the following
expression can be derived.

P (ky+ky)( o+ py) =207 (2ky +ky ) S L-(ky +ky ) - 2L =201 (2ky +k,) <0 (17)

Therefore, the situation p1(k2+k3)(p1+p2)-2L2(2k3+k2)=0 does not correspond to
any singular configuration. However, when ks—0, p1(ka+ks)(p1+p2)-2L*(2ks+ka)=0
corresponds to the singular point (p;=p,=L) in the actuator workspace.

5. Workspaces

5.1 Actuator workspace

Workspace boundary|

— * — Singularity curves

p2 (m)

pi(m)
Fig. 2 Actuator workspace and singularity curves for a class-2 tensegrity mechanism with £,=250
N/m, k3=50 N/m and L=2 m.

For the mechanism, its actuator workspace is defined as the region that the
actuators can reach. From section 4, it can be seen that each singular configuration
is expressed in terms of the actuator lengths. As a consequence, the boundaries of
the actuator workspace and the singular curves inside the actuator workspace can
be mapped according to the singular configurations. An example of such a plot is
shown in Fig. 2. In this figure, each curve is identified according to the singularity
configurations listed in section 4 except curves iv, v and vi. From Fig. 1, it can be
seen the prismatic actuator AB will reach its boundaries when p;=0 or p,=L.
Therefore, the curves expressed by p;=0 and p;=L correspond to the boundaries of
the actuator workspace. From Fig. 2, it can be observed that curve iv corresponds
to p1=0 while curve vi corresponds to p;=L. In Fig. 1, the range imposed to p; is
0<p,<2L-p,. Therefore, p,=0 represent a part of the actuator workspace boundary
to which curve v in Fig. 2 belongs. From Fig. 2, it should be noted that the
singularity configuration described by item iii in section 4 corresponds to a point
(p1=p>=0) of the actuator workspace boundary.
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5.2 Cartesian workspace

The Cartesian workspace of the mechanism corresponds to the range of output
variables. Since the actuator workspace of the mechanism was computed in
section 5.1, the Cartesian workspace can be obtained by mapping the boundaries
of the actuator workspace and the singular curves inside the actuator workspace
into the Cartesian domain. An example of the mechanism’s Cartesian workspace
is shown in Fig. 3. The curves in Fig. 3 can be identified by the following
expressions.

1 y=L (18)
i y=0 (19)
v ¥ +y =0 (20)
vi (x-L) +y*=0 (21)

(%)
LS}
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LS}
(%)
-~
w

x (m)
Fig. 3 Cartesian workspace for a class-2 tensegrity mechanism with £,=250 N/m, k3=50 N/m and
L=2 m.

From Fig. 3, it can be seen that curves i and ii correspond to the singular
configurations i and ii respectively. Moreover, curve iv corresponds to the
situation p;=0 while curve vi corresponds to the situation p,=L. Especially, in the
Cartesian domain, curves iv and vi can be described by Egs. (20) and (21)
respectively. In Fig. 3, it can also be observed that the singular curve i inside the
actuator workspace corresponds to a part of the boundaries of the Cartesian
workspace identified by curve i in the Cartesian domain. Furthermore, there are
no singular curves inside the Cartesian workspace of the mechanism. This nature
is attractive during the design of such mechanism.

6. Stiffness

From Fig. 1, it can be seen that the mechanism can generate deformation
under the application of external loads with the actuators locked. The stiffness of a
mechanism is defined as the ability to resist the deformation caused by external
loads. An energy based method was used in [23] to develop the relationships
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between the external loads and the corresponding deformations for a given
tensegrity system. The method was employed in this work to evaluate the stiffness
of the planar class-2 tensegrity mechanism.

When both actuators are locked, the only possible deformation of the
mechanism is a rotation of the rigid rod joining node pairs B and D centered on
node B. A relationship between an external torque applied to the rod BD and the
corresponding deformation quantified by f can be found by differentiating U with
respect to B (see Eq. (5)) as follows:

r:{[l@ +%jp2 —%pl}Lsinﬂ—szL,MLz —(p +p,)2c0s B (22)

where 7 is defined as being positive when it tends to increase . Moreover, the
stiffness can be obtained as the slope of the torque profile.

k, k, k,L 3 .
K =Kk3 +?jp2 —Epl}Lcosﬂ+7‘[4L —(p1 +p2)251nﬂ (23)

From Egs. (5), (22) and (23), it can be seen that U, 7 and K can be considered
as functions of S. For the planar class-2 tensegrity mechanism, plots of U, 7 and K
as functions of f are shown in Figs. 6, 7 and 8, respectively with k;=k,=k;=ks=100
N/m, L=2 m, p1=1 m and p,=1.5 m. From Figs. 6 and 7, it can be seen that the
potential energy U will reach its minimum when 7=0. Therefore, f, corresponds to
the equilibrium configuration for the given actuator lengths. The condition K > 0
should be satisfied since the mechanism is always in a tensegrity configuration.
Considering this condition, the maximum of f can be determined. As shown in
Fig. 6, the maximum of f is identified by f..
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Fig. 4 Potential energy U as a function of f for Fig. 5 Torque 7 as a function of f for a class-2
the mechanism with k1=k=k;=k;=100 N/m, L=2 tensegrity mechanism with
m, p;=1 m and p,=1.5 m. ki=ky=k3=k;=100N/m L=2 m, p;=1 m and
pr=1.5m
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Fig. 6 Stiffness K as a function of / for a class-
2 tensegrity mechanism with k=k,=k;=ks=100
N/m, L=2 m, p;=1 m and p,=1.5 m.

3 :

Fig. 7 Stiffness distribution in the actuator
workspace for a class-2 tensegrity mechanism
with k=250 N/m, k3=50 N/m and L=2 m.
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Fig. 8 Stiffness distribution in the Cartesian workspace for a class-2 tensegrity mechanism with

k=250 N/m, k=50 N/m and L=2 m.

From Fig. 6, it can be observed that the stiffness K is at its maximum when the
mechanism is in equilibrium and the stiffness decreases as the external torque
increases. Furthermore, from Figs. 7 and 8, it can also be observed that the
stiffness eventually becomes negative by increasing the external torque. The value
of 7 where K=0 is denoted z.. Should 7 be increased slightly past 7. and kept
constant, the mechanism would collapse upon itself. From Figs. 6 and 7, it can be
seen that the potential energy U increases with the external torque when S < f..
However, when f > S, the external torque required to raise the potential energy of
the mechanism is diminishing. Therefore, the mechanism will collapse upon itself
when £ > f..

When the mechanism is in equilibrium, it is necessary to analyze the
distribution of the stiffness at equilibrium (7=0) throughout the mechanism’s
workspaces. As mentioned in section 3, when the mechanism is in equilibrium,
Eq. (6) can be obtained. Considering the range imposed to S, Eq. (6) gives a
unique solution to 5. By substituting this result into Eq. (23), the expression for K
as a function of p; and p; can be obtained. Plot of K as a function of p; and p, is
shown in Fig. 7. Fig. 7 illustrates the distribution of K in the actuator workspace.
Furthermore, by plotting these distribution curves inside the actuator workspace
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into the Cartesian domain, the distribution of K in the Cartesian workspace can be
obtained as shown in Fig. 8. From Figs. 9 and 10, it can be seen that the stiffness
varies considerably throughout the workspaces. This fact needs to be considered
during the design and use of the mechanism.

7. Conclusion

An adaptive method of reduced coordinates was used in this paper to find the
analytical solutions to the forward and inverse kinematic problems. According to
the method of reduced coordinates, the equilibrium configurations can be obtained
by minimizing the potential energy with respect to a minimal number of
parameters representing the shape of the mechanism. Afterwards, the
mechanism’s Jacobian was computed. By examining the determinant of the
Jacobian, the singular configurations were obtained. On the basis of the singular
configurations, the actuator and Cartesian workspaces were mapped. It is revealed
that there are no singular curves inside the Cartesian workspace. Then the
relationship between the external load and the corresponding deformations was
developed by an energy based method. As a consequence, the stiffness of the
mechanism was evaluated. It was demonstrated that the stiffness is always at its
maximum when the mechanism is in equilibrium. Furthermore, an increase in the
external load leads to a decrease in the stiffness of the mechanism. Finally the
stiffness distributions of the mechanism throughout its actuator and Cartesian
workspaces were researched. Such stiffness distributions should be considered
during the use of the mechanism.
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