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In addressing the limitations of traditional short text similarity calculation 

methods, this paper presents SMSABLC, a deep learning-based approach that takes 

into account polysemy, character order, and contextual semantics. Utilizing word 

embedding, SMSABLC converts short text into vectors, initiating the integration of a 

multi-head self-attention mechanism. This mechanism adeptly captures the 

relationship between words and the overall context within the short texts, spanning 

across multiple subspaces. Additionally, two opposing LSTM models are employed to 

acquire bidirectional sequential information from the character context in the short 

texts. Employing a combination of a convolutional layer and a pooling layer, CNN 

effectively facilitates the extraction of local character features inherent in the short 

text. Moving forward, the subsequent step entails the computation of the discernible 

difference existing between the two distinct short text vectors. This difference value is 

then inputted into a fully connected layer, whereupon the ensuing utilization of the 

Sigmoid function aids in the determination of the extent of similarity between the two 

textual entities. This article conducted experiments on two datasets, CCKS2018 and 

LCQMC, and compared with traditional methods and some deep learning based 

methods, SMSABLC achieved better experimental results. Through the analysis of 

experimental results, it can be concluded that SMSABLC achieves significant 

improvements in the calculation of short text similarity by effectively incorporating a 

wide range of deep semantic information. 

Keywords: Short text similarity calculation; Deep learning; Multi-head self-

attention mechanism; Bidirectional short-duration memory network; 

Convolutional neural network 

1. Introduction 

Short text similarity calculation, an integral component of Natural Language 

Processing, employs specific techniques to measure the similarity between texts. Its 

widespread application can be observed in intelligent question answering and text 

classification domains[1]. Short text similarity calculation plays a crucial role in 
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intelligent question answering systems by measuring the resemblance between the 

input question and the target question, enabling accurate and effective question 

response generation[2]. In the task of text classification, short text similarity 

calculation determines how similar a short text to be classified is to the pre-

classified short texts[3]. 

The classical character-based method on short text similarity calculation calculates 

the matching and distance of the original text directly, without considering the 

implicit meaning of words or characters. The corpus-based method trains a model, 

which could obtain text meaning, based on corpus (such as Wikipedia corpus, Baidu 

encyclopedia corpus, web dynamic corpus). The method learns the meaning of 

words or characters, without considering the order of words or characters and 

cannot solve the problem of polysemy of a word. The method relying on a 

knowledge-base, which includes an ontology knowledge base and a network 

knowledge base, is employed to compute text similarity. This approach heavily 

relies on the expertise of knowledge base developers and necessitates the continual 

maintenance and updating of the knowledge base. 

To address the issues with conventional approaches for calculating short text 

similarity, this research paper proposes the utilization of deep learning method. 

Specifically, a siamese neural network model called SMSABLC is developed. 

Within the SMSABLC model, multi head self attention (MHSA) component 

captures semantic information within separate subspaces across characters in 

diverse sentences. Bidirectional LSTM (BiLSTM) captures bidirectional sequential 

information within the text. Convolutional neural network (CNN) extracts pivotal 

features from text sequences, ultimately generating vectors that encapsulate 

profound semantic meaning. The model considers word or character order in 

sentences and word polysemy, eliminating the need for a knowledge base. This 

enables it to achieve improved accuracy in short text similarity calculations. 

In the experiment, CCKS2018 and LCQMC datasets were used. On the CCKS2018 

dataset, the accuracy and F1 of SMSABLC are both 93%; on the LCQMC, the 

accuracy and F1 of SMSABLC are 88.7% and 90.3%. Comparing SMSABLC 

model with traditional short text similarity calculation methods and several deep 

learning based short text similarity calculation methods, it is found that its accuracy 

and F1 are significantly improved. To assess the impact of various modules in 

SMSABLC, we compared it with individual modules such as MHSA, BiLSTM, and 

CNN, as well as combined modules including MHSA-BiLSTM, MHSA-CNN, and 

Bista-CNN. It is shown that the combined modules outperform the combined 

modules in terms of accuracy and F1. Furthermore, the SMSABLC model exhibits 

higher accuracy and F1 improvement compared to the combined module. 
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2. Related works 

1.1 One-Hot coding 

In the mechanism of One hot encoding, characters are represented using Sparse 

matrices. Each character is mapped to a binary vector, such as [1,0,0…… ,0]1∗𝑁 

for the first character and [0,1,0…… ,0]1∗𝑁 for the second character. However, if 

the vocabulary size (N) is large, the text vector encoded by One hot becomes 

increasingly sparse, resulting in larger vector dimensions and higher consumption 

of computational resources. 

1.2 Short text similarity calculation 

                                                                     Table 1 

Methods for Calculating Short Text Similarity 

Method Model Advantages and disadvantages 

Character-

based method 

Longest common 

sequence[4] 
The principle is simple, easy to implement, and 

does not rely on external data. 

Characters or words are independent, without 

considering the meaning of words and the 

relationship between words. 

N-Gram[5] 

Jaccard[6] 

Corpus-based 

method 

Vector Space Model[7] Simple and effective, utilizing the semantic 

information of words. 

Unable to solve the problem of polysemy, 

ignoring the order and correlation between 

words. 

Word2Vec[8] 

LSA[9] 

LDA[10] 

Knowledge-

based method 

Based on HowNet[11] 
Apply semantic knowledge of words in the 

knowledge base. 

The knowledge in the knowledge base needs to 

be maintained and updated. 
Based on WordNet[12] 

Deep learning-

based method 

MaLSTM[13], 

AttMaLSTM[14], MAS-BI-

LSTM[15], CNN-LSTM[16], 

SiaCNN-BiLSTM[17] 

Learn deep semantic information of words, such 

as text order information, local features, 

relationships between words, and so on. 

Need more resources for training. 

1.2.1 Character-based method 

Character-based short text similarity calculation method utilizes character 

conversion techniques to evaluate similarity without relying on external knowledge 

bases or corpora. 

In order to determine the similarity between two texts, Elhadi[4] employed the 

longest common sequence algorithm, which takes into account both word parts and 

syntactic characteristics.  

Sultana and Biskri[5] utilized the N-Gram method to generate N-Gram Distance 

matrices for two texts of length 3, and determined the similarity using the Jaccard 

distance. The Jaccard algorithm, a computational technique widely used in text 

analysis, capitalizes on the intrinsic properties of sets to effectively gauge the 

degree of similarity between short texts. This measure is achieved by meticulously 
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calculating the ratio of the number of identical words shared by the two texts to the 

total count of distinct words present in both texts[6]. 

The character-based method calculates the similarity of short texts by matching 

characters, without considering the semantic meaning, word relationships, 

synonyms, or polysemy. As a result, it suffers from low accuracy in similarity 

calculations. 

1.2.2 Corpus-based method 

By using a large text corpus to convert text data into semantic vectors, and then 

using the similarity measure of semantic vectors as the similarity of the text, the 

corpus-based method makes it possible to combine accurate similarity calculation 

with semantic information. 

Salton et al.[7] introduced a vector space model, in which they proposed a process 

that includes determining the feature index system, constructing feature vectors for 

short texts. Several scholars have employed neural network methods to derive 

vector representations of text from corpora.  

One highly influential approach is the Word2Vec method introduced by Mikolov et 

al.[8] It has two training methods, CBOW and Skip Gram. These vectors can 

subsequently be used to evaluate the similarity between texts.  

Schwarz[9] employed latent semantic analysis (LSA) to determine the similarity 

between texts. A matrix is constructed in the domain of LSA, with rows representing 

words and columns representing texts. The entries in the matrix can represent 

various characteristics, such as the frequency of words in the text. When processing 

large amounts of text, the matrix dimensions can be large, then take a specific 

approach to dimensionality reduction. This dimensionality reduction helps in 

making computations more efficient while retaining the essential semantic 

information.  

Latent Dirichlet Allocation is a widely utilized Topic model proficient in capturing 

the correlation between a document and a topic, as well as the interrelationship 

between a topic and words[10]. Through the utilization of learned relationships, LDA 

constructs a document vector and evaluates similarity.  

The inclusion of semantic information extracted from the text remains a 

fundamental aspect of the corpus-based method. However, it is necessary to 

underline the impact of the choice of training corpora on determining the 

algorithm's outcomes and effectiveness. It is important to consider potential 

limitations in capturing the necessary contextual information, as this approach may 

encounter challenges in accurately understanding and interpreting the diverse 

meanings of words within specific contexts. 

1.2.3 Knowledge-based method 

By employing the knowledge in the knowledge base, the knowledge-based method 

computes similarity.  

HowNet is a semantic resource capturing Chinese and English word concepts, 
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relationships, and attributes. Based on HowNet knowledge, Zhang Lin et al.[11] 

computed semantic similarity by analyzing word relationships within sentences. 

They constructed a word similarity matrix for the two texts and determined text 

similarity based on this matrix.  

WordNet functions as a repository of concepts or words, encompassing definitions, 

a thesaurus, and semantic connections among words. Shajalal[12] measured the 

similarity of short texts by leveraging a combination of semantic similarity derived 

from WordNet's concept relationships and pre-trained word embeddings.  

By leveraging semantic information, the knowledge-based approach demonstrates 

efficient utilization, leading to highly accurate similarity calculation for short texts. 

However, it overlooks the influence of word order and context on sentence 

semantics, potentially constraining its effectiveness. 

1.2.4 Deep learning-based method 

Deep learning has become a powerful tool in various domains, offering valuable 

insights in the calculation of short text similarity.  

A deep learning model that has garnered significant attention is LSTM, attributed 

to its proficiency in processing sequence data. The utilization of LSTM to gauge 

the similarity of short texts has become commonplace among researchers. Liu et 

al.[18] used BiLSTM model to encode the text, and then learned important parts of 

the text using self-attention components, and finally output similarity through 

SoftMax function. Mueller et al.[13] employed the siamese LSTM model for 

calculating short text similarity. This model is effective in capturing sequential 

information within the text and measuring similarity through the Manhattan 

distance. Othman et al.[19] and Bao et al.[14] enhanced Muller's foundational work 

by incorporating an attention mechanism, which effectively determines the 

significance of words within the text. This addition aimed to improve the overall 

effectiveness of the model. Wang[15] employed the Word2Vec technique to acquire 

word vectors. Subsequently, feature vectors were extracted using a siamese 

BILSTM and a multi-head attention mechanism model. Finally, the similarity 

between short texts was computed based on these feature vectors. 

CNN has the ability to extract local features, so many scholars pay attention to it, 

and it is combined with other deep learning models to calculate short text similarity. 

Both CNN and LSTM are integrated into Mansoor et al.[20] and Pontes et al.'s[16] 

short text similarity model for improved performance. By combining these two 

architectures, the model achieves an effective calculation of text similarity, while 

also capturing the interdependencies between words and sentences. Agarwal et al.[17] 

used CNN and BiLSTM to assess the similarity of texts, BiLSTM could learn the 

information of bidirectional text sequences. Mahmoud et al.[21] combined CNN and 

attention mechanism to calculate Arabic text similarity. The Glove technique was 

employed to extract word vectors representing global textual information. 

To summarize, the deep learning-based method for evaluating similarity in short 
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texts utilizes deep learning models to extract various levels of text features. This 

method surpasses traditional approaches by incorporating more sophisticated 

semantic features, thereby enhancing the accuracy of similarity computation. 

3. SMSABLC short text similarity calculation model 

a. Model’s architecture 

To address the limitations of conventional approaches for calculating similarity in 

short texts, which do not account for semantic information, sequence information, 

and contextual meaning, the paper introduces a novel model called SMSABLC. 

This model aims to tackle these challenges and provide an effective solution for 

short text similarity calculation. Fig. 1 illustrates the architectural design of the 

model. Initially, the short text undergoes conversion into its respective vector 

representation via the Embedding layer. Following that, the implementation of 

MHSA enables the acquisition of semantic vectors for the short text across multiple 

distinct semantic spaces. And after processing by MHSA, the vectors obtained for 

the same word in different short texts are different, solving the problem of polysemy. 

Then, BiLSTM is used to learn the information in the left and right directions of the 

short text sequence. Next, the local information of the short text was learned 

through CNN; Finally, in the output layer, the two short texts are combined with the 

vectors obtained through the input coding layer, and the similarity between 0 and 1 

is obtained through the full connection layer and Sigmoid function. 

 

Fig. 1. Model’s architecture 

b. Input coding layer 

i. Embedding layer 

Deep learning models cannot process raw text directly, so text should be converted 

into vector. Using One-hot encoding to encode a short text with m characters 

(length), a two-dimensional vector m*n is obtained (n represents the number of 
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characters). When the number of characters in the character table is very large, the 

two-dimensional vector dimension n of One-hot encoding is large, which leads to a 

large demand for computing resources in the following steps. With the aim of 

resolving this predicament, the SMSABLC model employs the Embedding layer to 

diminish the dimensionality of the m*n short-text One-hot coding vector, which is 

originally high-dimensional. 

(
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

)

𝑚∗𝑛

∗ (

𝑤11 ⋯ 𝑤1𝑑
⋮ ⋱ ⋮
𝑤𝑛1 ⋯ 𝑤𝑛𝑑

)

𝑛∗𝑑

= (

𝑎11 ⋯ 𝑎1𝑑
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑑

)

𝑚∗𝑑

    (1) 

Where, d represents the dimension of short text vector after dimensionality 

reduction. Short-text One-hot coding vector matrix is multiplied by n*d matrix to 

obtain a low-dimensional short-text vector in m*d dimension. 

ii. Multi Head Self Attention layer 

Within the SMSABLC model, the initial step involves obtaining a short text vector 

E𝑚∗𝑑 through the Embedding layer. Subsequently, this vector is fed into the MHSA 

module, which accomplishes the task of capturing and integrating multiple layers 

of semantic information. In natural language, the phenomenon of "same character 

but different semantics" will often appear. In MHSA, the self attention mechanism 

calculates the correlation between words and other words in short text, so the word 

vectors obtained by the self attention mechanism in different short texts of the same 

word are different, thus solving the problem of "same word but different meanings". 

The self-attention mechanism learns sequence dependencies and utilizes weights to 

gauge their significance. At first, the self-attention mechanism requires linear 

transformation of the initial feature matrix, which is transformed into the query 

matrix Q𝑚∗𝑑𝑘 , the key matrix K𝑚∗𝑑𝑘  and the value matrix V𝑚∗𝑑𝑣 , and then the 

attention value is calculated by the attention function 2. 

Attention(Q, K, V) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
)V                      (2) 

𝑑𝑘 represents the dimensions of both the query matrix and the key matrix. 

By applying h linear transformations, MHSA generates h numbers of (Q, K, V) 

using the self-attention mechanism. Using formula 3, we calculate the self-attention 

value for each (Q, K, V) . 

h𝑖 = Attention(Q𝑖 , K𝑖, V𝑖)                     (3) 
(Q𝑖, K𝑖, V𝑖) represents the result of one of the linear transformations. 

The self-attention value h𝑖 of each head is calculated and then spliced together to 

get the multi-head self-attention value. 

MultiHeadSelfAttention(Q, K, V) = concat(h1, …… , h𝑖)        (4) 

Where the function of concat joint 𝑑𝑘 dimension, the obtained multi-head self-

attention value dimension is 𝑚 ∗ (𝑑𝑘 ∗ h). 
iii. BiLSTM layer 

The acquisition of knowledge from distant characters is facilitated by LSTM, a type 
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of recurrent neural network. Its structure is illustrated in Fig. 2. At first, semantic 

vector containing the information between words in different semantic spaces was 

learned through MHSA, then it was inputted into BiLSTM to extract the 

bidirectional sequential information of the short text. 

 

Fig. 2. LSTM model 

 

The forget gate merges the preceding unit's output and the current unit's input, 

facilitating the identification of information to be discarded. 

𝑓𝑡 = 𝑆(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                    (5) 

In this equation, 0 ≤ 𝑓𝑡 ≤ 1 , S  is a sigmoid  function, 𝑥𝑡  represents a single 

character vector in the short text input by this unit, ℎ𝑡−1  is the previous unit's 

output, W is weight matrix. 

To control the influx of new information, the input gate harmonizes the previous 

unit's output and the current unit's input.. 

𝐶̃𝑡 = tanh(𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                    (6) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                       (7) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝐶̃𝑡 ∗ 𝑖𝑡                         (8) 

In this equation, 𝑖𝑡  is the updated information determined by the sigmoid 

function, 𝐶̃  is the generated alternative content via tanh ,  𝐶𝑡  is the updated 

information. 

The output gate decides what information would be output. 

ℎ𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ∗ tanh(𝐶𝑡)               (9) 

Where, ℎ𝑡 refers to the output or hidden state of an LSTM unit at a specific time 

step. 

The BiLSTM architecture consists of dual LSTM layers working in opposite 

directions. By employing the positive and negative directions LSTM, the input 

sequence is generated. This enables the extraction of forward and reverse 

information from the sequence individually, which are later merged together as the 

output of the BiLSTM. 

iv. CNN layer 

In order to extract vital local features from the short text, the CNN is employed to 

process the semantic information obtained from the BiLSTM layer. By leveraging 

a convolutional layer, the CNN effectively captures the local features inherent 
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within the short texts, which are subsequently subjected to dimensionality reduction 

via a pooling layer. This approach ensures the extraction of key features vital to the 

overall understanding of the short texts. The main transformation functions are 

shown as equation 10 and 11. 

C = f(E⊗W𝑐 + b)                              (10) 

𝐶̃𝑖𝑗 = max(𝐶𝑚𝑛)                               (11) 

Where, E is the input short text vector, ⊗ is the convolution operation, f represents the activation 

function (such as Relu, Sigmoid, Tanh, etc.); 𝐶𝑚𝑛 indicates the coverage range of pooled cores 

and max indicates the maximum pooled operation.  

c. Output layer 

Utilize the input encoding layer to generate embeddings E1 and E2 for two short 

texts. Employ matrix subtraction to compute the discrepancy between the two 

vectors. 

E = 𝐸1 − 𝐸2                               (12) 

Where E is the difference between two short text semantic vectors. 

The dimensionality of E is reduced using the full connection layer to obtain a value 

x. By employing the Sigmoid function, x can be transformed into a bounded value 

within the interval of 0 to 1, and a threshold value c is set. If the value exceeds the 

threshold c, the output is set to 1, indicating a similarity between the two short texts; 

conversely, if the value falls below the threshold, the output becomes 0, indicating 

dissimilarity between the two short texts. The transformation functions are shown 

as equation 13 and 14. 

𝑓(𝑥) =
1

1+𝑒−𝑥
                               (13) 

𝑔(𝑥) = {
1       𝑓(𝑥) > 𝑐
0       𝑓(𝑥) ≤ 𝑐

                          (14) 

Where, 𝑓(𝑥) is the Sigmoid function; 𝑔(𝑥) output 1 or 0 according to and threshold c. 

4. Experimental 

a. Dataset 

The datasets used in this article is as follows. 

CCKS2018 is a dataset designed for Task 3 of the 2018 National Knowledge Graph 

and Semantic Computing Conference, titled "Wezubank Intelligent Customer 

Service Problem Matching Competition". The data theme is about banking issues. 

The dataset contains a total of 100000 pieces of data, with one piece containing two 

questions and one label, which represents the semantic relationship between 

questions. A 0 tag indicates that two questions have different semantics, while a 1 

tag indicates that two questions have the same semantics. The ratio of 0 label data 

to 1 label data in the dataset is 1:1. 

LCQMC[22] is a dataset composed of questions extracted from Baidu Zhidao, which 
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includes questions from multiple fields. The composition of a single piece of data 

is the same as that of CCKS2018. The test data provided in the LCQMC dataset 

does not have labels, so this article uses train data and dev data as the datasets. 

There are a total of 247569 pieces of data in the dataset, and the ratio of 0 label data 

to 1 label data in the dataset is 10:7.3. 

In the experiment, the dataset was divided in an 8:1:1 ratio and applied to all 

experimental models. 

b. Experimental parameter 

Setting the embedding layer dimension d to 128. We employed 8 MHSA headers 

with 𝑑𝑘 and 𝑑𝑣 values set to 64. The BiLSTM architecture utilized a one-way 

hidden layer with 128 units. The convolutional neural network (CNN) consisted of 

512 filters, each with a size of 3. In the pooling layer, we adopted two different sizes 

for the CNNs, namely 4 and 2, respectively. In order to conduct the training, a total 

of 50 epochs were executed, utilizing the Adam optimizer[23] , the learning rate is 

0.0001. A batch size of 128 was employed, and the maximum text length was 

defined as 32, taking into consideration the question length present in the dataset. 

c. Evaluation index 

This research focuses on assessing the similarity of short texts, using accuracy rate 

(Acc) and F1 as the evaluation criteria. Equations 15 and 16 depict the respective 

calculation formulas for these evaluation criteria. 

Acc =
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                             (15) 

{
 
 

 
 𝑃 =

𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

𝐹1 =
2∗𝑃∗𝑅

𝑃+𝑅

                               (16) 

TP means: predication is 1, truth is 1. FN means: predication is 0, truth is 1. FP means: predication 

is 1, truth is 0. TN means: predication is 0, truth is 0. 

d. Results and analysis 

(1) Comparison with classical short text similarity calculation model 

In order to compare the performance of different short text similarity calculation 

models, this article trains these models on the CCKS2018 and LCQMC datasets. 

We compared it with traditional methods, such as Jaccard[6], Word2Vec[8], and 

HowNet-based approaches[11]. Additionally, we incorporated deep learning-based 

approaches like MaLSTM[13], AttMALSTM[14], and CNN-LSTM[16], ABCNN[24] to 

ensure a comprehensive evaluation. Table 2 presents the experimental results, 

showcasing an outstanding achievement for the SMSABLC model with an accuracy 

and F1 score of 93%. Notably, the SMSABLC model outperforms traditional 

methods of short text similarity calculation, exhibiting a noteworthy improvement 

in accuracy and F1 score. Furthermore, compared with deep learning based methods, 
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the experimental results of SMSABLC on both datasets also showed some 

improvement. 

With the development of deep learning, researchers have trained pre trained 

language models using large-scale corpus. Pre trained language models can output 

text vectors containing semantic information. Therefore, based on this, researchers 

have added deep learning models to pre trained language models for different 

natural language processing tasks, hoping to achieve better training results. This 

article reproduces two short text similarity models based on pre trained language 

models, BERT-BiLSTM-Attention[25] and BERT-BiLSTM-MaxPool[26], and 

obtains experimental data trained on the selected dataset in this article. According 

to Table 2, The experimental results of SMSABLC are higher than BERT BiLSTM 

MaxPool and BERT BiLSTM Attention. 

In order to obtain the application effect of pre trained language models on the 

SMSABLC model, this paper selects BERT[27] and ERNIE3.0[28] pre trained 

language models as the methods for converting text into vectors based on 

SMSABLC. The selected dataset is used for training and experimental data is 

obtained. According to Table 2, on CCKS2018 dataset，when selecting BERT and 

ERNIE3.0 as the embedding layers of the model, the accuracy and F1 of the 

SMSABC model were slightly improved; on LCQMC dataset, when BERT is 

selected as the embedding layer, the evaluation index slightly decreases; when 

ERNIE3.0 is selected, the evaluation index slightly improves. On the premise of 

similar accuracy and F1 results, adding BERT and ERNIE3.0 pre trained language 

models takes up more graphics memory and uses more training time. 

                                                                        Table 2 

Comparison of experimental results of traditional models 

Models 
CCKS2018 LCQMC 

Acc(%) F1(%) Acc(%) F1(%) 

Jaccard 63.0 68.8 76.3 80.9 

Word2Vec 64.2 71.1 78.2 82.2 

HowNet 59.9 60.9 61.8 67.3 

ABCNN 82.5 82.5 83.0 85.8 

MaLSTM(Word2Vec) 85.4 84.7 84.0 86.3 

AttMaLSTM(FastText) 86.3 86.0 86.2 88.1 

CNN-LSTM(Word2Vec) 89.3 89.0 84.5 86.8 

BERT-BiLSTM-MaxPool 90.9 90.9 87.0 88.8 

BERT-BiLSTM-Attention 92.0 91.9 87.7 89.4 

SMSABLC 93.0 93.0 88.7 90.3 

BERT+SMSABLC 93.2 93.3 88.0 89.8 

ERNIE3.0+SMSABLC 93.5 93.5 89.1 90.7 

(2) Utility analysis of each module in the model 

Our analysis includes the SMSABLC model, single module models (MHSA, 

BiLSTM, CNN), and two module combination models (MHSA BiLSTM, MHSA 
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CNN, BiLSTM CNN). Table 3 presents the experimental results for each model. 

Through the integration of two single modules, the two module combination model 

excels in short text similarity calculation by enhancing feature learning, surpassing 

the capabilities of a single module. The introduction of a two module combination 

model yields a marked increase in accuracy, ranging from 2.3% to 7.5%, surpassing 

that of a single module model. Simultaneously, the F1 score demonstrates an 

improvement of 2.4% to 6.7%. The SMSABLC model combines three single 

modules, and can learn more short text features compared with the 2-module 

combined model. It is evident from the experimental outcomes that the 

implementation of the SMSABLC model resulted in a substantial increase in 

accuracy, with improvements ranging from 2.8% to 3.5%, while F1 scores 

experienced enhancements between 2.8% and 3.4%. 

In comparison to the single module and two module combination models, the 

SMSABLC model excels at capturing a richer set of features in short texts, leading 

to higher accuracy and F1, as evident from the experimental evaluation. 

Table 3  

Experimental results of different modules 

Models Acc(%) F1(%) 

MHSA 82.7 83.5 

BiLSTM 86.9 86.9 

CNN 84.3 84.5 

MHSA-BiLSTM 89.5 89.6 

MHSA-CNN 89.2 89.3 

BiLSTM-CNN 90.2 90.2 

SMSABLC 93.0 93.0 

5. Conclusion 

The main contribution of this article is the introduction of the SMSABLC model. 

MHSA to accurately capture the semantic relationship between words and the entire 

text for short text similarity calculation, BiLSTM learns the sequential semantic 

features of words in short texts, and MHSA-BILSTM overcomes the polysemy 

problem of one word by learning the deep semantic information of words in short 

texts, for the same word has different semantic vectors in different short texts, CNN 

extracts local features of the semantic vector obtained by MHSA-BiLSTM, which 

are beneficial to the calculation of short text similarity. Compared with other 

classical models, SMSABL has better performance. 

The SMSABLC could be used in intelligent question answering, short text 

classification, plagiarism detection and other fields, and has good accuracy and 

practicability. Our future work will involve the utilization of a short text similarity 
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computation approach to optimize the performance of intelligent question 

answering systems.  
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