
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 1, 2024 ISSN 2286-3540

A SHORT TEXT SIMILARITY CALCULATION METHOD

BASED ON DEEP LEARNING

Yong XU1
, Yunke PENG2

, Hengna WANG3,*, Xue’er WANG4

In addressing the limitations of traditional short text similarity calculation

methods, this paper presents SMSABLC, a deep learning-based approach that takes

into account polysemy, character order, and contextual semantics. Utilizing word

embedding, SMSABLC converts short text into vectors, initiating the integration of a

multi-head self-attention mechanism. This mechanism adeptly captures the

relationship between words and the overall context within the short texts, spanning

across multiple subspaces. Additionally, two opposing LSTM models are employed to

acquire bidirectional sequential information from the character context in the short

texts. Employing a combination of a convolutional layer and a pooling layer, CNN

effectively facilitates the extraction of local character features inherent in the short

text. Moving forward, the subsequent step entails the computation of the discernible

difference existing between the two distinct short text vectors. This difference value is

then inputted into a fully connected layer, whereupon the ensuing utilization of the

Sigmoid function aids in the determination of the extent of similarity between the two

textual entities. This article conducted experiments on two datasets, CCKS2018 and

LCQMC, and compared with traditional methods and some deep learning based

methods, SMSABLC achieved better experimental results. Through the analysis of

experimental results, it can be concluded that SMSABLC achieves significant

improvements in the calculation of short text similarity by effectively incorporating a

wide range of deep semantic information.

Keywords: Short text similarity calculation; Deep learning; Multi-head self-

attention mechanism; Bidirectional short-duration memory network;

Convolutional neural network

1. Introduction

Short text similarity calculation, an integral component of Natural Language

Processing, employs specific techniques to measure the similarity between texts. Its

widespread application can be observed in intelligent question answering and text

classification domains[1]. Short text similarity calculation plays a crucial role in

1 Department of Computer Science & Technology, Anhui University of Finance & Economics, Bengbu

233000, China; xuyong@aufe.edu.cn
2 School of Management Science & Engineering, Anhui University of Finance & Economics, Bengbu

233000, China; 1410939755@qq.com
3 Department of Computer Science & Technology, Anhui University of Finance & Economics, Bengbu

233000, China; 120081267@aufe.edu.cn
4 School of Management Science & Engineering, Anhui University of Finance & Economics, Bengbu

233000, China; 2173600168@qq.com

mailto:120081267@aufe.edu.cn
mailto:2173600168@qq.com

92 Yong Xu, Yunke Peng, Hengna Wang, Xueer Wang

intelligent question answering systems by measuring the resemblance between the

input question and the target question, enabling accurate and effective question

response generation[2]. In the task of text classification, short text similarity

calculation determines how similar a short text to be classified is to the pre-

classified short texts[3].

The classical character-based method on short text similarity calculation calculates

the matching and distance of the original text directly, without considering the

implicit meaning of words or characters. The corpus-based method trains a model,

which could obtain text meaning, based on corpus (such as Wikipedia corpus, Baidu

encyclopedia corpus, web dynamic corpus). The method learns the meaning of

words or characters, without considering the order of words or characters and

cannot solve the problem of polysemy of a word. The method relying on a

knowledge-base, which includes an ontology knowledge base and a network

knowledge base, is employed to compute text similarity. This approach heavily

relies on the expertise of knowledge base developers and necessitates the continual

maintenance and updating of the knowledge base.

To address the issues with conventional approaches for calculating short text

similarity, this research paper proposes the utilization of deep learning method.

Specifically, a siamese neural network model called SMSABLC is developed.

Within the SMSABLC model, multi head self attention (MHSA) component

captures semantic information within separate subspaces across characters in

diverse sentences. Bidirectional LSTM (BiLSTM) captures bidirectional sequential

information within the text. Convolutional neural network (CNN) extracts pivotal

features from text sequences, ultimately generating vectors that encapsulate

profound semantic meaning. The model considers word or character order in

sentences and word polysemy, eliminating the need for a knowledge base. This

enables it to achieve improved accuracy in short text similarity calculations.

In the experiment, CCKS2018 and LCQMC datasets were used. On the CCKS2018

dataset, the accuracy and F1 of SMSABLC are both 93%; on the LCQMC, the

accuracy and F1 of SMSABLC are 88.7% and 90.3%. Comparing SMSABLC

model with traditional short text similarity calculation methods and several deep

learning based short text similarity calculation methods, it is found that its accuracy

and F1 are significantly improved. To assess the impact of various modules in

SMSABLC, we compared it with individual modules such as MHSA, BiLSTM, and

CNN, as well as combined modules including MHSA-BiLSTM, MHSA-CNN, and

Bista-CNN. It is shown that the combined modules outperform the combined

modules in terms of accuracy and F1. Furthermore, the SMSABLC model exhibits

higher accuracy and F1 improvement compared to the combined module.

A short text similarity calculation method based on deep learning 93

2. Related works

1.1 One-Hot coding

In the mechanism of One hot encoding, characters are represented using Sparse

matrices. Each character is mapped to a binary vector, such as [1,0,0…… ,0]1∗𝑁

for the first character and [0,1,0…… ,0]1∗𝑁 for the second character. However, if

the vocabulary size (N) is large, the text vector encoded by One hot becomes

increasingly sparse, resulting in larger vector dimensions and higher consumption

of computational resources.

1.2 Short text similarity calculation

 Table 1

Methods for Calculating Short Text Similarity

Method Model Advantages and disadvantages

Character-

based method

Longest common

sequence[4]
The principle is simple, easy to implement, and

does not rely on external data.

Characters or words are independent, without

considering the meaning of words and the

relationship between words.

N-Gram[5]

Jaccard[6]

Corpus-based

method

Vector Space Model[7] Simple and effective, utilizing the semantic

information of words.

Unable to solve the problem of polysemy,

ignoring the order and correlation between

words.

Word2Vec[8]

LSA[9]

LDA[10]

Knowledge-

based method

Based on HowNet[11]
Apply semantic knowledge of words in the

knowledge base.

The knowledge in the knowledge base needs to

be maintained and updated.
Based on WordNet[12]

Deep learning-

based method

MaLSTM[13],

AttMaLSTM[14], MAS-BI-

LSTM[15], CNN-LSTM[16],

SiaCNN-BiLSTM[17]

Learn deep semantic information of words, such

as text order information, local features,

relationships between words, and so on.

Need more resources for training.

1.2.1 Character-based method

Character-based short text similarity calculation method utilizes character

conversion techniques to evaluate similarity without relying on external knowledge

bases or corpora.

In order to determine the similarity between two texts, Elhadi[4] employed the

longest common sequence algorithm, which takes into account both word parts and

syntactic characteristics.

Sultana and Biskri[5] utilized the N-Gram method to generate N-Gram Distance

matrices for two texts of length 3, and determined the similarity using the Jaccard

distance. The Jaccard algorithm, a computational technique widely used in text

analysis, capitalizes on the intrinsic properties of sets to effectively gauge the

degree of similarity between short texts. This measure is achieved by meticulously

94 Yong Xu, Yunke Peng, Hengna Wang, Xueer Wang

calculating the ratio of the number of identical words shared by the two texts to the

total count of distinct words present in both texts[6].

The character-based method calculates the similarity of short texts by matching

characters, without considering the semantic meaning, word relationships,

synonyms, or polysemy. As a result, it suffers from low accuracy in similarity

calculations.

1.2.2 Corpus-based method

By using a large text corpus to convert text data into semantic vectors, and then

using the similarity measure of semantic vectors as the similarity of the text, the

corpus-based method makes it possible to combine accurate similarity calculation

with semantic information.

Salton et al.[7] introduced a vector space model, in which they proposed a process

that includes determining the feature index system, constructing feature vectors for

short texts. Several scholars have employed neural network methods to derive

vector representations of text from corpora.

One highly influential approach is the Word2Vec method introduced by Mikolov et

al.[8] It has two training methods, CBOW and Skip Gram. These vectors can

subsequently be used to evaluate the similarity between texts.

Schwarz[9] employed latent semantic analysis (LSA) to determine the similarity

between texts. A matrix is constructed in the domain of LSA, with rows representing

words and columns representing texts. The entries in the matrix can represent

various characteristics, such as the frequency of words in the text. When processing

large amounts of text, the matrix dimensions can be large, then take a specific

approach to dimensionality reduction. This dimensionality reduction helps in

making computations more efficient while retaining the essential semantic

information.

Latent Dirichlet Allocation is a widely utilized Topic model proficient in capturing

the correlation between a document and a topic, as well as the interrelationship

between a topic and words[10]. Through the utilization of learned relationships, LDA

constructs a document vector and evaluates similarity.

The inclusion of semantic information extracted from the text remains a

fundamental aspect of the corpus-based method. However, it is necessary to

underline the impact of the choice of training corpora on determining the

algorithm's outcomes and effectiveness. It is important to consider potential

limitations in capturing the necessary contextual information, as this approach may

encounter challenges in accurately understanding and interpreting the diverse

meanings of words within specific contexts.

1.2.3 Knowledge-based method

By employing the knowledge in the knowledge base, the knowledge-based method

computes similarity.

HowNet is a semantic resource capturing Chinese and English word concepts,

A short text similarity calculation method based on deep learning 95

relationships, and attributes. Based on HowNet knowledge, Zhang Lin et al.[11]

computed semantic similarity by analyzing word relationships within sentences.

They constructed a word similarity matrix for the two texts and determined text

similarity based on this matrix.

WordNet functions as a repository of concepts or words, encompassing definitions,

a thesaurus, and semantic connections among words. Shajalal[12] measured the

similarity of short texts by leveraging a combination of semantic similarity derived

from WordNet's concept relationships and pre-trained word embeddings.

By leveraging semantic information, the knowledge-based approach demonstrates

efficient utilization, leading to highly accurate similarity calculation for short texts.

However, it overlooks the influence of word order and context on sentence

semantics, potentially constraining its effectiveness.

1.2.4 Deep learning-based method

Deep learning has become a powerful tool in various domains, offering valuable

insights in the calculation of short text similarity.

A deep learning model that has garnered significant attention is LSTM, attributed

to its proficiency in processing sequence data. The utilization of LSTM to gauge

the similarity of short texts has become commonplace among researchers. Liu et

al.[18] used BiLSTM model to encode the text, and then learned important parts of

the text using self-attention components, and finally output similarity through

SoftMax function. Mueller et al.[13] employed the siamese LSTM model for

calculating short text similarity. This model is effective in capturing sequential

information within the text and measuring similarity through the Manhattan

distance. Othman et al.[19] and Bao et al.[14] enhanced Muller's foundational work

by incorporating an attention mechanism, which effectively determines the

significance of words within the text. This addition aimed to improve the overall

effectiveness of the model. Wang[15] employed the Word2Vec technique to acquire

word vectors. Subsequently, feature vectors were extracted using a siamese

BILSTM and a multi-head attention mechanism model. Finally, the similarity

between short texts was computed based on these feature vectors.

CNN has the ability to extract local features, so many scholars pay attention to it,

and it is combined with other deep learning models to calculate short text similarity.

Both CNN and LSTM are integrated into Mansoor et al.[20] and Pontes et al.'s[16]

short text similarity model for improved performance. By combining these two

architectures, the model achieves an effective calculation of text similarity, while

also capturing the interdependencies between words and sentences. Agarwal et al.[17]

used CNN and BiLSTM to assess the similarity of texts, BiLSTM could learn the

information of bidirectional text sequences. Mahmoud et al.[21] combined CNN and

attention mechanism to calculate Arabic text similarity. The Glove technique was

employed to extract word vectors representing global textual information.

To summarize, the deep learning-based method for evaluating similarity in short

96 Yong Xu, Yunke Peng, Hengna Wang, Xueer Wang

texts utilizes deep learning models to extract various levels of text features. This

method surpasses traditional approaches by incorporating more sophisticated

semantic features, thereby enhancing the accuracy of similarity computation.

3. SMSABLC short text similarity calculation model

a. Model’s architecture

To address the limitations of conventional approaches for calculating similarity in

short texts, which do not account for semantic information, sequence information,

and contextual meaning, the paper introduces a novel model called SMSABLC.

This model aims to tackle these challenges and provide an effective solution for

short text similarity calculation. Fig. 1 illustrates the architectural design of the

model. Initially, the short text undergoes conversion into its respective vector

representation via the Embedding layer. Following that, the implementation of

MHSA enables the acquisition of semantic vectors for the short text across multiple

distinct semantic spaces. And after processing by MHSA, the vectors obtained for

the same word in different short texts are different, solving the problem of polysemy.

Then, BiLSTM is used to learn the information in the left and right directions of the

short text sequence. Next, the local information of the short text was learned

through CNN; Finally, in the output layer, the two short texts are combined with the

vectors obtained through the input coding layer, and the similarity between 0 and 1

is obtained through the full connection layer and Sigmoid function.

Fig. 1. Model’s architecture

b. Input coding layer

i. Embedding layer

Deep learning models cannot process raw text directly, so text should be converted

into vector. Using One-hot encoding to encode a short text with m characters

(length), a two-dimensional vector m*n is obtained (n represents the number of

A short text similarity calculation method based on deep learning 97

characters). When the number of characters in the character table is very large, the

two-dimensional vector dimension n of One-hot encoding is large, which leads to a

large demand for computing resources in the following steps. With the aim of

resolving this predicament, the SMSABLC model employs the Embedding layer to

diminish the dimensionality of the m*n short-text One-hot coding vector, which is

originally high-dimensional.

(
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

)

𝑚∗𝑛

∗ (

𝑤11 ⋯ 𝑤1𝑑
⋮ ⋱ ⋮
𝑤𝑛1 ⋯ 𝑤𝑛𝑑

)

𝑛∗𝑑

= (

𝑎11 ⋯ 𝑎1𝑑
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑑

)

𝑚∗𝑑

 (1)

Where, d represents the dimension of short text vector after dimensionality

reduction. Short-text One-hot coding vector matrix is multiplied by n*d matrix to

obtain a low-dimensional short-text vector in m*d dimension.

ii. Multi Head Self Attention layer

Within the SMSABLC model, the initial step involves obtaining a short text vector

E𝑚∗𝑑 through the Embedding layer. Subsequently, this vector is fed into the MHSA

module, which accomplishes the task of capturing and integrating multiple layers

of semantic information. In natural language, the phenomenon of "same character

but different semantics" will often appear. In MHSA, the self attention mechanism

calculates the correlation between words and other words in short text, so the word

vectors obtained by the self attention mechanism in different short texts of the same

word are different, thus solving the problem of "same word but different meanings".

The self-attention mechanism learns sequence dependencies and utilizes weights to

gauge their significance. At first, the self-attention mechanism requires linear

transformation of the initial feature matrix, which is transformed into the query

matrix Q𝑚∗𝑑𝑘 , the key matrix K𝑚∗𝑑𝑘 and the value matrix V𝑚∗𝑑𝑣 , and then the

attention value is calculated by the attention function 2.

Attention(Q, K, V) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
)V (2)

𝑑𝑘 represents the dimensions of both the query matrix and the key matrix.

By applying h linear transformations, MHSA generates h numbers of (Q, K, V)

using the self-attention mechanism. Using formula 3, we calculate the self-attention

value for each (Q, K, V) .

h𝑖 = Attention(Q𝑖 , K𝑖, V𝑖) (3)
(Q𝑖, K𝑖, V𝑖) represents the result of one of the linear transformations.

The self-attention value h𝑖 of each head is calculated and then spliced together to

get the multi-head self-attention value.

MultiHeadSelfAttention(Q, K, V) = concat(h1, …… , h𝑖) (4)

Where the function of concat joint 𝑑𝑘 dimension, the obtained multi-head self-

attention value dimension is 𝑚 ∗ (𝑑𝑘 ∗ h).
iii. BiLSTM layer

The acquisition of knowledge from distant characters is facilitated by LSTM, a type

98 Yong Xu, Yunke Peng, Hengna Wang, Xueer Wang

of recurrent neural network. Its structure is illustrated in Fig. 2. At first, semantic

vector containing the information between words in different semantic spaces was

learned through MHSA, then it was inputted into BiLSTM to extract the

bidirectional sequential information of the short text.

Fig. 2. LSTM model

The forget gate merges the preceding unit's output and the current unit's input,

facilitating the identification of information to be discarded.

𝑓𝑡 = 𝑆(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (5)

In this equation, 0 ≤ 𝑓𝑡 ≤ 1 , S is a sigmoid function, 𝑥𝑡 represents a single

character vector in the short text input by this unit, ℎ𝑡−1 is the previous unit's

output, W is weight matrix.

To control the influx of new information, the input gate harmonizes the previous

unit's output and the current unit's input..

𝐶̃𝑡 = tanh(𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (6)

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (7)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝐶̃𝑡 ∗ 𝑖𝑡 (8)

In this equation, 𝑖𝑡 is the updated information determined by the sigmoid

function, 𝐶̃ is the generated alternative content via tanh , 𝐶𝑡 is the updated

information.

The output gate decides what information would be output.

ℎ𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ∗ tanh(𝐶𝑡) (9)

Where, ℎ𝑡 refers to the output or hidden state of an LSTM unit at a specific time

step.

The BiLSTM architecture consists of dual LSTM layers working in opposite

directions. By employing the positive and negative directions LSTM, the input

sequence is generated. This enables the extraction of forward and reverse

information from the sequence individually, which are later merged together as the

output of the BiLSTM.

iv. CNN layer

In order to extract vital local features from the short text, the CNN is employed to

process the semantic information obtained from the BiLSTM layer. By leveraging

a convolutional layer, the CNN effectively captures the local features inherent

A short text similarity calculation method based on deep learning 99

within the short texts, which are subsequently subjected to dimensionality reduction

via a pooling layer. This approach ensures the extraction of key features vital to the

overall understanding of the short texts. The main transformation functions are

shown as equation 10 and 11.

C = f(E⊗W𝑐 + b) (10)

𝐶̃𝑖𝑗 = max(𝐶𝑚𝑛) (11)

Where, E is the input short text vector, ⊗ is the convolution operation, f represents the activation

function (such as Relu, Sigmoid, Tanh, etc.); 𝐶𝑚𝑛 indicates the coverage range of pooled cores

and max indicates the maximum pooled operation.

c. Output layer

Utilize the input encoding layer to generate embeddings E1 and E2 for two short

texts. Employ matrix subtraction to compute the discrepancy between the two

vectors.

E = 𝐸1 − 𝐸2 (12)

Where E is the difference between two short text semantic vectors.

The dimensionality of E is reduced using the full connection layer to obtain a value

x. By employing the Sigmoid function, x can be transformed into a bounded value

within the interval of 0 to 1, and a threshold value c is set. If the value exceeds the

threshold c, the output is set to 1, indicating a similarity between the two short texts;

conversely, if the value falls below the threshold, the output becomes 0, indicating

dissimilarity between the two short texts. The transformation functions are shown

as equation 13 and 14.

𝑓(𝑥) =
1

1+𝑒−𝑥
 (13)

𝑔(𝑥) = {
1 𝑓(𝑥) > 𝑐
0 𝑓(𝑥) ≤ 𝑐

 (14)

Where, 𝑓(𝑥) is the Sigmoid function; 𝑔(𝑥) output 1 or 0 according to and threshold c.

4. Experimental

a. Dataset

The datasets used in this article is as follows.

CCKS2018 is a dataset designed for Task 3 of the 2018 National Knowledge Graph

and Semantic Computing Conference, titled "Wezubank Intelligent Customer

Service Problem Matching Competition". The data theme is about banking issues.

The dataset contains a total of 100000 pieces of data, with one piece containing two

questions and one label, which represents the semantic relationship between

questions. A 0 tag indicates that two questions have different semantics, while a 1

tag indicates that two questions have the same semantics. The ratio of 0 label data

to 1 label data in the dataset is 1:1.

LCQMC[22] is a dataset composed of questions extracted from Baidu Zhidao, which

100 Yong Xu, Yunke Peng, Hengna Wang, Xueer Wang

includes questions from multiple fields. The composition of a single piece of data

is the same as that of CCKS2018. The test data provided in the LCQMC dataset

does not have labels, so this article uses train data and dev data as the datasets.

There are a total of 247569 pieces of data in the dataset, and the ratio of 0 label data

to 1 label data in the dataset is 10:7.3.

In the experiment, the dataset was divided in an 8:1:1 ratio and applied to all

experimental models.

b. Experimental parameter

Setting the embedding layer dimension d to 128. We employed 8 MHSA headers

with 𝑑𝑘 and 𝑑𝑣 values set to 64. The BiLSTM architecture utilized a one-way

hidden layer with 128 units. The convolutional neural network (CNN) consisted of

512 filters, each with a size of 3. In the pooling layer, we adopted two different sizes

for the CNNs, namely 4 and 2, respectively. In order to conduct the training, a total

of 50 epochs were executed, utilizing the Adam optimizer[23] , the learning rate is

0.0001. A batch size of 128 was employed, and the maximum text length was

defined as 32, taking into consideration the question length present in the dataset.

c. Evaluation index

This research focuses on assessing the similarity of short texts, using accuracy rate

(Acc) and F1 as the evaluation criteria. Equations 15 and 16 depict the respective

calculation formulas for these evaluation criteria.

Acc =
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (15)

{

 𝑃 =

𝑇𝑃

𝑇𝑃+𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

𝐹1 =
2∗𝑃∗𝑅

𝑃+𝑅

 (16)

TP means: predication is 1, truth is 1. FN means: predication is 0, truth is 1. FP means: predication

is 1, truth is 0. TN means: predication is 0, truth is 0.

d. Results and analysis

(1) Comparison with classical short text similarity calculation model

In order to compare the performance of different short text similarity calculation

models, this article trains these models on the CCKS2018 and LCQMC datasets.

We compared it with traditional methods, such as Jaccard[6], Word2Vec[8], and

HowNet-based approaches[11]. Additionally, we incorporated deep learning-based

approaches like MaLSTM[13], AttMALSTM[14], and CNN-LSTM[16], ABCNN[24] to

ensure a comprehensive evaluation. Table 2 presents the experimental results,

showcasing an outstanding achievement for the SMSABLC model with an accuracy

and F1 score of 93%. Notably, the SMSABLC model outperforms traditional

methods of short text similarity calculation, exhibiting a noteworthy improvement

in accuracy and F1 score. Furthermore, compared with deep learning based methods,

A short text similarity calculation method based on deep learning 101

the experimental results of SMSABLC on both datasets also showed some

improvement.

With the development of deep learning, researchers have trained pre trained

language models using large-scale corpus. Pre trained language models can output

text vectors containing semantic information. Therefore, based on this, researchers

have added deep learning models to pre trained language models for different

natural language processing tasks, hoping to achieve better training results. This

article reproduces two short text similarity models based on pre trained language

models, BERT-BiLSTM-Attention[25] and BERT-BiLSTM-MaxPool[26], and

obtains experimental data trained on the selected dataset in this article. According

to Table 2, The experimental results of SMSABLC are higher than BERT BiLSTM

MaxPool and BERT BiLSTM Attention.

In order to obtain the application effect of pre trained language models on the

SMSABLC model, this paper selects BERT[27] and ERNIE3.0[28] pre trained

language models as the methods for converting text into vectors based on

SMSABLC. The selected dataset is used for training and experimental data is

obtained. According to Table 2, on CCKS2018 dataset，when selecting BERT and

ERNIE3.0 as the embedding layers of the model, the accuracy and F1 of the

SMSABC model were slightly improved; on LCQMC dataset, when BERT is

selected as the embedding layer, the evaluation index slightly decreases; when

ERNIE3.0 is selected, the evaluation index slightly improves. On the premise of

similar accuracy and F1 results, adding BERT and ERNIE3.0 pre trained language

models takes up more graphics memory and uses more training time.

 Table 2

Comparison of experimental results of traditional models

Models
CCKS2018 LCQMC

Acc(%) F1(%) Acc(%) F1(%)

Jaccard 63.0 68.8 76.3 80.9

Word2Vec 64.2 71.1 78.2 82.2

HowNet 59.9 60.9 61.8 67.3

ABCNN 82.5 82.5 83.0 85.8

MaLSTM(Word2Vec) 85.4 84.7 84.0 86.3

AttMaLSTM(FastText) 86.3 86.0 86.2 88.1

CNN-LSTM(Word2Vec) 89.3 89.0 84.5 86.8

BERT-BiLSTM-MaxPool 90.9 90.9 87.0 88.8

BERT-BiLSTM-Attention 92.0 91.9 87.7 89.4

SMSABLC 93.0 93.0 88.7 90.3

BERT+SMSABLC 93.2 93.3 88.0 89.8

ERNIE3.0+SMSABLC 93.5 93.5 89.1 90.7

(2) Utility analysis of each module in the model

Our analysis includes the SMSABLC model, single module models (MHSA,

BiLSTM, CNN), and two module combination models (MHSA BiLSTM, MHSA

102 Yong Xu, Yunke Peng, Hengna Wang, Xueer Wang

CNN, BiLSTM CNN). Table 3 presents the experimental results for each model.

Through the integration of two single modules, the two module combination model

excels in short text similarity calculation by enhancing feature learning, surpassing

the capabilities of a single module. The introduction of a two module combination

model yields a marked increase in accuracy, ranging from 2.3% to 7.5%, surpassing

that of a single module model. Simultaneously, the F1 score demonstrates an

improvement of 2.4% to 6.7%. The SMSABLC model combines three single

modules, and can learn more short text features compared with the 2-module

combined model. It is evident from the experimental outcomes that the

implementation of the SMSABLC model resulted in a substantial increase in

accuracy, with improvements ranging from 2.8% to 3.5%, while F1 scores

experienced enhancements between 2.8% and 3.4%.

In comparison to the single module and two module combination models, the

SMSABLC model excels at capturing a richer set of features in short texts, leading

to higher accuracy and F1, as evident from the experimental evaluation.

Table 3

Experimental results of different modules

Models Acc(%) F1(%)

MHSA 82.7 83.5

BiLSTM 86.9 86.9

CNN 84.3 84.5

MHSA-BiLSTM 89.5 89.6

MHSA-CNN 89.2 89.3

BiLSTM-CNN 90.2 90.2

SMSABLC 93.0 93.0

5. Conclusion

The main contribution of this article is the introduction of the SMSABLC model.

MHSA to accurately capture the semantic relationship between words and the entire

text for short text similarity calculation, BiLSTM learns the sequential semantic

features of words in short texts, and MHSA-BILSTM overcomes the polysemy

problem of one word by learning the deep semantic information of words in short

texts, for the same word has different semantic vectors in different short texts, CNN

extracts local features of the semantic vector obtained by MHSA-BiLSTM, which

are beneficial to the calculation of short text similarity. Compared with other

classical models, SMSABL has better performance.

The SMSABLC could be used in intelligent question answering, short text

classification, plagiarism detection and other fields, and has good accuracy and

practicability. Our future work will involve the utilization of a short text similarity

A short text similarity calculation method based on deep learning 103

computation approach to optimize the performance of intelligent question

answering systems.

Acknowledgement

The work was supported by Philosophy and Social Science planning project of

Anhui Province (Grant No. AHSKF2021D31), the Key Research and Development

Project of Anhui Province (Grant No. 2022O07020001), The Graduate Research

and Innovation Fund(Grant No. ACYC2022016).

R E F E R E N C E S

[1]. D. W. Prakoso, A. Abdi, C. Amrit, "Short text similarity measurement methods: a review", in

Soft Computing, vol. 25, no. 6, Jan. 2021, pp. 1-25.

[2]. S. G. Aithal, A. B. Rao, S. Singh, "Automatic question-answer pairs generation and question

similarity mechanism in question answering system", in Applied Intelligence, vol. 51, no. 11,

Nov. 2021, pp. 8484-8497.

[3]. S. D. Ma, D. S. Liu, "Text Classification Method Based on Weighted Word2vec", in

INFORMATION SCIENCE, vol. 37, no. 11, Nov. 2019, pp. 38-42.

[4]. M. T. Elhadi, "Text similarity calculations using text and syntactical structures", in 2012 7th

International Conference on Computing and Convergence Technology (ICCCT), Dec. 2012,

pp. 715-719.

[5]. S. Sultana, I. Biskri, "Identifying Similar Sentences by Using N-Grams of Characters", in Recent

Trends and Future Technology in Applied Intelligence, May. 2018, pp. 833-843.

[6]. S. Wu, F. Liu, K. Zhang, "Short text similarity calculation based on jaccard and semantic

mixture", in Bio-Inspired Computing: Theories and Applications: 15th International

Conference, Apr. 2021, pp. 37-45.

[7]. G. Salton, "A vector space model for automatic indexing", in Communications of the ACM, vol.

18, no. 11, Nov. 1975, pp. 613-620.

[8]. T. Mikolov, K. Chen, G. S. Corrado, et al., "Efficient Estimation of Word Representations in

Vector Space", in ICLR (Workshop Poster) 2013, May. 2013, pp. 1-12.

[9]. C. Schwarz, "lsemantica: A command for text similarity based on latent semantic analysis", in

The Stata Journal: Promoting communications on statistics and Stata, vol. 19, no. 1, Mar. 2019,

pp. 129-142.

[10]. V. Rus, N. Niraula, R. Banjade, "Similarity measures based on latent dirichlet allocation", in

CICLing 2013: Computational Linguistics and Intelligent Text Processing, Mar. 2013, pp.

459–470.

[11]. L. Zhang, J. Hu, "Sentence Similarity Computing for FAQ Question Answering System", in

Journal of Zhengzhou University(Natural Science Edition), vol. 42, no. 1, Mar. 2010, pp. 57-

61.

[12]. M. Shajalal, M. Aono. "Semantic textual similarity between sentences using bilingual word

semantics", in Progress in Artificial Intelligence, vol. 8, no. 2, Mar. 2019, pp. 263-272.

[13]. J. Mueller, A. Thyagarajan, "Siamese recurrent architectures for learning sentence similarity",

in Thirtieth AAAI Conference on Artificial Intelligence, Feb. 2016, pp. 2786–2792.

[14]. W. Bao, W. Bao, J. Du, et al., "Attentive Siamese LSTM network for semantic textual similarity

measure", in 2018 International Conference on Asian Language Processing (IALP), Nov. 2018,

pp. 312-317.

104 Yong Xu, Yunke Peng, Hengna Wang, Xueer Wang

[15]. Z. Wang, B. Zhang, "Chinese Text Similarity Calculation Model Based on Multi-Attention

Siamese Bi-LSTM", in 2021 4th International Conference on Computer Science and Software

Engineering, Dec. 2021, pp. 93–98.

[16]. E. L. Pontes, S. Huet, A. C. Linhares, et al., "Predicting the Semantic Textual Similarity with

Siamese CNN and LSTM", in CORIA-TALN-RJC (TALN 2), May. 2018, pp. 311-320.

[17]. B. Agarwal, M. K. Gupta, H. Sharma, et al., "Siamese-Based Architecture for Cross-Lingual

Plagiarism Detection in English-Hindi Language Pairs", in BIG DATA, vol. 11, no. 1,

Oct .2022, pp. 48-58.

[18]. K. Liu, Y. Zhang, C. Xing, "Hybrid Attention Based Neural Architecture for Text Semantics

Similarity Measurement", in Database Systems for Advanced Applications: 25th International

Conference, Sept. 2020, pp. 90-106.

[19]. N. Othman, R. Faiz, K. Smaïli, "Learning English and Arabic question similarity with Siamese

Neural Networks in community question answering services", in DATA & KNOWLEDGE

ENGINEERING, vol. 138, no. C, Mar. 2022, pp. 1-14.

[20]. M. Mansoor, Z. U. Rehman, M. Shaheen M, et al., "Deep Learning Based Semantic Similarity

Detection Using Text Data", in INFORMATION TECHNOLOGY AND CONTROL, vol. 49,

no. 4, Dec. 2020, pp. 495-510.

[21]. A. Mahmoud, M. Zrigui, "Hybrid Attention-based Approach for Arabic Paraphrase Detection",

in Applied Artificial Intelligence, vol. 35, no. 15, Dec. 2021, pp. 1271-1286.

[22]. X. Liu, Q. Chen, C. Deng, et al., "Lcqmc: A large-scale chinese question matching corpus", in

the 27th international conference on computational linguistics, Aug. 2018, pp. 1952-1962.

[23]. D. P. Kingma, J. Ba, "Adam: A Method for Stochastic Optimization", in ICLR 2015, May.

2015, pp. 1-13.

[24]. W. Yin, H. Schütze, B. Xiang, et al., "ABCNN: Attention-Based Convolutional Neural

Network for Modeling Sentence Pairs", in Transactions of the Association for Computational

Linguistics, 2016, pp. 259-272.

[25]. R. H. Li, L. L. Cheng, D. P. Wang D P, et al., "Siamese BERT Architecture Model with attention

mechanism for Textual Semantic Similarity", in Multimedia Tools and Applications, vol. 82,

no. 30, May. 2023, pp. 1-22.

[26]. G. Fradelos, I. Perikos, I. Hatzilygeroudis, "Using Siamese BiLSTM Models for Identifying

Text Semantic Similarity", in AIAI 2023 IFIP WG 12.5 International Workshops, Jun. 2023,

pp. 381-392.

[27]. J. Devlin, M. W. Chang, K. Lee, et al., "BERT: Pre-training of Deep Bidirectional Transformers

for Language Understanding", in the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, Jun. 2019, pp.

4171–4186.

[28]. Y. Sun, S. Wang, S. Feng, et al., "ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training

for Language Understanding and Generation", in ArXiv, vol. abs/2107.02137, Jul. 2021, pp.

1-22.

