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REINFORCEMENT METHOD WITH NON-UNIFORM 

QUANTIFICATION AND EXPERT KNOWLEDGE FOR 

SMALL SAMPLE SIZE PROBLEM IN TRACK 

IRREGULARITY FAULT DIAGNOSIS 

Zhenghui LI1*, Na ZHANG2 

Data-driven intelligent fault diagnosis has achieved significant advancements, 

garnering increasing interest within the field. Existing data-driven methods generally 

assume the availability of sufficient fault samples across various severity levels. In the 

electrical and mechanical engineering field, it is a common problem that high-level 

fault is difficult to be accurately judged by the fault diagnosis model due to small 

sample size of high-level fault. This paper proposes a novel approach for track 

irregularity fault diagnosis addressing this small sample challenge, leveraging 

reinforcement method with non-uniform quantization and expert knowledge. Initially, 

a data-driven neural network extracts features from a comprehensive set of fault 

samples to establish a diagnostic model. Subsequently, targeting the limited high-level 

fault data, a reinforcement strategy is formulated, integrating non-uniform quantized 

reliability and Belief Rule Base (BRB) inference. This strategy reinforces the neural 

network's output layer, enhancing diagnostic sensitivity for small samples and 

mitigating the risk of high-level fault misdiagnosis, which could adversely impact 

train operations. Finally, in data experiment on existing railway trunk lines, 9428 sets 

of railway track vertical irregularity level I-III samples are selected. Compared with 

support vector machine (SVM) and backpropagation neural network (BP) methods, 

this method can improve the diagnostic accuracy of vertical irregularity level II-III 

samples by more than 90%. 

Keywords: Track irregularity; Non-uniform quantification; Data driven; Belief 

rule base; Reinforcement method 

1. Introduction 

The rapid development of China's railway network has led to increased train 

speeds, higher carrying capacities, and more frequent departures. As a critical 

component of this infrastructure, railway track failures significantly impact 

operational efficiency and safety [1]. Rail is susceptible to geometric deformation, 

particularly vertical irregularity, due to a confluence of factors. These include 

inherent impurities from the forging process, uneven subgrade settlement, chemical 
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erosion from the environment, and the stresses of heavy train loads and high-

frequency rolling [2]. Vertical irregularity, defined as the vertical deviation of the 

track surface from the ideal rail plane [3], can compromise safety and passenger 

comfort. Small irregularities amplify locomotive vibrations, while larger 

irregularities generate substantial impact forces between the wheelset and rail. This 

can exacerbate track deformation, jeopardizing train safety and potentially leading 

to derailments [4]. 

In recent years, monitoring railway track vertical irregularities using in-

service vehicles has gained significant attention [5,6]. While still under 

development, in-service vehicle-based track irregularity measurement systems have 

emerged globally. These systems often detect various track vertical irregularity 

faults by measuring bogie acceleration. For instance, Guo et al. demonstrated the 

monitoring of track irregularities using sensors mounted on bogies [7]. Vibration-

based methods analyze the abnormal vibrations of axles, carriages, and bogies 

induced by track irregularities, correlating these vibrations with specific fault types 

[8-10]. This method can not only realize real-time fault detection, but also increase 

the range of railway lines covered by detection, without occupying the running time 

of railway lines. 

The acquisition of vibration data is hampered by interference from vehicle 

body vibrations and external noise stemming from varying track conditions. 

Furthermore, sensor inaccuracies introduce additional noise into the acquired 

vibration signal, obscuring the nonlinear and uncertain relationship between 

vibration data and track irregularities. While existing information processing 

methods can detect track irregularities [11,12], the presence of this noise limits their 

ability to accurately estimate the amplitude and severity of the faults. Recently, 

data-driven intelligent fault diagnosis methods have shown considerable promise 

due to their strong feature learning capabilities [13], attracting increasing attention 

in the field. These methods, including back propagation neural networks (BP) [14] 

and support vector machines (SVM) [15], are not constrained by model 

assumptions. However, both statistically and from a model training perspective, 

data-driven approaches necessitate large amounts of historical track data, a 

challenge common throughout the industry [13]. The balance of collected samples 

used to monitor irregularities and wheel wear may impact the robustness of data-

driven methodologies. However, for railway track, the number of high-level track 

irregularity fault sample is often small. It is very accurate for low-level track 

irregularity fault diagnosis with large sample size, but insensitive for high-level 

irregularity fault diagnosis with small sample size, and the high-level fault is more 

harmful to the train. Some scholars have also attempted to use the knowledge 

representation and reasoning abilities of expert systems to achieve small sample 

size fault diagnosis. Ming et al. [16] optimized the initial parameters of the Belief 

Rule Base (BRB) using the Whale Optimization Algorithm (WOA) to achieve fault 
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diagnosis of the flywheel system. Cheng et al. [17] proposed a BRB-based effective 

fault diagnosis model for high-speed trains running gear systems,and quantified 

weight parameters as static reliability and dynamic reliability of attributes in BRB. 

However, the above method only focuses on optimizing the weight parameters of 

the antecedent referential point of BRB, without considering the impact of the 

actual distribution of antecedent referential point on the reference point interval and 

reliability. Therefore, the non-uniform quantization reliability strategy proposed in 

this article divides and evaluates the reference point interval and reliability based 

on the non-uniformity of the actual distribution of antecedent referential point, 

which can further refine the expert system's characterization of input sample 

features. This strategy also has strong application value. Moreover, if the input data 

of BRB is too much, the number of combination rule will increase explosively, 

which seriously affects the real-time performance of fault diagnosis. Therefore, it 

is difficult to diagnose high-level small samples submerged in a large amount of 

data solely using expert systems. 

To attack these above problems, this proposed method integrates the 

interpretability of expert systems for small sample analysis with the feature learning 

capabilities of data-driven methods typically employed with larger datasets. The 

neural network model is used to model a large number of low-level and high-level 

fault samples, while the BRB model is used to model a small number of high-level 

fault samples and design non-uniform quantization strategy to consider impact of 

the actual distribution of antecedent referential point on the reference point interval 

and reliability. The BRB model with non-uniform quantization strategy is used to 

reinforce the neural network's output layer, enhancing diagnostic sensitivity for 

small samples and mitigating the risk of high-level fault misdiagnosis. This 

enhances the diagnostic performance of data-driven approaches, mitigating their 

sensitivity to limited data. Given the scarcity and critical importance of high-level 

fault data, maximizing its utilization is paramount, aligning with the principle of 

judicious resource allocation. 

2. Reinforcement strategy with data-driven model and expert 

knowledge system 

2.1. Data collection and pre-processing 

f1(t)and f2(t) as input sample sets for fault diagnosis models, I= {[ f1(t), f2(t)] 

| t=1, 2,…, T}. 
1 2

{[ ( ) ( )], 1,  2| }, , ,tI f I If t t T = =


is the high-level input 

sample set with small size. Ir(t) as the output sample set of the fault diagnosis 

model, O={[Ir(t)]| t=1, 2,…, T}. Normalize the original input and output samples, 

and map the input and output sample features to [-1,1]. The normalization formula 

is : 
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The normalized model input is I*={[f1(t)*, f2(t)*]| t=1, 2,…, T}.The 

normalized model output is O*={[Ir(t)*]| t=1, 2,…, T}. 

2.2. Data-driven fault diagnosis model 

Backpropagation (BP) is a prominent supervised learning algorithm for 

artificial neural networks (ANNs). The system learns by computing the error in the 

output layer and subsequently propagating this error backward to adjust the weights 

of the hidden layers. This backpropagation of error makes it particularly well-suited 

for modeling nonlinear relationships between inputs and outputs (see Fig. 1). 

 
Fig. 1. The structure diagram of BP neural network 

 

The sigmoid function is used as the activation function for the above model. 

The purpose of introducing an activation function is to inject nonlinearity into the 

neural network, thereby enabling it to effectively handle nonlinear problems. 

Without an activation function, the neural network would remain purely linear. The 

sigmoid function performs well when used for classifiers, and its expression is: 

f(x)=1/(1+e-x)                                                   (2) 

Gradient descent is employed to optimize the network weights by 

minimizing the output error. This principle is expressed as: 

2

1
( ( )* ( ))

T
o op t

E O t y t
=

= −                                       (3) 

where ( )*oO t  and ( )oy t  represent the actual sample output and the output value of 

the t-th unit, respectively. P denotes the p-th pattern; T is the number of the output 

units. The gradient descent update rule is given by Equation 4. 

t

p
kt

k

E
w

w



= −


                                                   (4) 
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ktw is the weight of the tth unit in the (n-1)th layer to the kth unit in the nth 

layer.The BP calculates errors in the output layer l , and the hidden layer j are 

using the formulas in Equation 5. 

( ( )* ( )) ( ( ))

( ( ))

l o o o

j l lj o
t

O t y t f y t

w f y t





 = −

 = 
                                      (5) 

The weights wtj  and biases bt  are updated according to the equations: 

( 1) ( ) ( )

( 1) ( )

( 1) ( )

tj j j o

lj j j l

t t j

w k wt k y t

w k wl k x

b k b k







+ = + 

+ = + 

+ = + 

                                       (6) 

Here, k is the number of the epoch and   is the learning rate. According to 

the trained BP network model, the estimated value of model output is O={[ ( )Ir t  ]| 

t=1, 2,…, T}.The actual track irregularity amplitude is O={[Ir(t)]| t=1, 2,…, T}.The 

output layer error of the model is defined as Err. 

2.3. Reinforcement strategy 

Although the above data-driven model can diagnose fault samples with 

large amounts of data, it is not sensitive to fault samples with small amounts of data. 

High level fault samples are usually small in data size. Therefore, the data-driven 

model has low ability to diagnose high-level faults. Therefore, a reinforcement 

model based on belief rule base reasoning is constructed by using section (2.1) high 

level fault data set 
1 2

{[ ( ), 1,  ( ] | 2 }, ,)t f tI f t T= =
 

 and section (2.2) model 

output layer error Err, combined with the idea of non-uniform quantization, to 

reinforce the output layer of BP network model based on data-driven. The workflow 

is illustrated in Fig. 2, with detailed steps outlined below. 

 
Fig. 2. The flow diagram of reinforcement strategy 

 

The BRB methodology utilizes an extended if-then rule structure to 

represent diverse forms of uncertain information and knowledge. The parameters 

within the BRB system (e.g., attribute values and weights, belief distributions, and 
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rule weights) possess clear physical interpretations, readily understood by both 

domain experts and users. Consequently, BRB demonstrates a strong capacity for 

approximating complex nonlinear causal relationships across a broad range of 

applications. 

The belief rules are developed using accumulated data and insights from 

track irregularity experiments. These rules incorporate antecedent attributes

1 2
),( ) (f t f t

 

 and the consequences (the belief distributions about Err). The concept 

of BRB construction and the importance of model parameters are outlined in Table 

1. 

In Table 1, the k-th belief rule Rk is represented as: 

If 1 1( ) ktf A=


and 2 2( ) kf t A=


, then Err ={(D1,βk,1), …,(Dm, βk,m)},  

,1
1

m

k jj


=
= , k=1, 2, …,L.                                        (7) 

Table 1 

The idea of BRB construction and the significance of model parameter 

BRB system significance of model parameter 

the referential point set of the antecedent 

attribute 1,2 , 1,2,{ |k k

i iA kA i= = = }, L  

input variables 

1 2
{[ ( , 1,  ) ] 2) | ,(t f tI tf ==



 },T


 

the consequent attribute of Rk:{(D1,βk,1), …, 

(Dm, βk,m)} 

Dm is the referential value of the 

consequent attribute, βk,m is the belief 

value of Dm 

the weight of the belief rule  0,1k 
 

the relative importance of Rk 

the weight of the attribute  0,1i   the relative importance of i  

 

Step (1): A reinforcement model is established to describe the relationship 

between high-level fault input sample set 
1 2

{[ ( ), 1,  ( ] | 2 }, ,)t f tI f t T= =
 

and BP 

network model output layer error Err. L is the total number of rules in the Belief 

Rule Base, Dm is the referential value of the consequent attribute Err, 
,k j  is the 

belief degree to which Dm is believed to be the consequent when 
1
( )f t



= 1

kA ^
2
( )f t



= 2

kA . At the same time, attribute weight of 
1
( )f t



,
2
( )f t



 is initialized to 

=0.5 =0.5I II ， ,and their rule weight is all set to 1.  

Step (2): Because the track is often in complex environment such as 

vibration disturbance of train operation and wheel-pair repeated rolling, the spatial 

distribution of fault input 
1
( )f t



 and 
2
( )f t



 shows strong discreteness and 

heterogeneity. Therefore, the referential point of 
1
( )f t



and 
2
( )f t



 is processed with 

the idea of non-uniform quantization, which makes the reference point more refined 
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to characterize the characteristics of input samples. The non-uniform quantization 

reliability of 
1

kA is  1 1,1 1,2 1,= , ,k k k k

q   , . The non-uniform quantization reliability 

of 2

kA   is  2 2,1 2,2 2,= , ,k k k k

q   , .  
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                                                        (8) 
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                                                            (9) 
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 is the number of the small samples within the range of 
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
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,2 ,1
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Step (3): On the basis of reinforcement model in step (2), when the error 

result of the output layer is calculated by the BP neural network in step (1), f1(t) and 

f2(t) will be input into the reinforcement model base on the belief rule base. f1(t) and 

f2(t) will match the reference point ( 1 2)kA or =    of the antecedent attribute in 

varying degrees, and the matching degree is 
k

 . If ( )f t  is greater than reference 

point ,

k

qA , its matching degree to ,

k

qA  is 1; If ( )f t  is less than reference point

,1

kA , its matching degree to ,1

kA  is 1. If ,1

kA  ( )f t   ,

k

qA , its matching degree
k

  

to the corresponding reference point is calculated as follows: 

, , , , -1 ,( ( )) / ( ) ,k k k k kA f t A A           = − −                              (10)   

, -1 , , , -1 , -1( ( ) ) / ( ) .k k k k kf t A A A          = − −                            (11)   

When the antecedent reference point of the belief rule is matched, the 

corresponding belief rule will be activated. The weight k  of the activated rule is 

updated as follows: 
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where [0,1]k   is the weight of belief rules, H is the number of input variables,   

is the relative attribute weight of the activated rule: 

1,2,...

.{ }max
H


  =

=                                         (13)  

According to the above calculated k  and
k

 , the consequent attribute of 

the activated rule is fused using the evidential reasoning theory, and the 

reinforcement result Err is calculated as follows: 

1 2( ) {( , ), 1, 2, , },( ), ( ) j jErr D j mf t f t  = =                        (14) 
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j  represents the belief level of the j-th subsequent attribute, ,k j express 

the belief distribution of the j-th subsequent attribute in the k-th belief rule. The 

final prediction value O of track vertical irregularity can be calculated by adding 

the prediction value O  in step (1) and the reinforcement value Err . 

3. The setting and diagnosis result analysis of experiments 

3.1. Training database built 

(1) Collect vibration data of track vertical irregularity 

According to the principle based on the vibration analysis method and the 

analysis of the detection data obtained, a clear relationship exists between track 

irregularity amplitude and vibration signals, as evidenced by the vibration data 

collected at both carriage and axle positions [4]. The empirical data consist of track 

irregularity measurements, axle acceleration sensor data, and carriage acceleration 

sensor data collected by track inspection vehicles over the downline section 

(1584.5103 km to 1586.86735 km) of China's existing railway trunk lines [18]. The 

track inspection vehicle runs at the speed of 100km/h and collects the relevant 

parameter signals of the track every 0.25m. So the time step is t=1,...,T, where T is 
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the total number of samples and T=((1586.86735-1584.5103)/0.25)×103=9428. 

The acquired original vibration data in time-domain is shown in Fig. 3. r represents 

the amplitude of the track's vertical irregularity, f1 and f2 denote the vibration data 

of the axle and the carriage. 

 
Fig.3.  The acquired original vibration data 

 

(2) Pre-processing of training data 

At each time step, we use the short-time Fourier transform to obtain the 

absolute mean values of the frequency amplitudes of f1 and f2 with a window size of 

5.25m, respectively denoted as f1(t) and f2(t), Ir(t) represents the absolute value of 

r, as illustrated in Fig. 4.  

 
Fig.4.  The absolute mean values f1(t), f2(t) and the absolute value Ir(t) 

 

Although the relationship between f1(t), f2 (t) and Ir(t)  is nonlinear, there is 

some correlation in the trend of changes between f1(t), f2 (t) and Ir(t). To 

demonstrate the correlation between f1(t), f2 (t)and Ir(t), we conducted an analysis 
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from both physical theory and data analysis perspectives. 1. In terms of physical 

theory.When the magnitude of track irregularities changes rapidly, the axle 

acceleration sensor data is more sensitive, whereas when the magnitude is larger, 

the carriage acceleration sensor data becomes more sensitive. To accurately 

estimate the level of vertical irregularity, it is essential to integrate the acceleration 

vibration data from both the axle and the carriage. 2. In terms of data analysis. For 

example, in the sample intervals of 1000-2000, 5500-6000, and 7500-8500, as the 

amplitude of railway track vertical irregularity increases, the vibration amplitude of 

the axle and carriage also increases. In the sample interval of 6500-7000, as the 

amplitude of railway track vertical irregularity decreases, the vibration amplitude 

of axle and carriage also decreases.According to relevant regulations [19], the level 

of vertical irregularity of the track in railway track defects is defined in Table 2. 
 

Table 2 

The vertical irregularity levels of track 

(160 km/h~200 km/h) Acceptance Discomfort Temporary repair Speed limit 

Level I II III IV 

Standard(mm) 0≤Ir≤5 5<Ir≤8 8<Ir≤12 12<Ir 

 

3.2. Data-driven fault diagnosis model 

Based on the analysis of track vertical irregularity sample data, a neural 

network was configured with six layers: one input layer, four hidden layers, and 

one output layer.  The network underwent 5000 training iterations with a training 

accuracy threshold of 0.00001 and a learning rate of 0.01. According to the formula 

in Section 3, 9428 groups of ( f1(t) ), ( f2(t) ), and ( Ir(t) ) were input into the network 

for model training.Based on the prediction result O={[ ( )Ir t  ]| t=1, 2,…, T} of the 

BP network model and the true value O={[Ir(t)]| t=1, 2,…, T} of the track vertical 

irregularity amplitude, the prediction error of the model output layer is calculated 

as Err. For 9428 groups of f1(t) 、 f2(t), the prediction result error is 

[2.0703,1.9627,1.5156,0.9646,0.5041,0.1668, ..., 0.0185,0.0197], and the root 

mean square error of the error is 1.2840. The diagnostic accuracy for 9,201 groups 

at irregularity level I is 99.9%, with 9,195 groups correctly diagnosed. For the 207 

groups exhibiting irregularity at level II, the diagnostic accuracy is 2.4%, with only 

five groups accurately identified. For 21 groups with track vertical irregularity at 

level III, the diagnostic accuracy is 0%, with no groups accurately identified. This 

indicates that the accuracy of the BP network model is insufficient for high-level 

faults. Therefore, integrating expert knowledge from small sample theory is 

necessary to enhance its compensatory capabilities. 
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3.3. Reinforcement strategy 

To address the limitations of the aforementioned fault diagnosis model in 

effectively diagnosing level II and level III fault data, a reinforcement model has 

been developed. This model aims to enhance the diagnostic accuracy for these fault 

levels, particularly when dealing with small sample sizes, by utilizing belief rule 

base inference. Let level II and level III fault input data set as
1
( )f t



,
2
( )f t



, and the 

reference points of
1
( )f t



 is [0.129,0.2,0.25,0.8,1,1.25, 3.015], the non-uniform 

reliability of the above reference points is calculated as [0.7, 0.8, 0.65, 0.8, 0.5, 

0.75, 0.85] by the formula in section 2.3. Similarly, the reference points of 
2
( )f t



 is 

[0.0026,0.005,0.006,0.008,0.0111,0.015,0.0167], the non-uniform reliability of the 

above reference points is calculated as [0.9,0.6,0.8,0.8,0.7,0.85,0.5] by the formula 

in section 2.3. The reference points of Err is [0.04, 0.45, 1, 1.5, 2.1, 6.02], some 

belief rules constructed by expert knowledge are shown in Table 3. The specific 

fusion reasoning process is as follows: 
Table 3 

Some belief rules of the belief rule base 

 

Step (1): Calculate the matching degree of input parameters 

In this study, f1(t) and f2(t) are utilized as inputs for the reinforcement model. 

The model calculates the matching degree of each fault characteristic data group 

relative to their respective reference points, 
1

kA and 2

kA , using equations (9) and (10) 

in Section 2.3. For example, when the 5737-th group of feature data is input, the 

input parameter is [0.1710, 0.0051], the matching degree between f1(t) and 

reference points [0.129,0.2] is 0.2856,0.4737, the matching degree between f2(t) 

and reference points [0.005,0.006] is 0.5303,0.0930. 

Step (2): Calculate the weight of the activated rule 

No k 
1
( )f t



& 
2
( )f t



  

Err 

β1 β2 β3 β4 Β5 Β6 

1 1.0 VS & VS  0 0 0   0 0.6403 0.3597 

⋮ ⋮ ⋮  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

15 1.0 VS & VL  1 0 0 0 0 0 

⋮ ⋮ ⋮  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

25 1.0 PM & VL  0 0 0 0 0.5906 0.4094 

⋮ ⋮ ⋮  ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

35 1.0 PM & PS   0 0 0.3900 0.610 0 0 

⋮ ⋮ ⋮  ⋮ ⋮ ⋮    ⋮ ⋮ ⋮ 

49 1.0 VL & VL    0 0.0455 0.9545 0 0 0 
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After obtaining the matching degree
k

i of the input data to the reference 

point in each rule, calculate the weight k  of the activated rule using formulas (12) 

and (13). For example, for the 5737-th group of feature data, we can get the 

activation weight of some belief rules (R2, R3, R9, R10) is 2 =0.3605, 3 =0.0474, 

9 =0.5233 and 10 =0.0688 respectively, while the activation weight of other rules 

is all 0, four belief rules are activated. 

Step (3): Fusion mechanism of activated rule 

The fused output belief structure 1 2( )( ), ( )Err f t f t =  

{( , ), 1, 2, , 6}j jD j =  is obtained by using evidential reasoning theory, where 

andj jD   can be calculated by formula (15) and formula (16) respectively. For 

example, bring k  and ,k j of the 5737-th group of characteristic data into formula 

(14), 1 2( )( ), ( )Err f t f t
1{( ,D= 0.0266), 2 3( ,0), ( ,0),D D 4 5( ,0), ( ,0.4514),D D

6( ,0.7178)}D . Finally, the error compensation estimate Err=1.1958. 

Step (4): Analysis of experimental result 

The above 5737-th group of data is substituted into the calculation, and the 

predicted value ( O=4.5064) of track irregularity amplitude obtained by the neural 

network model, plus the error reinforcement estimated value ( Err =1.1958) 

calculated by the reinforcement model, the final track irregularity amplitude 

estimated value O= O + Err =4.5064+1.1958=5.7022mm. This method can 

compensate the sample which is misjudged as track vertical irregularity fault level 

I to track vertical irregularity fault level II.  

3.4. Diagnosis result analysis 

The confusion matrix of diagnostic results is depicted in Table 4. Each 

column of the confusion matrix represents the predicted value (unbolded number), 

and each row represents the actual category (bolded number). The results of the 

proposed method are highlighted in bold, whereas the results of the BP method are 

indicated in regular font with numbers in parentheses. The data-driven BP method 

maintains high sensitivity for large samples but lacks sensitivity for small samples. 

Due to the limited data, the data-driven model incorrectly assumes that small 

samples are insignificant during the training process. Among 207 sets of irregularity 

level II samples, this method misdiagnosed 200 sets as irregularity level I samples. 

The proposed method achieves a diagnostic accuracy of 99.9% (9196 sets correct) 

for 9201 sets of irregularity level I samples. For 207 sets of irregularity level II 

samples, the diagnostic accuracy improves to 96.6% (200 sets correct). For 20 sets 

of irregularity level III samples, the diagnostic accuracy increases to 90.0% (19 sets 

correct). This proposed method integrates the interpretability of expert systems for 

small sample processing with the feature learning ability of data-driven methods for 
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large samples, enhancing the diagnostic capacity of data-driven methods for small 

samples. 

To further validate the effectiveness of the proposed method, this paper 

compared the diagnostic performance of the Support Vector Machine (SVM) and 

Backpropagation (BP) methods on 9428 sets of track irregularity samples at varying 

levels, as presented in Table 5.  
 

Table 4 

The confusion matrix of diagnostic results 
The confusion matrix of Data-Driven(BP) method and proposed method 

Track irregularity 

level 

Level I Level II Level III Total Diagnostic 

accuracy 

Level I 9196(9195) 5(4) 0(2) 9201 99.9%(99.9%) 

Level II 5(202) 200(5) 2(0) 207 96.6%(2.4%) 

Level III 0(15) 2(5) 18(0) 20 90.0%(0%) 

 

Table 5 

The diagnostic accuracy for different levels track irregularity samples 
Method Diagnostic accuracy 

Level I Level II Level III 

SVM-test 97.1% 1.5 % 0% 

BP-test 99.9% 2.4% 0% 

Proposed method 99.9% 96.6% 90.0% 

 

 
Fig. 5. The diagnostic results for small samples  

 

The diagnostic accuracy of the SVM method for irregularity level I samples 

is 97.1%, while for level II samples, it is only 1.5%, and for level III samples, it is 

0%. Similarly, the BP method achieves a diagnostic accuracy of 99.9% for level I 

samples, 2.4% for level II samples, and 0% for level III samples. These results 
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indicate that both SVM and BP methods struggle to accurately diagnose small 

sample sizes. To enhance the clarity of diagnostic performance comparisons for 

small samples, this paper categorizes 207 sets of irregularity level II samples and 

20 sets of level III samples. The diagnostic results for these small samples are 

depicted in Fig. 5. This figure illustrates that both SVM and BP methods have 

difficulty fitting the nonlinear trend of small samples. For the irregularity level III 

samples, which comprise only 20 data sets, neither method can accurately identify 

the irregularities. The proposed method effectively fits the nonlinear trend of small 

samples and enhances diagnostic accuracy for larger samples. 

4. Conclusion 

The amplitude of track irregularities significantly impacts the train safe 

operation. A prevalent challenge in diagnosing severe track irregularities is the 

contradiction between the small sample size and the high risk they pose. Due to the 

limited samples of severe faults, accurately diagnosing these faults is challenging 

for traditional models. To address this issue, we propose a reinforcement approach 

that incorporates non-uniform quantification and expert knowledge to tackle the 

small sample size problem in track irregularity fault diagnosis. The experimental 

results demonstrate that expert knowledge systems have significant advantages in 

diagnosing high-level track irregularities with limited sample sizes, whereas data-

driven methods inherently excel in identifying low-level track irregularities when 

ample samples are available. In industrial electrical and mechanical engineering 

field, high-level faults occur infrequently, whereas low-level faults are more 

prevalent. Consequently, data on high-level faults is extremely valuable. Relying 

solely on data-driven methods for fault diagnosis in these systems can result in the 

overshadowing of valuable high-level fault data by the abundance of low-level fault 

data. Importantly, high-level faults are often the most dangerous and destructive. 

Thus, employing a non-uniform quantization expert knowledge system to enhance 

data-driven fault diagnosis methods addresses the limitations of accurately 

identifying faults in small samples. This approach is theoretically significant and 

offers even greater practical benefits. 

Test results indicate that this method holds promise for application in railway 

engineering. 

This paper concludes with several suggestions for future research: (1) The 

proposed method represents a significant effort to address the small sample size 

issue in track irregularity fault diagnosis using both data and knowledge. This 

approach is not confined to data-driven methods like BP or SVM. (2) While the 

proposed method offers a viable solution for the small sample size problem, 

exploring state estimation might also be an effective strategy for managing random 

disturbances. 
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