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A SOFTWARE-DEFINED FPGA VECTOR PROCESSOR
WITH APPLICATION-AWARE RECONFIGURATION

Alexandru GHEOLBANOIU1, Vlad POPESCU2, Radu HOBINCU3,
and Lucian PETRICA4

Field-Programmable Gate Arrays (FPGAs) dominate the embedded
high-performance computing application space, due to their energy efficency.
Compared to software, FPGAs require more effort for application imple-
mentation. Soft processors, i.e., processors implemented in FPGA, may
be utilized to reduce the implementation effort, but this sacrifices some of
the FPGA intrinsic performance and energy efficency. We propose the use
of a software-defined FPGA vector processor as a method to facilitate ap-
plication development while providing increased performance compared to
an existing soft processor design. The software-defined vector processor
(SDP) structure implements only the instructions required by an applica-
tion, reducing the size of the SDP and enabling increased parallelism. The
FPGA may be reconfigured with different SDPs in response to changes in
the characteristics of the executing application. We propose a low-latency
partial reconfiguration method which overlaps application data transfer and
reconfiguration. Evaluations of the SDP on a ZedBoard development board
equipped with a Xilinx Zynq FPGA device demonstrate that processor cus-
tomization enables a 38% increase of the maximum SDP vector size and an
up to 62% reduction in reconfiguration time on a synthetic benchmark.
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1. Introduction

Field Programmable Gate Arrays (FPGAs) are a class of configurable
circuits which enable fast and energy-efficient parallel data processing. FPGAs
consist of a fine-grained network of small Look-Up Tables (LUTs), equivalent to
digital circuit gates, as well as embedded memories (Block RAMs, or BRAMs),
and embedded multipliers (digital signal processing blocks, or DSPs), all of
which may be connected and utilized to implement complex functions. The
FPGA function is encoded in the configuration of its LUTs, BRAMs, DSPs and
interconnects, and does not require instruction fetching as do traditional CPUs
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or graphical processing units (GPUs). FPGAs may also process multiple data
in parallel or in deep pipelines. These facts make FPGA circuits inherently
more energy-efficient than CPUs.

Designing a FPGA implementation of a given function is a lengthy,
labour-intensive process, a fact which is limiting the overall usefulness of FP-
GAs for data processing. A solution for fast FPGA implementation of functions
is to utilize soft processors, i.e., processors which are implemented in FPGA
[1, 2]. The advantage is that these soft processors are pre-designed and veri-
fied, and the implementation problem becomes analogous to that of software
implementation. However, the soft processor must fetch and execute instruc-
tions sequentially, losing some of the advantage of FPGA implementation. To
compensate, the soft processor must harness parallelism by performing oper-
ations over entire vectors of elements using a single instruction, resulting in a
so-called vector processor [3]. Vector processors belong to the Single Instruc-
tion Multiple Data (SIMD) class of parallel machines, according to Flynn’s
taxonomy [4], and can exploit the data parallelism present in large scientific,
multimedia and computer vision applications [5, 6, 7].

In this paper, we modify an existing FPGA vector processor, the Con-
nexArray [7], in order to make it software-defined, i.e., adaptable to the re-
quirements of a given application. In our implementation, the application
is implemented with OPINCAA [8], the ConnexArray programming environ-
ment. Custom modifications to OPINCAA enable the analysis of the resulting
ConnexArray code, and the identification of unused instructions. The Con-
nexArray architecture itself is modified in order to enable the selective re-
moval of instruction logic from the processor structure, without affecting the
functionality of the remaining instructions, and the customization of the vector
size, i.e., the number of operands processed in parallel. The unused instruction
report from OPINCAA may be utilized to synthesize a customized processor,
removing unused logic and instead utilizing the free-up FPGA resources to in-
crease the size of the ConnexArray vector in order to process more data with
each instruction.

As different applications may require different vector sizes, along with
different vector instructions, we utilize partial dynamic FPGA reconfiguration
[9, 10] to load into the FPGA a new vector processor, customized for the appli-
cation currently under execution. Partial Reconfiguration is a recent method
in FPGA computing to update selectively the circuitry of an FPGA, while it
is still operational. We make further modifications to the ConnexArray archi-
tecture to enable partial reconfiguration and to reduce the time required for
partial reconfiguration. The system is implemented on a ZedBoard develop-
ment board, equipped with a Xilinx Zynq 7020 device [11]. Our evaluations
focus on two applications, a finite impulse response filter (FIR), sum of ab-
solute differences (SAD), and the sum of squared differences (SSD) distance
metric, as discussion vehicles, illustrating the customization capabilities of our
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Fig. 1. The ConnexArray Architecture

system for each one and the acceleration achievable through the combined use
of customization and partial dynamic reconfiguration. Our evaluations demon-
strate that the vector size may be increased by 38% through customization,
and the reconfiguration time for switching between the FIR, SAD and SSD
applications is reduced by 68%.

2. Previous Work

The ConnexArray is a data-parallel co-processor consisting of a seg-
mented vector memory capable of storing 1024 vectors, processing logic, an in-
struction sequencer responsible for issuing instructions, and data input-output
logic for handling read and write accesses to the vector memory. The Con-
nexArray architecture is presented in Figure 1. Each memory segment, called
a Local Store (LS), stores one element of each of the 1024 vectors, and is
tightly coupled with its own Arithmetic-Logic Unit (ALU), to form a singular
processing element (PE). A host processor is responsible for setting up Direct
Memory Access (DMA) transfers between main memory and the ConnexArray,
in order to provide instructions and vector data to the coprocessor.

The OPINCAA programming environment is an API and library which
enables a user to utilize the ConnexArray in a familiar, C++-like environment
by abstracting away the complexities of DMA and automatically generating
ConnexArray instructions from high level C++ code. In OPINCAA termi-
nology, the sections of code to be executed on the ConnexArray are called
kernels and are described in a special syntax, illustrated in Figure 2. OPIN-
CAA parses the kernels at run-time and generates an instruction stream for
the ConnexArray. OPINCAA also includes a ConnexArray simulator, which
is useful for application development and debugging.

All ConnexArray PEs operate in parallel to process all the elements of
a vector simultaneously. Additionally, the ConnexArray is equipped with an
adder-tree-like network which can perform the sum reduction of a vector into
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Fig. 2. An OPINCAA Kernel

a scalar. This reduction network operates independently of the PEs and ac-
celerates dot-product operations. An 128 PE FPGA implementation of the
ConnexArray has demonstrated good energy efficiency at visual search appli-
cations based on the SSD algorithm, compared to CPUs and GPUs [7]. How-
ever, even for the algorithms evaluated in previous work, the ConnexArray
structure is overly complex, and there is no mechanism in place to eliminate
instruction logic if it is unutilized by an application. The previously imple-
mented 128-PE ConnexArray occupies almost all the logic resources of a Zynq
7020 device, and the top frequency is reduced to only 100 MHz because of the
high congestion of the FPGA device.

Following up on the ConnexArray previous work, in this paper we propose
to modify the architecture of the ConnexArray and to enhance its program-
ming environment OPINCAA to support the customization of the ConnexAr-
ray hardware structure to the requirements of the application. Compared to
previous work on the ConnexArray, our approach reduces the size of the pro-
cessor and increases its performance for a given application. However, a real-
life workload consists of several applications or distinct computational kernels,
each with its own characteristics, executing in sequence on the ConnexAr-
ray. Therefore, the structure of the ConnexArray in the FPGA must change
accordingly, by reconfiguring the FPGA during operation. Several research
groups have touched upon this subject, most notably the MOLEN [12] and
RoVex [13] projects. MOLEN is a processing system consisting of a host pro-
cessor and hardware accelerators, which are dynamically configured into the
FPGA fabric when their functionality is required by the application. RoVex
is a Very Large Instruction Word (VLIW) FPGA processor, which has a cus-
tomizable instruction set and VLIW lane width, and which also adapts to the
requirements of the application through FPGA dynamic reconfiguration. To
date, the principal problems of dynamic reconfiguration have been the large
latency and energy consumption. In previous work, processors stop executing
while reconfiguration is performed, and data must be flushed out of the FPGA
and back into it after reconfiguration is done, at the cost of increased energy
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consumption. Our innovative approach alleviates this problem by overlapping
reconfiguration of one section of the processor with data transfer or execution
in another section.

3. Instruction Set Customization

The principal design decision with regard to instruction set customization
is whether to perform fine-grained customization, i.e., each instructiom may
be disabled individually, or coarse grained, whereby groups of instructions are
disabled together. As a matter of principle, instructions which share logic
resources cannot be disabled individually, as removing the logic for one would
also prevent the other from operating correctly. We therefore analyze the post-
synthesis structure of the ConnexArray in order to gain more insight into the
resource allocation between instructions.

The ConnexArray instruction set architecture (ISA) is illustrated in Ta-
ble 1. Also listed in the table are the instruction classes, each of which com-
prises one or more similar instructions which share FPGA resources. For ex-
ample, the Arithmetic class consists of Sub, Add along with their immediate
value and carry variants. Similarly, Comparison consists of all instructions
which perform comparison on operands, regardless of the type of comparison.
The third column of Table 1 describes the type of FPGA resource utilized
for implementing a particular instruction class: LUT, BRAM, DSP, or inter-
connect. Given the observed structure of the ConnexArray, the only feasible
approach is to customize the ISA at the instruction class level, removing e.g.
all Arithmetic instructions or all Logic instructions together.

Table 1

Instruction Classes and FPGA Resources

Instruction Class Resource Type

ADD
Arithmetic LUT

SUB
EQ

Comparison LUTLT
ULT
NOT

Logic LUT
OR

AND
XOR
MUL Multiplication DSP

READ
Memory BRAM

WRITE
ICSH Inter-Cell Shift Interconnect
RED Reduction LUT

The entire ConnexArray PE was re-implemented in VHDL, with each
instruction class in Table 1 implemented as a separate VHDL entity (functional
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Fig. 3. The ConnexArray Processing Element

unit, or FU) and conditionally instantiated into the PE. The Memory and
Reduction classes could not be made optional as their structure is necessary
for input-output operations. Top-level VHDL generics dictate whether an FU
is instantiated or not. The structure of the PE is illustrated in Figure 3.
Operands are read from the register file under the control of the fetch logic
and forwarded to the FUs, each of which delivers a result and optionally a flag
to the write-back logic. The intercell shift FU also transmits and receives data
to and from the adjacent PEs. If a FU is not instantiated, the value of the
result signal is zero, therefore if a disabled instruction is executed, it always
returns zero.

The values of the top-level generics are produced by OPINCAA after
application analysis at run-time. The analysis is implemented as a two-stage
process, illustrated in Figure 4. The first analysis stage occurs during kernel
parsing, and produces an instruction histogram for each kernel. The second
stage occurs before execution is initiated on the ConnexArray, when instruc-
tions from multiple kernels are aggregated into a single instruction stream. A
weighted merge of the individual kernel histograms is performed in this stage,
with the weight of each kernel determined by the number of times it is exe-
cuted during the application. For analysis, the application may be executed on
the OPINCAA simulator or on real hardware. The final instruction histogram
indicates which instructions are never utilized, and finally, the VHDL generic
values are produced by OPINCAA, applied to the ConnexArray VHDL code,
and the ConnexArray is re-synthesized.

4. Vector Processor Reconfiguration

FPGA reconfiguration is utilized as a means of adapting the vector pro-
cessor structure to the executing application. However, previous work has
demonstrated significant latency associated with the FPGA reconfiguration
process. This latency is caused by the transfer of the FPGA configuration



A Software-Defined FPGA Vector Processor with Application-Aware Reconfiguration 49

Fig. 4. Identifying Unutilized Instructions

bits, and by the transfer of application data into the processor, as a prereq-
uisite for application execution. The analysis and minimization of the vector
processor reconfiguration latency is the focal point of this section.

4.1. Quasi-Complete Reconfiguration

In the complete reconfiguration scenario, which serves as a reference,
separate FPGA images are constructed through synthesis of the processor
VHDL code with different values for the VHDL generics. Each FPGA image
implements a customized vector processor which corresponds to an applica-
tion. The customized processors however have identical instruction sequencers,
input-output controllers, and bus interfaces. Therefore, a first approximation
improvement on the complete reconfiguration scenario is quasi-complete recon-
figuration, whereby only the PEs are reconfigured, while the remaining logic,
which we shall refer to as the Static Area (SA), is not.

4.2. Partial Reconfiguration

A further improvement of the quasi-complete reconfiguration scenario is
possible if we take into account the possibility of reconfiguring only half of
the vector processor PEs at once. In this partial reconfiguration scenario, an
application which utilizes only a small number of PEs will incur a smaller
reconfiguration latency. In order to support such a scenario, modifications
were made to the ConnexArray architecture allowing the isolation of each of
two halves of the vector processor, hereupon called PE networks, for recon-
figuration. The isolated PE network retains LS and register file data if no
reconfiguration occurs, but does not execute instructions. The non-isolated
PE network operates as usual.
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Fig. 5. SA and PE network placement on Zynq die

Fig. 6. Applications alternating on Vector Processor

An extra instruction is added to the ISA for activating and deactivating
the isolation on each PE network. Modifications to the ConnexArray synthesis
scripts are required in order to constrain the placement and routing of the
FPGA such that PE networks do not overlap or share resources, which would
make separate reconfiguration impossible. Figure 5 presents a Xilinx Zynq
7020 FPGA die, illustrating the SA, as well as the PE networks and their
placement on the die.

An envisioned reconfiguration sequence is presented in Figure 6, where
application A requires both PE networks of the vector processor for execution,
while application B requires only PE network 1. Because of this, PE network 2
can remain configured for application A, and the latency of the reconfiguration
is reduced. An even more favorable scenario is presented in Figure 7, where
each of the applications A and B require a single PE network. Therefore, PE
network 0 is configured for application A, and PE network 1 for application B.
In this scenario, no reconfiguration needs to take place, as when one application
is executing, the unused PE network is isolated and retains application data.
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Fig. 7. Vector Processor sharing by Applications

Fig. 8. Resource Utilization per Instruction Class

5. Evaluation

To evaluate the ISA customization and its effect on maximum ConnexAr-
ray vector size, 64 single-kernel applications were written in OPINCAA, de-
signed to generate each possible combination of FUs. A 128-PE ConnexArray
was re-customized and re-synthesized for each application utilizing Xilinx ISE
System Edition 14.7, targeting the Zynq 7020 FPGA device. The resulting
FPGA was image verified for correctness, and analyzed for FPGA resource
utilization by inspecting the ISE reports. Figure 8 illustrates the resource
utilization of the instruction classes, as percentage of the total LUTs and Flip-
Flops available on the target FPGA device. The resource utilization of the
static area included for reference. As demonstrated by the figure, the shift and
comparison classes are the most resource-heavy. Multiplication utilizes very
few LUTs and Flip-Flops, but utilizes 128 DSPs, while all other instruction
classes do not utilize DSPs.
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We also evaluated the maximum vector size for each processor configura-
tion, with some of the configurations and achievable vector sizes listed in Table
2. The entire set of results could not be included due to space constraints. The
average maximum vector size for all configurations is 177, a 38% increase over
the full-ISA ConnexArray.

Table 2

Achievable vector size per Configuration

Mult. Comp. Arith. Shift Logic I-C Shift Maximum PEs

NO YES YES YES YES YES 130
YES YES YES NO YES YES 153
YES NO YES NO NO NO 220
NO NO YES YES YES NO 157

To evaluate the FPGA dynamic reconfiguration, we implemented three
applications: visual search with SIFT [14] nearest-neigbor matching based on
Sum of Squared Differences (SSD) and Sum of Absolute Differences (SAD),
and a 64-order Finite Impulse Response (FIR) filter application. The applica-
tions require different ConnexArray configurations, as illustrated in Table 3.
We analyse the reconfiguration time required for switching between these ap-
plications in the entire FPGA reconfiguration, quasi-complete reconfiguration,
and partial reconfiguration scenarios.

Table 3

Processor configuration for FIR and SSD

Application Mult. Comp. Arith. Shift Logic I-C Shift Required PEs

FIR YES YES YES NO NO YES 64
SSD YES YES YES NO NO NO 128
SAD NO YES YES NO NO NO 128

Figure 9 illustrates the ConnexArray system implemented in a Xilinx
Zynq 7020 FPGA device on the Digilent ZedBoard development board, run-
ning a Linux operating system. A Xillybus DMA core [15] was utilized for
transferring instructions and data between the host ARM processors on the
Zynq device (the Zynq Programmable System - PS) and the ConnexArray in
the Zynq FPGA (the Zynq Programmable Logic - PL). Time measurements
are performed utilizing the Linux time infrastructure, with sub-millisecond
accuracy. FPGA reconfiguration is achieved by transferring the configuration
information, called a bitstream, from the Zynq main memory, through the AXI
bus, to the configuration access port.

Table 4 lists the time required to reconfigure the entire FPGA, each PE
network, and both PE networks together, respectively. The two FPGA areas
reserved for PE networks 0 and 1 are of different sizes (see Figure 5) therefore
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Fig. 9. The ConnexArray Zynq Implementation

the reconfiguration time is also different. Cofiguring both PE networks si-
multaneously corresponds to the quasi-complete reconfiguration scenario. The
reconfiguration speed is limited by the configuration access port and not the
AXI bus, which is utilized only to half capacity.

Table 4

FPGA Reconfiguration Performance

Scenario
Area Bitstream Size Duration
[%] [MBytes] [ms]

Entire FPGA 100 4.1 114
PE Network 0 39 1.3 37
PE Network 1 43 1.4 39

Both PE Networks 82 2.7 76

Figure 10 illustrates the improvement attainable through using quasi-
complete reconfiguration instead of complete FPGA reconfiguration, when
switching between the FIR and SSD applications. The entire reconfiguration
event consists of the actual FPGA reconfiguration time and the time required
to fill the local store with application data, for FIR or SSD, which is 38 ms
each time. Compared to the complete reconfiguration total time of 152 ms,
the 114 ms total time for quasi-complete reconfiguration is a 25% improve-
ment. Application run-time was not included in the evaluation since it may
vary according to application-level latency requirements.

Partial reconfiguration is illustrated in Figure 11. We first evaluated
switching between SSD and SAD. These applications each require both PE
networks. Partial reconfiguration enables the overlapping of the local storage
fill on PE network 0 while PE network 1 is being reconfigured. There is no
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Fig. 10. Duration of Complete and Quasi-Complete Reconfiguration

Fig. 11. Duration of Partial Reconfiguration

effect on the reconfiguration time of PE network 1 because it is limited by the
configuration access port. The local storage fill takes longer because it shares
AXI bandwith with the reconfiguration process, but does not add any time
to the overall reconfiguration time, which is 95 ms. Compared to the entire
FPGA reconfiguration scenario, this is a 37% improvement. When switching
between FIR and SSD, a single PE network must be reconfigured, while the
other retains its configuration (always configured for SSD). In this case, the
switching time is reduced to 58 ms, a 62% improvement on the complete FPGA
scenario. Table 5 summarizes the reconfiguration scenarios and the duration
of each.

Table 5

Summary of Reconfiguration Times

Scenario Total Reconf. Time [ms] Speed-Up

Entire FPGA 152 1
Quasi-Complete 114 1.25

Partial, Both PE Networks 95 1.37
Partial, One PE Network 58 1.62
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6. Conclusions

A large obstacle for the utilization of FPGAs in many computing fields
is the difficulty of implementing functions on a FPGA. By utilizing soft pro-
cessors, the complexity of porting applications to FPGA is greatly reduced.
By utilizing vector processors and harnessing the parallelism opportunities of-
fered by the FPGAs, much of the latent FPGA performance can be harnessed.
We have proposed a software-defined soft vector processor which is capable of
adapting its structure and instruction set to the executing application. We
have demonstrated that up to 38% increase in parallelism may be achieved by
tailoring the processor structure to the requirements of the application. We
have also implemented a partial reconfiguration mechanism which enables the
processor to take advantage of the requirements of the executing applications
and achieve up to 62% reduction in reconfiguration time. As future avenues
of research, we intend to extend the evaluations to a larger set of applications
and standard parallel processing benchmarks, and to extend the configurabil-
ity of the processor to the reduction network, the local store memory, and the
dimensions of the register file.
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