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ALGEBRAIC CONSTRUCTION OF ENTANGLED
COHERENT STATES IN THE PRESENCE OF SINGLE-MODE

NOISE

Reza Ahmadi1 and Naghi Behzadi2

We propose a scheme for constructing entangled coherent states
among two atoms with the presence of single-mode bosonic field mode, con-
sidered as noise mode, through non-localizing the respective Lie algebras of
the atoms and field. It is observed that, due to the non-localized nature of
the associated raising and lowering operators of the related Lie algebras, the
constructed coherent state becomes entangled on the one hand, and on the
other hand, it is figured out that the existence of the noise mode causes the
degradation of constructed atomic entanglement. Also, our proposed dynam-
ical approach for generating the constructed coherent states is discussed.
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1. Introduction

Entanglement, as a pure quantum mechanical phenomenon, is one of the
main differences between the classical and quantum physics which appears in
composite systems. The description and quantification of the entanglement in
the complex systems are very difficult tasks [1]. A state is said to be entangled
if it cannot be factorized into tensor product of the associated states of the
subsystems. Entanglement is now recognized to be of fundamental importance
for developing new technologies notably those related to quantum information
processing, such as quantum teleportation [2], quantum key distribution [3],
superdense coding [4], and quantum computation [5]. Entanglement between
the bosonic fields (such as photons or phonon) and atoms or ion, for its fun-
damental importance in quantum non-locality [6, 7] and quantum information
[8], has been extensively studied both in theoretical and experimental efforts
[9-19].
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In this paper, we study algebraic construction of entangled coherent
among two identical (2j + 1)-dimensional atoms in the presence of a single-
mode bosonic field considered as a noise. To this aim, we consider that the
atoms have angular momentum symmetry structure and the noise mode has
the same structure as the harmonic oscillator.

In the next step, we introduce a scheme for non-localizing the related Lie
algebras of atoms and noise mode. It is revealed that by this approach, the
constructed coherent state for the atom-field (or atom-noise) system becomes
entangled. Consequently, the degree atomic entanglement is evaluated by the
concurrence. It is observed that the amount of atomic entanglement is strongly
influenced by the power of the noise mode.

2. Non-localized model for the atom-field system

We consider a system composed of two identical atoms with the same
structure along with a bosonic field mode called noise mode. It is supposed that
the internal symmetrical structure of the atoms is characterized by the well-
known angular momentum Lie algebra whose generators satisfy the following
commutation relations

[Ĵi+, Ĵi−] = 2Ĵiz, [Ĵiz, Ĵi±] = ±Ĵi±, (1)

where i = 1, 2, and the corresponding (2j + 1)−dimensional representation
spaces are

Hi := span{| j,mi

〉
}2j
mi=0, (2)

with the following realizations

Ĵi+ | j,mi

〉
=
√

(mi + 1)(2j −mi) | j,mi + 1
〉
, (3)

Ĵi− | j,mi

〉
=
√
mi(2j −mi + 1) | j,mi − 1

〉
, (4)

Ĵiz | j,mi

〉
= (−j +mi) | j,mi

〉
. (5)

The orthonormality relation for the base kets is〈
j,mi | j,m

′

i

〉
= δmi,m′i

, (6)

and these states are also eigenstates of the self-adjoint Casimir operator, i.e.

Ĵ2
i = Ĵi+Ĵi− + Ĵ2

iz − Ĵiz, (7)

as
Ĵ2
i | j,mi

〉
= j(j + 1) | j,mi

〉
. (8)

It should be noted that in quantum theory a quantum state is represented by
a ket, i.e. | α

〉
, and it dual by the bra, i.e.

〈
β |. As a further illustration, for

two quantum states α and β the inner product is written as
〈
α | β

〉
.

In quantum theory of radiation fields or photons, the electric and mag-
netic fields are Hermitian operators. The simplest method of constructing
these operators is to decompose the fields into modes and associate to each
mode a quantum harmonic oscillator as it can be done for the vibrational
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modes or phonons. It is suitable to describe the observables associated to such
an oscillator in terms of the annihilation and creation operators â and â†. The
Hamiltonian for this oscillator, or field mode, is

Ĥ = ~ω(ââ† +
1

2
) = ~(N̂ +

1

2
), (9)

where N̂ is the Hermitian number operator defined as N̂ = â†â. The energy
eigenstates are also eigenstates of N̂ and are denoted as number states, i.e. | n

〉
,

where n = 0, 1, 2, ... and
〈
n | n̂

〉
= δn,n̂. The orthonormal number states | n

〉
form a complete basis states for the Hilbert space of the harmonic oscillator,
i.e. Hb := span{| n

〉
}∞n=0. The non-Hermitian operators â and â† and the

Hermitian one N̂ satisfy the following commutation relations

[â, â†] = 1, [N̂ , â†] = â, [N̂ , â] = −â (10)

and operate on the respective Hilbert space through the following forms:

â | n
〉

=
√
n | n− 1

〉
, (11)

â† | n
〉

=
√
n+ 1 | n+ 1

〉
, (12)

N̂ | n
〉

= n | n
〉
. (13)

Let us define the Hermitian number operator for each atom on the (2j +
1)−dimensional Hilbert space as

M̂i := j + Ĵiz, (14)

where M̂i | j,mi

〉
= mi | j,mi

〉
. Also consider the following unitary operators

corresponding to the number operators M̂i and N̂ as

Π̂i = eiM̂iϕ, Π̂b = eiN̂ϕ, (15)

where the subscripts b stands for the bosonic field and ϕ ∈ [0, 2π]. The oper-

ators Π̂i and Π̂b are unitary since Π̂†i Π̂i = 1i and Π̂†bΠ̂b = 1b in which 1i and
1b are identity operators associated to Hilbert spaces of the atoms and the
harmonic oscillator respectively. It is clear that the actions of Π̂i and Π̂b on
the respective Hilbert spaces are as

Π̂i | j,mi

〉
= eim̂iϕ | j,mi

〉
, (16)

and

Π̂b | n
〉

= ein̂ϕ | n
〉
. (17)

Now we define the following operators for the atoms as

Ĵ1Π+ := (Ĵ1+⊗12⊗1b)Π̂, Ĵ1Π− := Π̂†(Ĵ1−⊗12⊗1b), Ĵ1Πz := Ĵ1z⊗12⊗1b, (18)

and

Ĵ2Π+ := (11⊗Ĵ2+⊗1b)Π̂, Ĵ2Π− := Π̂†(11⊗Ĵ2−⊗1b), Ĵ2Πz := 11⊗Ĵ21z⊗1b, (19)
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where Π̂ = Π̂1 ⊗ Π̂2 ⊗ Π̂b. It is easy to show that the above operators satisfy
the angular momentum algebra commutation relations for i = 1, 2, i.e.

[ĴiΠ+, ĴiΠ−] = 2ĴiΠz, [ĴiΠz, ĴiΠ±] = ±ĴiΠ±. (20)

The operators in (19) are defined on a Hilbert space composed of the tensor
product of the atomic Hilbert spaces and the bosonic one, i.e., H = H1 ⊗
H2 ⊗Hb. Their actions on the basis states of the mentioned Hilbert space are
realized as

Ĵ1Π+ | j,m1,m2

〉
⊗ | n

〉
(21)

= eim1ϕ
√

(m1 + 1)(2j −m1) | j,m1 + 1,m2

〉
⊗ | n

〉
,

Ĵ1Π− | j,m1,m2

〉
⊗ | n

〉
(22)

= e−i(m1−1)ϕ
√
m1(2j −m1 + 1) | j,m1 − 1,m2

〉
⊗ | n

〉
,

Ĵ1Πz | j,m1,m2

〉
⊗ | n

〉
= (−j +m1) | j,m1,m2

〉
⊗ | n

〉
. (23)

And similarly,
Ĵ2Π+ | j,m1,m2

〉
⊗ | n

〉
(24)

= eim2ϕ
√

(m2 + 1)(2j −m2) | j,m1,m2 + 1
〉
⊗ | n

〉
,

Ĵ2Π− | j,m1,m2

〉
⊗ | n

〉
(25)

= e−i(m2−1)ϕ
√
m2(2j −m2 + 1) | j,m1,m2 − 1

〉
⊗ | n

〉
,

Ĵ2Πz | j,m1,m2

〉
⊗ | n

〉
= (−j +m2) | j,m1,m2

〉
⊗ | n

〉
. (26)

Evidently, the ladder operators for example Ĵ1Π+ and Ĵ1Π−, along with the
Ĵ1Πz, not only describe the symmetrical structure of the 1th atom but also give
out information about the 2th atom and the bosonic field through the unitary
operator Π̂. Hence it is concluded that the action of ĴiΠ+ and ĴiΠ− are non-
local.
In the next step, we define the following operators as

â†Π := (11 ⊗ 12 ⊗ â†)Π̂, âΠ := Π̂†(11 ⊗ 12 ⊗ â), N̂Π̂ := 11 ⊗ 12 ⊗ N̂ . (27)

The commutation relations of these operators are the same as the commutation
relations of harmonic oscillator (10) as it can be seen from

[âΠ, â
†
Π] = 1, [N̂Π, â

†
Π] = â†Π, [N̂Π, âΠ] = −âΠ, (28)

where 1 = 11 ⊗ 12 ⊗ 1b. The operators (27) with the commutation relations
(28) operate on the Hilbert space H = H1 ⊗H2 ⊗Hb as follows:

â†Π | j,m1,m2

〉
⊗ | n

〉
= einϕ

√
n+ 1 | j,m1,m2

〉
⊗ | n+ 1

〉
, (29)

âΠ | j,m1,m2

〉
⊗ | n

〉
= e−i(n−1)ϕ

√
n | j,m1,m2

〉
⊗ | n− 1

〉
, (30)

N̂Π | j,m1,m2

〉
⊗ | n

〉
= n | j,m1,m2

〉
⊗ | n

〉
. (31)

As in the atomic case, the ladder field operators âΠ and â†Π along with N̂Π in
(27) show, on one hand, the symmetric properties of the harmonic oscillator,
and, on the other hand, figure out information about the atomic system by the
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unitary operator Π̂. Here, we have developed a model for non-locality of the
atom-field system throughout the above scheme. So, we expect to deal with
entangled states for this compound quantum system.

3. Atomic entanglement and the noise effect

In this section, the construction of the standard coherent state for the
atom-field system is obtained. Due to the non-locality of the atom-field system
discussed in the previous section, the coherent state of the whole system is
expected to be entangled. To this aim, the standard coherent states of the Lie
algebra su(2) for the atoms and harmonic oscillator algebras for the noise mode
are constructed. The coherent state corresponding to the su(2) Lie algebra,
for each of the atoms, is obtained as

| αi
〉

:= D̂(αi) | j, 0
〉

= eηiĴi+(1 + |ηi|2)−Ĵize−η
∗
i Ĵi− | j, 0

〉
(32)

=
1

(1 + |ηi|2)j
eηiĴi+ | j, 0

〉
=

1

(1 + |ηi|2)j

2j∑
mi=0

ηmii

√
C2j
mi | j,mi

〉
,

where D̂(αi) = eαiĴi+−α
∗
i Ĵi− is the displacement operator and ηi = αitan(|αi|)

|αi| .

Similarly, the coherent state of the harmonic oscillator algebra (10), corre-
sponding to the noise mode is presented as bellow

| β
〉

:= D̂(β) | 0
〉

= e
−|β|2

2 eβâ
† | 0

〉
= e

−|β|2
2

∞∑
n=0

βn

n!
| n
〉
, (33)

where D̂(β) = eβâ
†−β∗â is the respective displacement operator. Now, the

coherent state of the whole system is calculated as follow

| α1, α2, β
〉

= D̂(α1, α2, β) | j, 0, 0
〉
⊗ | 0

〉
(34)

=
e
−|β|2

2

(1 + |η1|2)j(1 + |η2|2)j

2j∑
m1,m2=0

∞∑
n=0

ηm1+m2
βn

n!

√
C2j
m1C

2j
m2 | j,m1,m2

〉
⊗ | n

〉
,

where D̂(α1, α2, β) = D̂(α1)⊗ D̂(α2)⊗ D̂(β). Obviously, the coherent state in
(34) is separable. In this step, we are interested in deriving the coherent state
of the atom-field system with the introduced non-local operators (18), (19)
and (27). By this considerations, the coherent state of the atom-field system
corresponding to the commutation relations (20) and (28) in the associated
Hilbert space H = H1 ⊗H2 ⊗Hb leads to

| α1, α2, β
〉

Π
= D̂Π(α1, α2, β) | j, 0, 0

〉
⊗ | 0

〉
(35)

=
e
−|β|2

2

(1 + |η1|2)j(1 + |η2|2)j

2j∑
m1,m2=0

∞∑
n=0

eTηm1+m2
βn

n!

√
C2j
m1C

2j
m2 | j,m1,m2

〉
⊗ | n

〉
,
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where

T =
i(m1(m1 − 1) +m2(m2 − 1) + n(n− 1))ϕ

2
(36)

+
2m1m2 + 2m1n+ 2m2n− 4m1m2n

2
,

and D̂Π(α1, α2, β) = D̂Π(α1)⊗ D̂Π(α2)⊗ D̂Π(β) with D̂Π(αi) = eαiĴiΠ+−α∗i ĴiΠ−

(i = 1, 2,) and D̂Π(β) = eβâ
†
Π−β

∗âΠ . Consequently the state in (35) can not be
factorized except for ϕ = 0 and ϕ = 2π. There is a remarkable situation for
ϕ = π, where the state (35) takes the following form

| α1, α2, β
〉

Π
:=

1√
2

(e
iπ
4 | −iα1

〉
⊗ | −iα2

〉
⊗ | −iβ

〉
+e

−iπ
4 | iα1

〉
⊗ | iα2

〉
⊗ | iβ

〉
),

(37)
where | ±iαi

〉
, (i = 1, 2,) and | ±iβ

〉
are the same as (32) and (33) respectively.

It should be noted that in deriving the equation (37), we used the following
identity

(−1)
m1(m1−1)+m2(m2−1)+n(n−1)+2m1m2+2m1n+2m2n−4m1m2n

2 (38)

=
1√
2
e
iπ
4 (−i)m1+m2+n +

1√
2
e
−iπ

4 im1+m2+n.

Clearly, the obtained coherent state in (37) is not generally separable so it
can be entangled. It is observed that, by this construction, the noise mode is
entangled with the atoms and therefore it can play a destructive role on the
entanglement of atoms. To see this explicitly, let us write-down the reduced
density operator of the two atoms for the case that α1 = α2 = α, as follows

ρa = Trb(| α, α, β
〉

Π

〈
α, α, β |) (39)

=
1

2


1 + p4 (p2 − iq)p

√
1− p2 0 0

(p2 + iq)p
√

1− p2 p2(1− p2) 0 0

(p2 + iq)p
√

1− p2 p2(1− p2) 0 0

(p2 + iq)(1− p2) p(1− p2)
√

(1− p2) 0 0



+
1

2


0 0 (p2 − iq)p

√
1− p2 (p2 − iq)(1− p2)

0 0 p2(1− p2) p(1− p2)
√

(1− p2)

0 0 p2(1− p2) p(1− p2)
√

(1− p2)

0 0 p(1− p2)
√

(1− p2) (1− p2)2

 ,
where ρa stands for the reduced density matrix of the atomic system and

p = (
1− | η |2

1+ | η |2
)2j, q = e−2|β|2 .

As shown in Fig. 1, when the noise mode is in the vacuum state (β = 0), the
concurrence [26] of the atomic system can reach to its maximum value. So, by
this construction, two atoms can be maximally entangled for some values of α.
However, by increasing the noise power (for example, β = 0.5 and β = 1.5) the
atomic entanglement will be effectively decreased, i.e. the presence of noise
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mode has a destructive role on the atomic entanglement.

Figure 1. Degree of bipartite atomic entanglement in terms of concur-
rence as a function of parameter α for some values of parameter β (j = 3

2
).

Figure 2. The concurrence in terms of parameter α for some values of
parameter β (j = 7

2
).
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4. Hamiltonian dynamical generation

In the previous section, we derived algebraically a generally entangled co-
herent state for two atoms and the noise mode such as equation (37). Now, it is
worthwhile to generate the constructed entangled coherent state dynamically.
To this aim, let us introduce the following Hamiltonian as

Ĥ = ξ(M̂2
1 + M̂2

2 + N̂2 + 2M̂1M̂2 + 2M̂1N̂ + 2M̂2N̂ − 4M̂1M̂2N̂). (40)

The parameter ξ in (40) has energy dimension. The operators M̂1, M̂2 and N̂
introduced in (13) and (14) respectively, are number operators. The fourth,
fifth and sixth terms in (40) refer to the two-term interactions (atom-atom and
atom-noise mode) while the latest term refers to the three-term interaction
between two atoms and noise mode. It should be noted that the atom-photon
entanglement generated by the Faraday rotation in a cavity can be analyzed
by the Hamiltonian similar to the interaction term of (40) [26-28]. Now we
assume that the initial state of the atom-field system is a coherent state such

as | e−iϕ2 α1, e
−iϕ

2 α2, e
−iϕ

2 β
〉

which is seperable as the state (34). It is easily

obtained that the time evolution of the state | e−iϕ2 α1, e
−iϕ

2 α2, e
−iϕ

2 β
〉

under
Hamiltonian (40), after t = π

2ξ
, gives the coherent state (37).

5. Conclusions

In conclusion, by this approach, we analyzed an algebraic method for
construction of bipartite atomic entanglement in the presence of a single-mode
noise. It was shown that the existence of noise mode causes a decrement of
the degree of entanglement. Also, we reproduced the algebraically constructed
entangled state (37) by dynamical generation through introducing the Hamil-
tonain (40). It is worthwhile to note that the noise mode can be replaced by
a large number of noise modes with a particular spectral distribution function
such as Lorentziam or Ohmic which in turn shows the effect of a dissipative
environment on the constructed atomic entanglement in the real world, which
can be considered as a subject of future research.
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