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BOOLEAN GAMES WITH CURRENCY
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In this paper, we argue that a game-theoretic approach is suitable for mod-
eling cooperation in Multi-Agent Systems. We briefly introduce the formal setting,
and describe two different classes of games: cooperative games with transferable
payoff and Cooperative Boolean Games. We discuss the capabilities and limita-
tions of these approaches. We also introduce a new type of games, Boolean Games
with Currency and give a computational characterization for a solution concept
for coalitional stability: the core. We show that the core of a Boolean Game with
Currency is always non-empty, and we prove the core membership problem to be
co-NP complete.
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1. Introduction

The success of a Multi-Agent System (MAS) is strongly affected by the way
decision-making is approached. In traditional semantic systems, agents are treated
as inanimate entities that interact with the environment in a strictly reactive way,
by responding to external stimuli with particular actions, in order to achieve some
goals. In frameworks that support agent cooperation such as [3], the emphasis falls
on the knowledge representation means, and on developing a suitable agent platform.
Semantic learning methods such as [11] or [10], focus on achieving a certain more-
or-less fixed behavior, using machine learning techniques that do not require an
in-depth understanding of the underlying processes. All these approaches ignore the
fact that, in many situations, the decision to act in a certain way is influenced by the
decisions of other agents. To illustrate this, consider the following example: agents
1, 2 and 3 are travelling together, and must decide on the transportation means.
The possible options are (a) airplane, (b) bus, and (t) train. The decision is made
by a simple voting procedure. If there is a tie, the fastest form of transportation
wins. Agents have the following preferences (we use x ≻i y to denote that agent
i prefers x to y): a ≻1 b ≻1 t, b ≻2 a ≻2 t, t ≻3 b ≻3 a. If each agent votes for
his most preferred candidate, then the winner would be a, since there is a tie and
it is assumed that airplanes are faster than buses or trains. This outcome is highly
undesirable for agent 3, who least prefers travelling by air. Nevertheless, if 3 would
observe the preferences of 1 and 2, then, he could change his vote from t to b, and
therefore change the outcome of the voting procedure from a to b. Even if b is not
3’s most desirable travelling means, for him it is better than a. In this latter case, 3
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behaves in a strategic way: his decision is based both on his goal, as well as on the
others’ decisions.

By strategic interaction, we refer to any situation where: the state of an agent
is dependent both on the environment as well as on the states of other agents, each
agent is aware of this fact and exploits it to his own advantage. In the following, we
are interested in Multi-Agent Systems where any interactions are done in accordance
with these properties. We also make the following assumptions on the characteristics
of agents: (i) they are rational, (ii) self-interested and (iii) have limited resources.

Assumption (i) refers to agents that are fully aware of the actions available
for them as well as their consequences and have well-defined preferences over all
possible states-of-the world. By (ii) we understand that each agent has a certain
preferred state-of-the world, and would take any possible action to achieve this state,
regardless of the interests of other agents. Assumption (iii) states that any agent
can only use some finite computational effort, in order to derive the proper actions
he should undertake.

Game Theory (GT) is a powerful tool in the design of any kind of strategic
interaction between agents in a MAS. It uses the following elements: a set of actions
available for each agent, a set of consequences that result from performing some ac-
tions, a consequence function that, for each action, associates a proper consequence,
and finally, for each agent, a preference relation over the set of consequences. GT
distinguishes between two modeling approaches: non-cooperative, and cooperative.
In the non-cooperative setting the emphasis falls on the actions available to the
individual, as well as his preferences. The cooperative setting, still preservers the
preferences of individuals but the emphasis now falls on what agents can jointly
achieve.

In the following we give a brief illustration of the game-theoretic approach to
modeling cooperation in Multi-Agent Systems, and introduce a new type of game,
suitable for representing and reasoning about compromise. To our knowledge, there
are no actual applications of game theory in semantic agent frameworks, although
game theory is briefly mentioned in papers such as [8] or [7]. Finally, we note that our
paper in an extended version of our previous work from [1]. The rest of the paper is
structured as follows: in Section 2 we give a short introduction to cooperative games
with transferable payoff and describe a solution concept for coalitional stability: the
core. We also illustrate some limitations that characterize these types of games.
In Section 3 we describe a particular class of cooperative games which are able to
more accurately capture the preferences of users: Cooperative Boolean Games. In
Section 4 we introduce a new type of game, Boolean Games with Currency, which
combines the features of Cooperative Boolean Games, with the transferable payoff
setting. In Section 5 we give some complexity bounds for the computation of the core
and, finally in Section 6 we make some final remarks and sketch future directions
concerning our approach.

2. Cooperative Games

In the following section, we restrict our attention to the subset of cooperative
games (CG) with transferable payoff. They refer to situations where each conse-
quence can be described by a certain payoff value which can be transferred between
agents.
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2.1. CG with transferable payoff

Definition 2.1. A coalitional game with transferable payoff is a pair ⟨N, v⟩ where:
N is a finite set of agents (or players) and v : 2N → R is a function that, for each
non-empty coalition S ⊆ N , associates a certain worth v(S). Traditionally, v is
called the characteristic function of a coalitional game with transferable payoff.

For each coalition S, v(S) represents the total value that is jointly achieved by
agents in S. As mentioned before, this value can be divided between the members
of S. We model the actions available to the coalition S by the set of all distributions
of the payoff v(S), among its members. Let ⟨N, v⟩ be a coalitional game with
transferable payoff. Given a N -dimensional vector of real numbers x = (x1, . . . , xN ),
we denote by x(S) the sum

∑
i∈S xi. Any vector x is a S-feasible payoff profile if

x(S) = v(S). If S = N , we say that S is the grand coalition and denote an N -feasible
payoff profile as simply a feasible payoff profile.

Whenever a game is described using the pair ⟨N, v⟩, we say that it is in the
characteristic function (cf) form. The detailed properties for the (cf) form are
discussed extensively in [9].

Example 2.1. Consider as a simple example, the following social game: Jim and
Harry intend to go out, and can choose between a restaurant and a pub. Jim would
like to have a drink at a restaurant, but is looking forward to spend more time with
Harry, while Harry would really like to have some beers at the local pub. He is not
particularly keen on talking to Jim, but if he brings a friend, he can get some free
beers. This scenario can be modeled by a cooperative game with transferable payoff
having N = {1, 2}, where players 1 and 2 are Jim and Harry, respectively, and the
characteristic function v has the following definition: v({1}) = 1, v({2}) = 3 and
v({1, 2}) = 4.

The value v({1}) = 1 models Jim’s relative small gain from going out alone
to the restaurant, while v({2}) = 3 and v({1, 2}) = 4 show that Harry is happy
going to the pub alone, but prefers taking Jim along, since together they can have
more beers. The values v(S) do not capture explicitly the possible outcomes of the
game (going to the restaurant, or to the pub, etc.), as it would happen in a non-
cooperative setting. They measure the collective gain of players, when they decide
to cooperate.

Example 2.2. Let us extend Example 2.1 by adding a third player: Tom. Like Jim,
Tom is also indifferent about the location, and doesn’t want to go out alone. But
Tom finds Jim to be a really boring person, and prefers the company of Harry. For
this scenario, v is: v({1}) = 1, v({2}) = 3, v({3}) = 1, v({1, 2}) = 4, v({1, 3}) = 0,
v({2, 3}) = 4, v({1, 2, 3}) = 6.

One can observe that coalitions {1, 2} and {2, 3} achieve the same amount
(since Harry is indifferent on his beer partner), and the grand coalition brings some
improvement to the setting (both Tom and Jim can happily share the company of
Harry).

2.2. The core of a CG with transferable payoff

How should a player decide whether to participate in a coalition or not? Ob-
viously, the coalitions that achieve a higher value are more likely to be formed. But
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this criterion alone is not sufficient. The way the payoff is distributed is also im-
portant. Going back to Examples 2.1 and 2.2, let us assume that each value v(S)
can be transferred between the participants of S (for instance, v(S) could account
for the number of beers coalition S can obtain, at a restaurant or pub). The payoff
profile x = (2, 2, 2) for the grand coalition is a value distribution where Harry, Tom
and Jim get equal shares of 2. But, if x is implemented, then Harry only gets 2
in the grand coalition, whereas alone, he could get more. Recall that v({2}) = 3.
Therefore, Harry can object to x, and make a threat of leaving the grand coalition
if he doesn’t get more. If this threat is implemented, then Tom and Jim, together,
have no gain (v({1, 3}) = 0), and each would rather go out alone. Now consider the
payoff profile x′ = (1.2, 3.4, 1.2). This distribution makes everyone happy, and there
is no (objective) deviation of some player, or some coalition. To see this, consider
coalition {1, 2} which achieves 4. There is no division of the value 4 that would give
more to the players 1 and 2, than in x′.

The line of reasoning we have followed so far, takes us towards a general
solution concept of stability of the grand coalition, the core, which we will formalise
in what follows. The core is able to tell us whenever the grand coalition is stable (if
it will form or not), and what are the payoffs for each player, that ensure stability.

Definition 2.2. The core of a cooperative game with transferable payoff G = ⟨N, v⟩
is the set of all feasible payoff profiles x = (xi)i∈N such that there is no coalition S
and no S-feasible payoff profile y = (yi)i∈N that satisfies yi > xi for all i ∈ S.

core(G) = {(xi)i∈N | ̸ ∃S ⊆ N, y such that ∀i ∈ S.yi > xi}

The core of the game described in Example 2.2 is:

{(a, b, c) | a+ b+ c = 6 and a ≥ 1, b ≥ 3, c ≥ 1}
There are two fundamental questions we are interested in, regarding the core

of a given cooperative game: (i) is the core empty (core(G) = ∅)? and (ii) for a given
payoff profile x, is it the case that x ∈ core(G)? The first question helps us to estab-
lish whether a game is stable or not (with respect to our solution concept, the core),
and the second question regards the payoff divisions that ensure the participation
of each player to the grand coalition.

The computational complexity for the core emptiness problem was shown to
be NP-complete in [2], and the core membership problem was established as co-NP-
complete. More precisely, given a CG with transferable payoff G and a payoff profile
x, it is NP-complete to establish if x ̸∈ core(G).

Returning to the cf-form of cooperative games, another remark, of a different
nature, can be made. Given no restriction on the function v, the description of a
cooperative game grows exponentially in the number of players |N |. In our Example
2.2, the number of values that have to be specified grow from 3 (in Example 2.1),

to 7. In the general case, for a game with |N | players requires specifying 2|N |−1

values for v, one for each coalition (and not including the empty coalition ∅). In
order to address this issue, cooperative games with compact representation either
introduce limitations on the form of v, or derive a representation of v that allows
an efficient computation of values v(S). Examples of compact representation games
as well as the complexity bounds for solution concepts for stability can be found in
[6]. The paper focuses on graph games and marginal contribution nets. In a graph
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game, the value of each coalition is encoded in a weighted undirected graph, where
each node stands for a particular player, in the following way:

v(S) = Σi,j∈Sweight(e(i,j))

It is straightforward that, for any S, the value v(S) can be computed in a tractable
way, by adding the weights of all edges covered by nodes in S. In a marginal
contribution network, a set of rules of the form {pattern} → value define possible
values for possible coalitions. Patterns refer to the presence or absence of players.
For instance, {a∧b} → 3 states that any coalition having both a and b have worth 3.
Whenever two or more rules are simultaneously matched, their values are combined.
For instance, if we add to the previous rule, the following: {b} → 2, then any
coalition containing players {a, b} will have a value of 2 + 3 = 5. In the following,
we restrict our attention to another class of games with compact representation:
boolean games.

3. Compact representations

Cooperative Boolean Games are introduced in [4], which also proves some
complexity bounds for different related solution concepts.

Let V = {p, q, r, . . .} be a finite set of propositional variables, and LV be
a propositional language consisting of formulas built using variables from V, the
negation operator ¬ and the connectives ∧ and ∨. In a Cooperative Boolean Game,
each player i controls a subset of variables θi ∈ V. θ1, θ2, . . . , θn is a proper partition
of V such that no two players can share control over a variable. The possible actions
available to players consist of setting truth values to the variables they control. Each
action has a certain cost. The player i’s objective is expressed as a boolean formula
γi ∈ LV.

Definition 3.1. A Cooperative Boolean Game (CBG) is a tuple
⟨N,V, (θ)i∈N , c, γ1, γ2, . . . , γn⟩ where:

• N = {1, 2, . . . , n} is the set of players;
• V is a set of propositional variables;
• θ1, θ2, . . . , θn are the sets of variables controlled by each player;
• c : V → R+ is a cost function;
• γ1, γ2, . . . , γn ∈ LV are the goals of each player.

Example 3.1. The game in cf-form described in Example 2.2 can be modeled as a
Cooperative Boolean Game, in the following way:

• N = {1, 2, 3} - the players, Jim, Harry and Tom
• V = {p1, p2, p3, r1, r2, r3} and the following partition: for all i ∈ {1, 2, 3} θi =
{pi, ri} model the player i’s possible choices: pi and ri models player i’s choice:
going to the pub, or restaurant, respectively.

• c = 0 is a constant cost function;
• γ1 = (p1 ∧ p2 ∧ ¬p3) ∨ (r1 ∧ r2 ∧ ¬r3)
• γ2 = p2 ∧ ¬r2
• γ3 = (p3 ∧ p2) ∨ (r3 ∧ r2)

One can easily see that player 1, Jim, wants to go to the restaurant or the
pub, but does not want Tom to be present. Player 2, Harry, simply wants to go
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to the pub, and the last player, Tom, is also indifferent on the location, as long as
Harry is present. Also, notice that representing goals for n players can be achieved
using n propositional formulae, which is a considerable improvement with respect
to the transferable payoff setting. As we will further see, the formulae γi encode all
necessary information for deriving stability issues.

A final remark is related to the representational properties of CBG. While, in
Examples 2.1 and 2.2, real values where used to measure a certain joint satisfaction
of players, in Example 3.1 the exact preferences of each individual are captured.
The two modeling approaches, the CG with transferable payoff and CBG capture
different features of our scenario, and as a result, there are inherent differences
between them. Also, the setting is no longer one with transferable payoff, and, as
we will further see, this affects the definition of the solution concepts we study.

In order to examine how cooperation is achieved in a CBG, we require the
following definitions. A valuation is a possible outcome of a CBG. Formally, a
valuation ξ is a subset of V with the interpretation that, whenever some variable v
is a member of ξ, then v is set to true, and if v ̸∈ ξ, then v is set to false. For any
formula γ ∈ LV, we write ξ |= γ to designate the fact that, by assigning the value
true for all variables in ξ, the formula γ is satisfied.

The total cost supported by player i under a valuation ξ is the sum of all costs
of variables set to true by him: ci(ξ) =

∑
v∈ξ∩θi c(v). The total cost of all variables

from V is µ =
∑

v∈V c(v). Then, the utility of player i under valuation ξ is:

ui(ξ) =

{
1 + µ− ci(ξ) if ξ |= γi
−ci(ξ) otherwise

Unlike the characteristic function v, which described the values of coalitions (groups
of players), the ui functions describe the individual gain of each player. Until this
point, the setting of a CBG is strictly non-cooperative. The assumption made in
the previous section, i.e. there is a certain payoff v(S) that is achievable by a
coalition, and transferable among its members, no longer holds. Here, in order to
describe the effectiveness of a coalition, CBG’s define a preference relationship of
players over valuations. The preference relationship is naturally induced by the
utility functions ui: ξ1 ≽i ξ2 ⇐⇒ ui(ξ1) ≥ ui(ξ2). We use ≻ to refer to the strict
preference relation. ≽ can be naturally extended to coalitions, in the following
manner: ξ1 ≽C ξ2 ⇐⇒ ∀i ∈ C ξ1 ≽i ξ2. The definition of ≽ has the following
properties: (i) players will always prefer valuations ξ that satisfy their goal over the
ones that do not satisfy it: a valuation ξ such that ξ ̸ |=γi will produce a negative
utility value for player i, and a positive value if ξ |= γi, (ii) if there are two valuations
that satisfy the goal of some player, he will always prefer the one inducing smaller
costs and (iii) if there are two valuations that do not satisfy the player’s goal, he
will again prefer the one producing a smaller cost.

Based on valuations and on the preference relation over coalitions ≽, the
following definition, due to [4] is natural:

Definition 3.2. The core of a CBG is the set of valuations ξ such that, there is no
coalition S ⊆ N and ξ′ such that ξ′ and ξ make the same variable assignments for
players in N \ S and ξ′ ≽S ξ.
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Going back to our example, in this setting the core is given by the set con-
taining ξ = {p2, p3}. This valuation leaves player 1 unsatisfied, but here he cannot
object, since there is no coalition and ξ′ that can guarantee ¬p3 for him, and prefer
ξ′ to ξ. Intuitively, this outcome corresponds to the natural fact that, nobody can
stop player 3, Tom, from showing up at the pub.

4. Games with currency

In the following, we are enhancing Cooperative Boolean Games with the ability
to transfer some shared value between players. Our proposal consists of Boolean
Games with Currency. They combine the features of CBG with that of CG’s with
transferable payoff.

Definition 4.1. A boolean game with currency (BGC) is a tuple

B = ⟨N,V, (Vi)i∈N , (γi)i∈N , µ, c⟩,
where:

• N = {1, 2, . . . , n} is the set of players;
• V is a finite set of propositional variables;
• V1,V2, . . . ,Vn is a partition of V. Each Vi denotes the set of variables con-
trolled by player i;

• µ : N → R≥0: µ assigns a value to an agent’s goal formula; in the following,
we use µi as a shorthand for the value µ(i).

• γ1, γ2, . . . , γn ∈ LV are the goals of each player;
• c : N × V × B → R≥0 is a function assigning for each player, variable and
truth value, a cost of setting that particular truth value. We use ci(w, t) as a
shorthand for c(i, w, t);

This new setting is motivated by the following insight. Again, consider Ex-
ample 3.1 and the valuation ξ = {p2, p3} which is in the core of the BGC game we
defined. If Jim’s goal satisfaction might be measured by a particular real value, and
if this value could be transferred between players, then he could change the outcome
of the game, by tipping off Tom and thus determining him not to come to the bar.
This would be possible under the following assumption: Jim’s happiness when going
with Harry is much larger than Tom’s, and therefore he can afford to tip off Tom,
and make him earn more by staying at home (or going to the restaurant), than by
coming to the pub to see Harry.

In order to model scenarios such as the above, consider the following defini-
tions. For an arbitrary set of variables V ∈ 2V, let ξ = (ξw)w∈V be a V -valuation
giving truth assignments for variables in V . If w is a variable in V , then either
ξw = ⊤ (true) or ξw = ⊥ (false). For all players i, we define a function testing the
entailment of i’s goal:

1i(ξ) =

{
1 if ξ |= γi
0 otherwise

The utility of an agent can be defined in the spirit of [4]. If ξ is a V -valuation, then:

ui(ξ) = 1i(ξ) ∗ µi −
∑

w∈V ∩νi

ci(w, ξw)
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Notice that, in our scenario, it might be the case that the utility of an agent
is not positive when his goal is satisfied. Such a condition could be achieved only
by adding restrictions to the value and cost functions µ and c. Therefore, it is
not always the case that an agent prefers an outcome where his goal is satisfied.
This gives us the intuition that, in settings such as ours, agents might attempt to
maximise their utilities by means other than satisfying goals. One such mean is by
participating in coalitions where some players have goals with great values. Agents
contribute to these goals instead of their own, and, in certain settings, can achieve
more value. This is the case for Tom, who could participate in forming the grand
coalition by fulfilling Jim’s goal instead of his own, under the condition that he can
obtain a higher value this way.

Proposition 4.1. Cooperative Boolean Games are a special case of Boolean Games
with Currency.

Proof. Consider a game B = ⟨N,V, (Vi)i∈N , (γi)i∈N , µ, c⟩, with the following restric-
tions on µ and c:

• ∀w ∈ V, ci(w,⊥) = 0; only setting variables to true inflicts a cost on agents;
• ∀w ∈ V, ci(w,⊤) = cj(w,⊤); the costs for setting a variable to true are the
same for all agents;

• µi >
∑

w∈V ci(w,⊤); the value of each agent’s goal is strictly larger than the
sum of all the costs for variables he controls.

The last restriction ensures positive values for utilities ui, if players satisfy their
goals. Then ui can induce a preference relationship over valuations ξ that obeys the
properties discussed in Section 3. �

5. The core of a BGC

For a game B = ⟨N,V, (Vi)i∈N , (γi)i∈N , µ, c⟩, and a coalition S ⊆ N , the
endowment of each player i ∈ S is:

1i(ξ)µi −
∑

w∈V∩Vi

ci(w, ξw) (1)

The endowment is computed by taking the value of the satisfied goal, if it is in-
deed satisfied, and subtracting the involved costs. Based on the endowment, the
characteristic function v is defined as follows:

v(S) = max
ξ=(ξi)i∈V

∑
i∈S

1i(ξ)µi −
∑

w∈V ∩νi

ci(w, ξw)

 (2)

Equation 2 describes the worth of a coalition S as being the maximum sum of
all endowments, obtained by some valuation ξi.

The cf form ⟨N, v⟩ of a BGC B is obtained by taking N to be the number of
players of B, and by computing the characteristic function v according to Equation
2. The core of a BGC expressed in cf form ⟨N, v⟩ is the set of all feasible payoff
profiles (xi)i∈N , for which there is no coalition S such that v(S) > x(S). We say
that (xi)i∈N is group rational: no other coalition S has an incentive to deviate. Also,
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notice that this definition is not substantially different from the one given in Section
2.

Proposition 5.1. Core membership for BGC is co-NP complete.

(sketch). Core membership is a decision problem MEM(B, x) which, given a Boolean
Game with Currency B and a vector x of size N , asks whether x is in the core
of B. Recall the definition of core membership, which requests that there is no
coalition S ⊆ N and payoff profile y such that S prefers y over x. Now, consider the
complement of core membership problem MEM(B, x) which asks if there exists a
coalition S, and a payoff y such that y(S) > x(S). An equivalent definition for this
problem, is asking whether there exists a coalition S ⊆ N such that v(S) > x(S). If
such an S exists, then there is also an S-feasible payoff profile y, which players in S
will prefer over x.

In the following, we prove MEM(B, x) to be NP-complete.
The membership MEM(B, x) ∈ NP is straightforward: A procedure can build

all coalitions S in nondeterministic polynomial time, and, for each S, checking
whether v(S) > x(S) holds can be done in deterministic polynomial time. The
NP-hardness of MEM(B, x) is due a reduction from the k-VERTEX-COVER(G)
problem.

Let G = (A,E) be a graph. k-VERTEX-COVER(G) asks if there is a subset
B ∈ A of vertices, with |B| = k, such that all edges from E are covered by at least one
vertex. Starting from an instance of k-VERTEX-COVER(G), we build an instance
of MEM(B, x) in the following way: (i) for each vertex a ∈ A, we create a player
na ∈ N . We add an additional player no to N ; (ii) for each edge e = (a, b) ∈ E,
we create two variables pa, pb ∈ V, and subsequently assign their control to the
corresponding players: pa ∈ Vna and pb ∈ Vnb

(each player controls one“side” of an
edge). For the additional player, we have Vno = ∅; (iii) we define the cost function c
such that ∀i, ∀pe ∈ V, ci(pe,⊤) = 1 and ci(pe,⊥) = 0; (iv) the goal of each player na

is γna =
∧

e=(a,b)

(pa ∨ pb) (na’s goal is satisfied when at least one “side” of each of his

incident edges is set to ⊤). The goal for player n0 is γn0 =
∧

e=(a,b)∈E

(pa ∨ pb) (it is

satisfied when all edges have at least one side set to ⊤); (v) the goal value for each
player na is µna = 0. The goal for player n0 is µn0 = 2|E|; (vi) we build a payoff
vector x such that xno = |E| − 1/2 and ∀na, xna = 1

2(k+1/2) .

( =⇒ ) Suppose W is a vertex cover of size k. Then, the coalition SW =
{n0}∪{na|a ∈ W} will achieve the maximum value under any valuation ξ = (ξi)i∈SW

such that, ∀e = (a, b) ξpa = 1 and ξpb = 0 (exactly one ”side” of each edge is set to
true). Under any such valuations, all players see their goals satisfied. Therefore:

v(SW ) =
∑
i∈SW

µi −
∑
i∈SW

∑
w∈V ∩νi

ci(w,⊤) = 2|E| − |E| = |E|
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. Since, according to the above construction, the payoff profile x associated to SW

yields:

x(SW ) = xn0 + k ∗ 1

2(k + 1/2)
= (3)

|E| − 1/2 +
k

2 ∗ k + 1
= |E| − 1

2k + 1
< |E| = v(SW ) (4)

then x together with SW is a credible deviation to the grand coalition.
( ⇐= ) is straightforward, and follows the same arguments described previ-

ously. �
Proposition 5.2. Given a BGC in cf-form, the characteristic function v is super-
additive, that is for every S1, S2 ∈ N such that S1 ∩ S2 = ∅, the following holds

v(S1 ∪ S2) ≥ v(S1) + v(S2).

Proof. Let S1, S2 be two disjoint coalitions and ξ1, ξ2 be the solutions of Equation 2,
giving the values v(S1) and v(S2), respectively. Let V1 = ∪i∈S1Vi and V2 = ∪i∈S2Vi.
It is straightforward from the definition of a BGC that variable sets V1 and V2 are
disjoint (since no two players can have control over the same variable). Since ξ1
and ξ2 contain truth assignments for every variable in V1 and V2 respectively, then
ξ1 and ξ2 cannot assign different values to the same variable. Then, for all goals
γ1 and γ2 satisfied by ξ1 and ξ2 respectively, it is the case that ξ1 ∪ ξ2 |= γ1 and
ξ1 ∪ ξ2 |= γ2. Therefore, each satisfied goal in S1 or S2 is satisfied also in S1 ∪ S2

(possibly cheaper). As a result we have that

v(S1 ∪ S2) ≥ v(S1) + v(S2).

�
Proposition 5.3. The core of a BGC is non-empty.

Proof. This is a direct consequence of the property of super-additivity of BGC.
First of all, notice that the definition of the core from Section 5 can be reformulated
as:core(B) = {x | ∀S ⊆ N.x(S) ≥ v(S)} Now, since B is super-additive, it follows
that ∀S ⊂ N , v(N) ≥ v(S), since N = S∪N \S and v(N) ≥ v(S)+v(N \S). Then,
any feasible payoff profile that offers a division of v(N) is in the core of B. �

6. Conclusions and Future Work

The game-theoretic setting proves to be a suitable direction for studying agent
interaction and cooperation. Unlike machine learning approaches, that merely mimic
some more-or-less fixed behavior, game theory attempts to understand the nature of
the cooperation process. Different modeling approaches fit on different scenarios. As
seen in the paper, the non-transferable payoff setting has certain limitations when
trying to capture particular preferences for users. On the other side, Cooperative
Boolean Games lack features for modeling compromise and value division. Our
proposal of BGC tries to address this issue, and to find a more general modeling
perspective. The results we describe, the computational complexity for the core
membership and core emptiness problems are inherently theoretic, but not without
applicability. Although not quite optimistic (the core membership is shown to be
co-NP-complete), the results suggest that, for small games, computing the core
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is possible, and could be implemented in systems that asist humans in decision-
making. Also, iterative techniques, in the spirit of [4], for deriving a more efficient
computation process should be researched. Following the line of [5], the goal value
function from BGC’s can be used to incentivise certain behavior within a group of
agents. We are currently tackling these ideas, as well as attempting to produce an
efficient implementation, based on our results.
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