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LEARNING MULTI-VIEW BINARY CODES FOR SPEEDING 

UP CROSS-VIEW VEHICLE RE-IDENTIFICATION 

Zhiyuan JIN1, Lu LU2, Tiejun PAN1, Jun LIU3, Shoubiao TAN2  

In this paper, a novel Multi-View Binary Identities (MVBI) algorithm with the 

help of a hash technique is proposed to vehicle re-indentification (Re-ID). The 

hashing method can transform the real-valued multiplications into binary XOR 

operations to speed up the target lookup process. First, MVBI aims at 

simultaneously minimizing the Hamming distance between the samples of similar 

vehicles in different views and maximizing that between samples of different 

vehicles. Hence, the semantic structure of different examples across all views of a 

same vehicle can be definitely maintained. Then, with considering the constraint 

condition, a set of hash functions can be learned to project all samples from 

different views into a suitable common Hamming space. The hash code calculated in 

this space can capture the discriminant as much as possible. Finally, through the 

simple Hamming distance calculation, we can realize the efficient vehicle Re-ID. 

The experimental results in the two bench-mark datasets show that the proposed 

method significantly outperforms some state-of-the-art methods. 

 

Keywords: Vehicle Re-identification, Binary Codes, Hamming Distance, Cross-

view Identities. 

1. Introduction 

With the rapid economic development, a large number of cars have 

flooded into the streets and, as a result, traffic safety has become a serious social 

problem. In order to monitor public transport, most of the traffic jam areas have 

installed a large number of surveillance cameras, making the acquisition of 

vehicles more convenient. However, in the majority of cases, it is not possible to 

obtain all the images of license plates from video recording due to the challenge 

of perspectives and the environment. Therefore, automatic vehicle re-

identification based on other visual features and clues is particularly desirable. 

To this end, in recent years, researchers have begun to pay attention to the 

problem of vehicle re-identification in a wild. One of the most well-known work 
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[13] is to first obtain the vehicle characteristics for matching by wireless magnetic 

sensors and then use dynamic time warping method to calculate the distance of 

signatures and reduce the recognition error rate through iteration parameters. In 

order to quickly train a large amount of data, in [16], the problem of re-

identification is solved by using a colour histogram of the directional gradient of 

the SVM linear classifier, in [8], proposed a dataset to facilitate the research of 

vehicle Re-ID  (this paper also uses this experimental dataset). In this method,the 

high-level semantic information of vehicles was first extracted based on the color 

features, local texture features and semantic features of CNN learning [6] and then 

the re-identification was conducted through K-means clustering. At the same time, 

the magnetic sensor [14] is used to obtain the matched vehicle features, in which 

the dual window vehicle detection algorithm is first used to obtain the waveform 

data, and then the features of each vehicle are extracted. 

 

Fig. 1. First row: five different views of the vehicle picture. Second row: different view of the 

vehicle image that vehicle detection has been resolved. 

The Euclidean distance-based metrics are time-consuming in the 

application of large-scale data, the hash method can improve the retrieval speed, 

so it can be a good solution to this problem. 

•  We propose a novel cross multi-modal hashing algorithm which 

utilizes three constraints to enable fast vehicle re-identification. 

•  As far as we know, this work is the first attempt to apply the hashing 

approach to multi-view vehicle re-identification. 

•  In order to find the optimal solution to the hash function, we propose an 

iterative method to solve the complex objective function. 

•  Our experimental research on two different public datasets clearly 

demon-strates the advantage of our method (MVBI) under cross-view scenarios 

2. Related work 

This paper focuses on the re-identification of different types of vehicles, 

which, compared to the Person Re-ID [5], is in the early stage of research and has 

low attention. As shown in Fig. 1, the method is based on the situation in which 

the vehicle has been located in the image. It means the location of the vehicle in 
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the image is completely known, and the input information for vehicle re-

identification is a picture that just contains the vehicle. Various semantic 

information such as color and shape etc. are considered in this paper. 

Actually, hash algorithm has been used widely in the field of computer 

vision nearest neighbor search, such as image retrieval, object recognition and 

image matching, but rarely used in re-identification. The core idea of the hash 

algorithm is to use the hash function to convert the data into the corresponding 

binary code string, where the semantic information similarity between the data 

and the Hamming distance [10] of the corresponding binary code string are 

consistent. This method can reduce the storage space (binary code storage only 

need to consume very little storage space) and improve the retrieval speed 

(bitwise XOR operation can be quickly calculated between the coding string 

Hamming distance) [11]. Consequently, more and more research interest has been 

devoted to cross-modal hashing. For instance, the core idea of Cross-Modality 

Similarity Sensitive Hashing (CMSSH) [1] is to treat the hash function 

corresponding to each binary code as a weak classifier and learning the hash 

function by eigenvalue decomposition and AdaBoost algorithm. Similarly, CMFH 

learns a common subspace by decomposing the data into different modes through 

the cooperative matrix, and then generating a unified binary code string by the 

quantization method. Moreover, Predictable Dual-View Hashing (PDH) [12] 

algorithm to maintain predictability of the the binary codes by applying an 

iterative optimization method based on block coordinate descent. 

We accomplish the vehicle Re-ID by learning a set of hash functions for 

each view. The MVBI algorithm learns the discriminant binary representation of 

each vehicle image to make more efficient distance measurements in the 

Hamming space. In particular, MVBI focuses on learning similar binary codes of 

similar vehicles from different perspectives but maximizes the Hamming distance 

between different vehicles of different perspectives. 

3. Learning cross-view Binary Identities 

Without loss of generality, this paper considers only five views of the 

vehicle. In fact, five views are also common and universal in the real-world 

monitoring system. Hence, we can reorganize the original dataset into five 

training sub-datasets as: 1 2{ , , }n

a a a aX x x x=  ,
1 2{ , , }n

b b b bX x x x=  ,
1 2{ , , }n

c c c cX x x x=  , 

1 2{ , , }n

d d d dX x x x=   , 1 2{ , , }n

e e e eX x x x=  , Our aim is to find K hash functions F = 
1 2{ , , , }k

v v vf f f    for each view    ,  ,  ,  ,  v a b c d e  and ( ) ( )k

v v vy k f x=
 

to 

simultaneously minimize the Hamming distance between the samples of similar 

vehicles in different views and maximize that between samples of different 

vehicles. In this paper, the hash functions are constructed by a set of linear hyper 
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planes: 1 2{ , , , }K

u v v vW w w w= 
 

1 2{ , , , }K

u v v vW w w w= 
.
 Thus, for the dataset 

vX , we 

obtain 1 2{ , , , }n

v v v vY y y y=   by using (( ) )ik k T i

v v vY sign w x= . It is obvious that there is 

  1;  1
Ki

vy  −  and, for simplicity, we can rewrite it as: ( )T

v v vY sign W X=
 .
 

3.1 Minimizing the intra-class distance 

Our first consideration is to generate a valid binary code for each sample, 

where the differences between the samples of the same car are minimized. The 

smaller the distance, the higher the probability that the samples are similar, 

indicating that they may belong to the same type of vehicle. Therefore, we can 

match the pair of samples using the Hamming distance calculated on these binary 

codes. 

For a pair of sample sets ( , )v uX X
 
collected under the two views v and u, 

we assume that all the image samples between the two sets can be matched. Then, 

we can define the cumulative Hamming distance between them as: 

int ( , ) ( , );i i

ra v u h v u

i

L X X D y y=                                     (1) 

In order to minimize the Hamming distance calculated based on binary 

codes between the samples of the same vehicle, it is necessary to minimize the 

cumulative Hamming distance defined in Eq.1 for all the views to obtain our hash 

projections in the stage of training. 

      ar ( );g ,intra v u

u v

F min L X X =                                      (2)  

where there are v, u ∈ (a, b, c, d, e). 

3.2 Maximizing the inter-class distance 

In fact, merely minimizing the intra-class distance is not enough to 

determine whether a pair of samples belong to the same vehicle or not. Thus, 

inspired by the method [7] which constructs a triple loss function to maximize the 

relative distance between matched and unmatched pairs, we also consider 

maximizing the Hamming distance between different vehicles. By learning the 

hash functions for all views, the positive pairs of samples can be pulled closer 

whilst the negative pairs of samples are pulled far away. In other words, we 

should simultaneously minimize the intra-class Hamming distance and maximize 

the inter-class Hamming distance for all the pairs of samples in the learned 

Hamming space. Therefore, based on these considerations, the following formula 

can be established for a given pair of sample sets ( ,v uX X ):   
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int L ( , ) ( , );i j

er v u h v u

i i j

X X D y y


=                                      (3) 

where there are v, u ∈ (a, b, c, d, e), .,i j

v v u uy Y y Y   

Similarly, in order to maximize the Hamming distance of binary codes be-

tween the samples of the different vehicle, the Hamming distance of all views in 

Eq.3 is summed to obtain the hash projections in the stage of training. 

                   ;) ,(inter v u

u v

F arg max L X X =                               (4) 

where there are v, u ∈ (a, b, c, d, e). 

3.3 Minimizing the maximum mean difference 

Maximum Mean Difference (MMD) is a nonparametric distance measure 

for the data distribution of two domains [3]. It uses fewer illustration and safer 

exploration strategies than the existing methods while maintains a strong theo-

retical guarantee on performance. This method can make use of the information 

acquired from the source domain to construct the feature extraction model suit-

able for the target domain to a certain extent. The principle of maximum mean di 

erence is to find a function, assuming different expectations for two different 

distributions.In addition, to better preserve the semantic structure of the training 

in-stances, the distribution of hash codes can be also required to guide the learning 

of mapping by adding some kinds of constrains. Obviously, this constraint can be 

achieved by minimizing the mean of the hash codes from different views, that is, 

minimizing the maximum mean difference (MMD) [4] between different views. 

Therefore, given two datasets 
uX  and 

vX with their corresponding binary codes 

uY  and 
vY , the mean difference can be defined as follows: 

  ( , ) [| ( ) ( ) |];MMD u v v uL X X sup E Y E Y= −                                   (5) 

where E(.) is the average of the matrix elements and sup[.] means upper bound, 

that is, greater than the minimum of all its values. 

In addition, it is necessary to minimize the sum of the maximum average 

differences defined in Eq.5 to constrain the samples. 

  ,  ( );MMD v u

u v

F arg max L X X =                                  (6) 

where there are v, u ∈ (a, b, c, d, e). 

3.4 Overall objective function 

In the above sections, we introduce three requirements to obtain the 

desirable binary codes for the cross-view vehicle re-identification. The aim of 

learning is to find optimal hash functions which can embed the samples from the 
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original feature space into the Hamming space with satisfying the above 

requirements. To avoid that the hash functions for each pair of views are learned 

separately, we integrate all the requirements into a unified framework and all 

these hash functions can be jointly learned. Since the constraint of distance 

between vehicles and class, the latter needs to be multiplied by a fixed value 

because it is not in one order of magnitude. The value n is the number of samples, 

we obtain: 

( )  1   ,     ,) (  ;( )intra v u MMD v u

u v u v

F n arg min L X X arg max L X X = − +    (7) 

Substitute (1), (3) into (7) and convert it to find the minimum 

     ( )[ ( )   1 ,   (  ;]  ),i i i j

h v u h v u

u v i i j

F arg min n D y y D y y



= − −          (8) 

To integrate the first two constraints, we define a new triplet loss as: 

( ( ) ( ,  ));,  i i i j

h v u h v utriple

i j i

D y y D y yL


−=                       (9) 

where ( )i i

v v vy f x=  . Combining the Eq.1 and 3, we can see that, when the sample 

is considered as an anchor, our framework is also related to the triplet loss. 

However, there are some differences between the two approaches. Obviously, the 

positive and negative samples come from the same view, whereas the anchor 

sample comes from a different view. The classical triplet loss is a special case of 

our framework when only one view is available. To this end, we randomly choose 

a sample from one view as the anchor. Then, from another view, we select a 

sample that belongs to the same vehicle with the anchor as the positive sample 

and another sample that belongs to a different vehicle as the negative sample. It is 

easy to prove that minimizing the triplet loss in Eq.9 can decrease the 

corresponding item in Eq.1 and increase the corresponding item in Eq.3. 

Therefore, the overall objective function combines the both triplet loss Eq. 

9 and semantic structure of the maintained instances in Eq.5 form all views as 

follows: 

* arg min ( , ) ( , );triplet u v MMD u v
F

u v

F L X X L X X= +                 (10) 

where is a hyper-parameter to balance the two items. 

The integrated objective function guarantees that each view can learn only 

one set of hash functions and while the requirements between all the pairs of 

views can be satisfied. Similar to most of existing hashing methods [17], the sign 

function in the objective function is omitted and thus the classical gradient 
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descend based optimization strategies can be used. More specifically, the 

objective function can be expressed as: 

2

, , , , 1

2 2

1 1, 1 1

1

{ , , , , } arg min ( 1) || ||

1 1
|| || || ( ) ( ) ||

( , , , , )

a b c d e

n k k
T i T i

a b C d e u u v v F
W W W W W i u u v

n m k k k k n m
T i T j i j

u u u v F u v H

i j i j u u v u u v i j

a b C d e

W W W W W n W x W x

W x W x Y x Y x
n m

R W W W W W





= 

= =    = =

= − −

− − + −

+



       (11) 

where v, u ∈ (a, b, c, d, e), Y (∙) : X → H is a linear projection from the source 

space to the Hamming space, e.g 
1( ) . ,i T i

v v vY x w x  =
 
are tradeoff  parameters.  

3.5 Learning hash functions 

The Eq. 11 builds a Lagrange equation and it is non-convex with respect to 

the five matrix variables 
aW , 

bW , 
cW , 

dW , and eW . Fortunately, it is convex with 

respect to anyone of them while fixing the others. The optimal solution of the 

function can be transformed into the extreme of the function. Thus, the function 

would get the extreme point when the partial derivative of convex function is 0. 

Therefore, the optimization problem can be solved by following the listed five 

steps iteratively until convergence: 

   If fix , , ,b c d eW W W W and  let 0
a

L

W


=


, then we can obtain:  

1

1

{ , , , }

((4 8) ( ) ( ) 4 ( ) ( ) )

[ ( 1)( ( ) ( ) ( ) ( ) )]

i i T j j T i i T

a a a a a a a

Ti i i j T i i T

a u u a u u a u u

u b c d e

W n X X X X E X E X I

n X X W X X W E X E X W

 



−

=

= − − + +

− − +
           (12) 

If fix , , ,a c d eW W W W and  let 0
b

L

W


=


, then we can obtain:  

1

1

{ , , }

((4 7) ( ) ( ) 4 ( ) ( ) )

[( 1) ( ) ( ) ( ) ( )

( 1)( ( ) ( ) ( ) ( ) )]

i i T j j T i i T

b b b b b b b

i i T j i T i i T

b a a b a a b a a

Ti i i j T i i T

b u u b u u b u u

u c d e

W n X X X X E X E X I

n X X W X X W E X E X W

n X X W X X W E X E X W

 





−

=

= − − + +

− − + +

− − +

             (13) 

If fix , , ,a b d eW W W W and  let 0
c

L

W


=


, then we can obtain:  
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1

1

{ , }

{ , }

((4 6) ( ) 2 ( ) 4 ( ) ( ) )

[ ( 1) ( ) ( ) ( ) ( )

( 1)( ( ) ( ) ( ) ( ) )]

i i T j j T i i T

c c c c c c c

i i T j i T i i T

c u u c u u c u u

u a b

Ti i i j T i i T

c u u c u u c u u

u d e

W n X X X X E X E X I

n X X W X X W E X E X W

n X X W X X W E X E X W

 





−

=

=

= − − + +

− − + +

− − +





              (14) 

If fix , , ,a b c eW W W W and  let 0
d

L

W


=


, then we can obtain:  

 

1

1

{ , , }

((4 5) ( ) 3 ( ) 4 ( ) ( ) )

[ ( 1) ( ) ( ) ( ) ( )

( 1)( ( ) ( ) ( ) ( ) ]

i i T j j T i i T

d d d d d d d

i i T j i T i i T

d u u d u u d u u

u a b c

i i T i j T i i T

d e e d e e d e e

W n X X X X E X E X I

n X X W X X W E X E X W

n X X W X X W E X E X W

 





−

=

= − − + +

− − + +

− − +

              (15) 

If fix , , ,a b c dW W W W and  let 0
e

L

W


=


, then we can obtain:  

1

1

{ , , , }

(4( 1) ( ) 4 ( ) 4 ( ) ( ) )

[ ( 1) ( ) ( ) ( ) ( ) ]

i i T j j T i i T

e e e e e e e

i i T j i T i i T

e u u e u u e u u

u a b c d

W n X X X X E X E X I

n X X W X X W E X E X W

 



−

=

= − − + +

− − +
               (16) 

where 1 2[ , , , ], ( )i n i

u u u u uX x x x E x=   represents the mean of different pictures of the 

same view. 

3.6 Realizing vehicle re-identification 

First, the optimal projections including aW , bW , cW , dW  and eW are 

obtained by MVBI training using the above constraint equations. Second, for the 

gallery sample set 
uX , we can obtain the binary codes in advance by using the 

corresponding projections ( )T

u u uY sign W X= . Then, test sample vX  can be also 

converted into the a set of hash codes, i.e ( )T

v v vy sign W x=
 
. Finally, the Hamming 

distance Eq. 17 between the gallery set and the test sample can be calculated and 

sorted. 

( , ) 1[ ( ) ( )]i j T i T j

h v u v v u uD y y sign W x sign W x=                            (17) 

where Dh indicates the Hamming distance and xju represents the jth 

sample in the dataset 
uX ∙1[.] is an indicator function, that the total number of 

unequal records. 
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1. Initialize 
aW , 

bW , 
cW , 

dW , 
eW  by random matrices and center sample set 

Xu by the mean of samples. 

2. repeat 

3. Fix 
bW ; 

cW , 
dW , eW , update 

aW  by Equation 12; 

4. Fix 
aW , 

cW , 
dW , eW , update 

bW  by Equation 13; 

5. Fix 
aW , 

bW , 
dW , eW , update 

cW  by Equation 14; 

6. Fix 
aW , 

bW , 
cW , eW , update 

dW  by Equation 15; 

7. Fix 
aW , 

bW , 
cW , 

dW , update eW  by Equation 16; 

8. until  convergence. 

4. Experiments 

MVBI is validated for cross-view vehicle re-identification on two public 

dataset-CompCars [15] and VeRi [8]. Some example images of the two datasets 

are shown in Fig.2.  

 

Fig. 2. Using the CMC Curve to VeRi the Google net Feature of the compcars Data Set in Each 

Hash Method 

 

In order to illustrate the performance and efficiency of MVBI, this paper 

compares MVBI with three cross-modal hashing methods and one statistical 

method: canonical correlation analysis (CCA) [9].  

Datasets: The CompCars dataset contains data from two scenarios, 

including images from web-nature and surveillance nature that are widely used in 

the real-world applications. In particular, the web-nature data contains 163 car 

Algorithm 1 MVBI training 
  

Input: Data matrix Xu, u = a, b, c, d, e, parameters 
1, ,n   

Output:  
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makes with 1, 716 car models, covering most of the commercial car models in the 

recent ten years. There is a total of 136, 727 images capturing the entire cars and 

27, 618 images capturing the car parts, where most of them are labeled with 

attributes and viewpoints. 

 

 

Fig. 3. Using the CMC Curve to Compare the Google net Feature of the VeRi Data Set in Each 

Hash Method 

 

The surveillance-nature data contains 44,481 car images captured in the 

front view. Each image in the surveillance-nature partition is annotated with 

bounding box, model, and color of the car. Overall, the CompCars dataset offers 

four unique features in comparison to existing car image databases, namely car 

hierarchy, car attributes, viewpoints, and car parts. To further investigate the 

attributes of car re-identification, CompCars dataset is reclassified according to 

the color RGB threshold and randomly selected 3750 images are considered as 

data for future training and testing. It can capture the high-level semantic 

information of the vehicle as a semantic feature by extracting the feature from 

images. Another data set used in this paper, the VeRi, contains over 40,000 

bounding boxes of 619 vehicles captured by 20 cameras in unconstrained traffic 

scene. Moreover, each vehicle is captured by cameras in different viewpoints, 

illuminations, and resolutions to provide high recurrence rate for vehicle Re-Id. 

To enable cross-view re-identification, we also label the views of images in 

datasets VeRi [8], which contains 619 vehicles captured by 20 cameras, with the 

same setting of CompCars dataset [15].In order to facilitate the operation, the 

experimental data consisted of 750 sample pairs containing 3,570 images, each 

pair containing five images from different views of the same vehicle. 

In this paper, we randomly divided the datasets into two parts according to 

a certain percentage. The probe set consists of a picture of each car and the others 

will be considered as a training set. The experiment will be conducted 10 times 

and the results are averaged finally. We randomly divided the datasets into two 

parts according to a certain percentage. The probe set consists of a picture of each 
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car and the others will be considered as a training set. The experiment will be 

conducted 10 times and the results are averaged finally. 

In our experiment, for each data set, we randomly select all the images of 

the p number of cars for testing, the rest are used to train our model. For example, 

we can select p = 150 pairs (750 pictures) as a test set and 600 pairs 

(3000pictures) as a training set. We use the average Cumulative Match 

Characteristic (CMC) curve over 10 trials to show the accuracy rate. The accuracy 

rate at ranks: r = 1,5,10, 20 indicates the percentage of the test image with the 

correct match in the p training set which are ranked in the top r list. Actually, the 

first rank r = 1 is the most important factor to indicate the performance of a 

method.  

Comparison with other hashing methods, We compared our MVBI with 

CCA (The method used by CCA is to linearly transform the multidimensional ‘X’ 

and ‘Y’ into one-dimensional ‘X’ and ‘Y’, and then use the correlation coefficient 

to see the correlation between ‘X’ and ‘Y’. Changing the data from multi-

dimensional to one-bit can also be understood as CCA is performing 

dimensionality reduction, reducing high-dimensional data to one-dimensional, and 

then using correlation coefficients for correlation analysis.) [9] and recently 

proposed multi-modal binary codes learning methods including PDH (The PDH 

algorithm embeds the proximity of the data samples into the original space, and 

by creating a cross-view Hamming space, compares the information in the 

previously incomparable domain with the concept of “predictability”.) [12], CBI 

(It learns two sets of discriminant hash functions for two different views by 

simultaneously minimizing their distance in Hamming space and maximizing 

cross covariance and margin. It embeds the image in the Hamming space and can 

find similar binary images of the same person captured in different views.) [17] 

and CMFH (It learns the unified hash code through collective matrix 

decomposition and a potential factor model of different modalities of an instance. 

It can not only support cross-view search, but also improve search accuracy by 

combining multiple view information sources.) [2] on the CompCars and VeRi 

datasets. Most of the compared methods are used for cross-model search, such as 

cross retrieval between texts and images.  
Table 1 :  

Top ranked matching rate (%)on CompCars. p is size of the gallery 

set (larger p means larger training set) and r is the rank. 

Methods Methods MVBI PDH CCA CBI CMFH 
       

 r =1 36.80 21.20 30.80 11.60 19.60 

p =50 r =5 50.40 24.40 39.60 23.20 31.20 

 r =10 54.00 34.00 45.60 35.60 43.60 

 r =20 58.00 50.40 58.00 56.80 58.00 
       

 r =1 33.40 19.60 28.60 14.60 13.60 

p =100 r =5 46.80 23.80 35.20 22.80 23.80 
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 r =10 51.20 27.00 38.80 29.40 32.60 

 r =20 56.00 32.40 43.20 39.40 49.40 
       

 r =1 32.00 19.07 26.80 12.80 12.53 

p =150 r =5 43.60 22.27 34.27 23.60 21.60 

 r =10 49.47 24.80 37.73 27.73 26.80 

 r =20 53.47 29.73 42.40 34.80 36.40 
       

Table 2:  

Top ranked matching rate (%) on VeRi. p is size of the gallery 

set (larger p means larger training set) and r is the rank. 

Methods Methods MVBI PDH CCA CBI CMFH 
       

 r =1 38.80 23.60 32.80 19.60 18.80 

p =50 r =5 50.00 32.80 45.20 46.40 30.00 

 r =10 56.40 44.40 50.80 54.80 40.40 

 r =20 61.20 62.40 60.40 64.00 56.80 
       

 r =1 36.80 17.60 29.80 18.80 18.20 

p =100 r =5 46.60 28.80 38.40 41.00 29.80 

 r =10 50.80 35.60 42.60 46.00 37.20 

 r =20 57.00 50.00 49.80 56.00 44.40 
       

 r =1 32.67 16.93 27.60 16.80 17.60 

p =150 r =5 42.40 27.73 35.60 33.07 25.33 

 r =10 46.80 32.40 39.87 38.80 31.47 

 r =20 52.27 42.00 44.80 46.27 39.33 
       

 

Firstly, we can see that our proposed MVBI is related to the method of 

cross-view binary identities (CBI). To some extent, our method can be considered 

as extension of CBI in a setting of multiple views. However, it can preserve the 

semantic structure of instances better since the mean of binary codes of all 

samples is minimized, thus resulting in highly correlated binary codes. At the 

same time, MVBI increases the constraint of Hamming distance between different 

views and makes the mean of the hash matrix elements similar to those of samples 

in different views. In contrast, CBI do not take into account the relationship 

between the pairs of different identities in the different modalities and solutions of 

CBI may be affected by highly relevant but unimportant variables. Moreover, in 

the method of PHD, samples have also been projected by maximizing distance 

differences, but it is significantly different from MVBI from the two following 

perspectives. On the one hand, both covariance and variance of MVBI have been 

maximized, but PDH do not consider them. On the other hand, PDH obtains the 

projection by using the classical SVM directly but the MVBI obtain the solutions 

by an alternative optimization method in which an extreme value of the dual 

problem can be obtained to learn the projection. While PHD cannot improve the 



Learning Multi-View Binary codes for speeding up cross-view vehicle re-identification        63 

 

performance by increasing the number of bits,CMFH with MVBI are similar with 

each other since the projections of the both methods are obtained by loop 

iteration.  

We compare MVBI with three hash methods including CBI, PDH and 

CMFH and one statistical method CCA which can produce real representations. 

Due to the finite level of the variance matrix, the characteristic dimension of the 

CCA is limited, so the best performance is poor. We compare the proposed 

method on the two datasets: CompCars and VeRi datasets when p=50, p=100 and 

p=150.The rank performance of the compared methods is shown in Fig. 2 and 3. 

From these figures, we can see that 305 the proposed method achieves better 

results than other methods. No matter what the number of test sets is, our 

algorithm can get the highest accuracy. 

On both the CompCars and VeRi datasets, the results in Table 1 and 2 

clearly show that the recognition rate of the proposed MVBI increases 

significantly by reducing the number of test sets (The number of training sets will 

also be increased accordingly). This conclusion can be obtained for all ranks from 

r = 1 to r = 20. Moreover, from the tables, it is clear that our approach is superior 

to other hash methods in all cases. Finally, it is worth mentioning that these 

advantages are not very obvious in these tables, but they can also be clearly 

displayed in the figures. 

5. Conclusions 

In this paper, we propose a novel multi-view hash algorithm for cross-view 

vehicle re-identification problem. This method can save storage space (about 

87.5% saved.) as well as speed up (upto 10 times) the procedure of identification 

by converting matching in Euclidean space to binary XOR operations. In the 

proposed framework, three constraints are defined, which make it possible to 

simultaneously preserve the intra-class similarity between the pair of the same 

identity and the inter-class similarity between the pair of different identities in the 

learned hash space as much as possible. The experimental results of the two 

datasets: Compcars and VeRi show that the accuracy of the vehicle re-recognition 

can be improved using MVBI algorithm and the speed of identification is faster 

than CCA、PDH、CBI、CMFH algorithms.  
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