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BIFURCATION ANALYSIS OF A MODEL OF THREE-LEVEL
FOOD CHAIN IN A MANGROVE ECOSYSTEM

Cristina Bercia! and Romeo Bercia

2

In this paper, we consider a three-dimensional non-linear dy-
namical system of predator-prey type with 12 parameters which models a
food-chain in a mangrove ecosystem. Our goal is to study the dynamical
properties of the model with constant rate harvesting on the top-predator. It
is shown that transcritical, saddle-node and supercritical Hopf bifurcations
occur when one parameter is varied. By numerical integration of the system,
we plot the phase portraits for the important types of dynamics and we show
the presence of a stable limit cycle. We deduce the controlling role of the
harvesting rate upon the stable equlibrium or periodic state of coexistence of

the species.
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1. Introduction

We consider a three dimensional ordinary differential autonomous system
which models a food chain in a mangrove ecosystem with detritus recycling
and with constant rate harvesting of top predators. The three levels of the
food chain are the detritus (z(t) denotes its density at time ¢) which consists
of algal species and leaves of the mangrove plants, then detritivores (y(t))-
unicellular animals, crustacean, amphiopod and others (see [4]) which depend
on rich detritus-base and the predators of detritivores (z(t))-fish and prawn.
Some of the predators have commercial value and undergo harvesting. The

system has the following form:

() =
y'(t) =

Z(t) =
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with the initial conditions x(0),y(0), 2(0) > 0.
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The main assumptions of the model are the following:

1. The detritus has a constant input rate (z) maintained by the de-
composed mangrove leaves. [4] Also the detritus is washout from the system
with a certain rate (a) and is supplied with dead organic matter converted into
detritus by the action of the micro-organisms.

2. The interaction between detritus and detritivores is different from
the classical models of predator-prey in that the detritivores response func-
tion is not a monotone incresing function of prey density, but rather is only
monotone increasing until some critical density and then becomes monotone
decreasing. (as it is described in [3] between phytoplankton and zooplankton).
This phenomenon is called group defense in which predation (in our case by
detritivores) decreases when the density of the prey population is sufficiently
large, which is also related to the nutrient uptake inhibition phenomenon in
chemical kinetics (see [1]). One of the nonmonotone functional response in-
troduced (see [6]) is p(z) = Bze™* where £ > 0 is the density of the prey at
which predation reaches its maximum.

3. The amount of detritivores consumed by the top predator is assumed
to follow a Holling type-II functional response. It exhibits saturation effect
when y-population is abundent and k is the half-saturation constant. The top
predators (z(t)) are harvested with a constant rate, h.

4. The detritus-detritivores conversion rate is less then the detritus up-
take rate, so 01 < 5.

5. For the same reason, the detritivore-predator conversion rate is ¢; < c.

6. The detritus recycle rate due to the death of predators, 7y is less than
ds + h.

First we study the boundedness of the solutions of the system (1).

Proposition 1.1. The first octant R3. is positively invariant under the flow
generated by the system (1).

Proof. Let be (vy,v9,v3) the vector field which defines the differential system
(1). We study the vector-field on the boundaries of the first octant. In Ozz-
plane, vy(x,0,2) = 0, therefore all trajectories which initiate in this plane,
remain in it, for any ¢ > 0, so the plane y = 0 is an invariant set for the
system. In the same situation is the plane z = 0 because vz(x,y,0) = 0. But
trajectories which start in Oyz-plane, y, z > 0 are directed towards the interior
of the first octant, since v1(0,y, z) = xo+ vz > 0. In consequence all solutions
with z(0),y(0), 2(0) > 0, remain in the first octant. O

Proposition 1.2. With the hypothesis upon the parameters 4,5 and 6, every
solution of the system (1) with positive initial values, is bounded.

Proof. Let (z(t),y(t),2(t)) be a solution of the system with positive initial
conditions. We deduce that (z+y+2)'(t) < zo—ax(t)+(y—da—h)z(t)—d1y(t),
Vi > 0. If M = min(a,dy + h —~,dy), then (x +y+2) <xg— M(x+y+ 2).
Next we denote u(t) = (z + y + z)(¢). By multiplying the last inequality with
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Mt we get that u verifies (ue — zpeMt < 0, Vt > 0, or, equivalently from

integration, u(t) < (u(0) — %)e™M! + 28 that is u(t) < maxz(u(0), 22), Vt > 0.
Therefore, any solution of the system (1) starting in R? , is bounded. O

Mt)/

Let us nondimensionalize the system (1) with the following scaling:
t— at;y — gy; z — 23z and the system becomes

() = Xo—x—zye " + pz (2)
z
() = baye — Dy — —2
y'(t) Tye i
ryz
Z(t) = —Hz
®) K+y
where X = #0;0 = %;Dl = %;K: %;T = H= dQIh;u: % are positive

constants. For simplicity, we keep the ecological implications of parameters
Xo, 4, b, D1, K,;r and H the same as x, 7, 81,d1, k,c; and h, respectively. In
consequence, in the following study, we assume that 4 < H,b <1 and r < 1.

2. Stability and bifurcation analysis

Now we determine the location and the existence criteria for the equilibria
of the system (2) in the first octant.

Proposition 2.1. a) There is an azial equlibrium Ey(Xo,0,0), for any values
of the parameters;

b) If ae < D% < e;io and Xy > é, the system has two boundary equilibria

Ei(xf,yr,0), i = 1,2, where a3 < a3 are the two solutions of the equation
D
xe ¥ = Tl (3)

and yf = (Xo —af)pri = 1,2;
c) If Dil > e(;éo, there exists only one boundary equilibrium Ey(z7,y;,0) with

x; < = and y; given in b);
d) If Dil < ae, there are no boundary equilibria in R3.

Proof. b) Un equilibrium with z = 0 has its first component, solution of the

equation re~** = %. A simple classical analysis shows that the equation has

solutions iff Dil > ae and in the case with strict inequality there are two solu-
tions 7 < a3 which are smaller than X, when Xpe %0 < Bt X, > 1.

¢) The condition Dil > 6;?0 is equivalent with 27 < Xy < 23 and in conse-
quence, only Fy is in the first octant. O

We take the case when (3)M such that ze=**| _,, > £ which, from
the second equation in system (2), means that otherwise y could not survive
on the prey at any density in the absence of z. In the following study, Dil > ae

and this is the case when the equation (3) posses at least one solution.
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Next we give a sufficient existence criterion for the interior equilibrium
Es(x3,ys, 23). A simple calculation shows that x3 is a solution of the equation:

H — pbr uDir K

g(x) == KT_—H$€_M+$+ — - Xo =0, (4)
Y3 = fHé and z3 = (brge " — Dl):f?{.

Remark 2.1. We assume that r > H from now on, that is the detritivore-
predator conversion rate has to be greater than the harvesting rate, so that
there exists un interior equilibrium which is the case with biological relevance.
Proposition 2.2. i) [fDi1 < % and Xy > é (i.e. the system has two bound-
ary equilibria) and Hy < H < Hy, then it is at least one interior equilibrium,
Es, where

br(Xo — x}) —

i = si=1,2; )
KDy +b(Xo—a7) (5)

i) If - >
then it is also at least one interior equilibrium, E3.
iii) When the system has two boundary equilibria, Hy < H;.

Proof. First of all note that z3 > 0 is equivalent to bxse™**3 > D; or

xg € (x7,5), where x] < z} are the two solutions of the equation ze™** = &
Then notice that in equation (4) the coefficient H — ubr > 0, due to the
assumptions (4,5,6) of the model. A sufficient condition for equation (4) to have
a solution x5 € (27, 23) is g(x7)g(z3) < 0 or in the form z] < X, — % <
which in case i) becomes Hy < H < H; and in case ii), H < H;. We shall see

that for H = Hy, F3 = E; and in case i), for H = Hy, E3 = Fs. O
Corollary 2.1. [If, in addition to the conditions in Proposition 2.2 we require

Kpub + e?

H
<r K+ o2

= Ho, (6)
it follows that the equation g(x) = 0 has only one solution x3 € (x},x3),
that is the equilibrium Es exists and it is unique. Otherwise, g(x) = 0 may
have mazximum three positive solutions, so there are maximum three interior
equilibria.

Proof. ¢'(z) = 1+ K= (1 — az)e™®* attains its minimum m = 1 — %
at v = 2. Because ¢'(0) > 0 and lim ¢'(z) > 0, it turns out that if m > 0

T—r 00

(the condition (6)), then ¢ is increasing . If m < 0, then ¢'(z) = 0 has two
solutions and in consequence, the equation g(x) = 0 may have three positive
solutions. U
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Next we discuss the dynamics of the system (2) in the neighborhood of
each equilibrium. The Jacobian matrix of the linearization of the system is

D —1 —ye (1 — ax) —re 1

v - - Kz

- = bye **(1 — ax) bre ®* — Dy — K= __U_

D(;C, Y, Z) 0 rKz W+K) Y y-i-_KH
(y+K)? y+K

(7)

Evaluating % at each equilibrium, we get the following results:
Proposition 2.3. i) If Dil < e;)zo, the equilibrium Eq is a hyperbolic stable

node . If Dil > %, Ey is a hyperbolic saddle . In any case, it is atlractive in
two directions in the plane y = 0;

ii) The boundary equilibrium Ey is locally asymptotically stable for H > H;
and it is a hyperbolic saddle for H < Hy;

iii) By is a hyperbolic saddle for the values of the parameters which ensure its

aXq 1
= Xo> 3 and for any H.

existence, namely Dil <

Proof. i) The eigenvalues of the Jacobian matrix evaluated at Fy are
A = 1,0 = —H,\3 = bXpe ¥ — D; and the eigenvectors corresponding
to Ad12 <0 are uy = (1,0,0),us = (,0,1 — H) which imply i).

..... . —= . ; br(Xo—x}) ;
ii),iii) For E;,i = 1,2, the eigenvalues are \! = RDrb(Xo o) — H and \; 3 are

the roots of the equation A\? + (1 + p;)A + Dip; = 0 with p; = sz
Hence, p; > 0 and in consequence, Re(Aj3) < 0, but p; < 0 so, A3A3 < 0 and
E5 becomes a saddle. O

The eigenvalues of the Jacobian matrix at the interior equilibrium
Es(x3,ys, z3) verify the characteristic equation

N AN+ AN+ A3=0 (8)
where

DH H
A = ; —|—1—|——T<T_H)e’o‘9”3[K7’—:c3(b(r—H)—i—aKr)];

H KH
Ay = —(bxze ™ —Dy)[r— H—1-— e (1 — axs)]

r r—

bKH
+m6_2a$3x3(1 — axs); 9)
KH H H

As = (bxze™ ™ — Dy)(r — H)[r — He’o“g(l — Oé$3)<7 — pb) + 7]

The necessary and sufficient condition for Ej3 to be asymptotically stable is
given by the Routh-Hurwitz criterion, i.e. AjAs > A3z and Ay, A3 > 0;
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The third component of E5 has to be strictly positive, or equivalently
bxrse~ 3 — D; > 0. Then we notice that 4; > 0 if

rK

< .
s b(r— H)+ aKr

(10)

This implies x3 < é and since H > pbr, we have Az > 0.
With simple algebra, we deduce the following

Proposition 2.4. If E5 exists, the condition (10) holds and

H KH
(Fomaees =Dy = 1= e - az) ).

bre~%%3 _ D KH ) bK —2aux:
‘ ( 3 - 1 (1 + — He—oms(l _ amg)) — — He 2 5$3(1 — a$3)) (11)
Hir —H)

r2

+(bxze™ " — Dy) (buKeaxs(l —azxg) — (brze™ " — Dl)) >0

then the equilibrium Es is locally asymptotically stable.
The previous propositions are sintethized in the following

Theorem 2.1. Let Xy > 1, Hy < Hy and Dyae < b < %eaXO. Then:

i) If Hy > p, for H € (u, Hs), the system (2) has at least three equilibria: Ey
as attractive node, F1 and Fy hyperbolic saddles;

ii) For maz(u, Hy) < H < Hy, the system has the equilibrium points Fo, E, Fy
as in the previous case and Es which is locally asymptotically stable (l.a.s.) if
conditions (10) and (11) hold;

iii) For H = Hy, Ey and E3 concide;

i) For H= Hy, Ey and E3 concide;

v) For Hi < H < r, E3 may be unphysical, Ey becomes l.a.s., FEy remains
attractive node and Eo hyperbolic saddle.

Theorem 2.2. Let H; < Hy and b > %eaxﬂ. Then:

i) For p < H < Hy, the system has the equilibrium points Ey, Fy hyperbolic
saddles and Es which is l.a.s. if conditions (10) and (11) hold;

ii) For H = Hy, E1 and E3 concide;

i) For Hi < H < r, E3 may be unphysical, Ey becomes l.a.s., Ey remains
hyperbolic saddle.

3. Bifurcation analysis

First we take b as the control parameter for the system (2).
Theorem 3.1. If H # %,XO > é, for b = aeD;, the boundary
equilibria Ey and Ey appear through a saddle-node bifurcation. For b < aeDq,
these two equilibria do not exist.
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Proof. We fix b = aeD, then a7 = 25 = é < Xpand y; = y3,s0 £y = E,. The

eigenvalues corresponding to E; are \; = % — H, A\ =0,\3 =—1, so
we need A\; # 0 in order to have the codimension 1 bifurcation of saddle-node
type.

Let be 2E(E,, aeD;) the Jacobian matrix of the system written in the form

v =F (v b), with b the bifurcation parameter and v = (x,y, z), evaluated in

E; for b = aeD;. We use a theorem (Sotomayor [2]) which gives necessary and

sufﬁcient conditions for a saddle-node bifurcation. These are:

(SN1) ZE(Ey, aeD,) has a single zero eigenvalue which is fulfilled, due to the

hypothes1s of the theorem. Let be u = (1, —ea,0)? its right eigenvector and
= (0,r, 1) its left eigenvector.

(SN2) w- 25(Ey, aeDy) = ra(aXo — 1) # 0.

(SN3) w- D, F(Ey, aeD1)(u, u) = —a?eDq(aXy — 1)r # 0.

The nonzero conditions (SN2) and (SN3) imply that SN = {b = aeD;, H #

%,Xo > é} is a saddle-node bifurcation surface in the parameters
space. When the parameters pass from one side of the surface to the other
side, the number of the boundary equilibria changes from zero when b < aeD;
to two hyperbolic equilibria F; 5 when b > aeD;, in the neighborhood of
b = aeD;. These equilibria are connected by an orbit that is asymptotic to E;

for t — oo and to E, for t — —o0. OJ
Now we take H as a control parameter for the system.
Theorem 3.2. If X, > é, b > aeD; and
K b(Xy—x3) —e*D;

— 12

then

a) the equilibria Ey and Ej coincide for H = —2ro—2i)

m = H1 at a pomt Of
transcritical bifurcation;
b) Ey and Es coincide for H = % =: Hy also at a point of trans-

critical bifurcation, if, in addition b < D1 eXo,

Proof. a) i) We fix H = H;. The condition (12) is equivalent to H; < r%

which (see Proposition 2.2 and corrolary) implies that the solution z3 of
the equation (4), g(z) = 0, exists and it is unique. Then H = H, <

r; = Xo — lf((rDlg But #} < % and verifies we " = %, in consequence
KH1 ;I‘brx*e i 4ot = X — “DllfIK and x} = z3. Also y3 = 2L = y¥ 23 =0

Wthh imply F; = Fs3. From the proof of Proposition 2.3, we have

ii) For H = Hj, the eigenvalues for E; are \; = 0, R€(>\2’3) < 0, so only one
eigenvalue is zero.

iii) On the other hand, the equilibrium Fj, from unstable (when H < H;)
becomes stable for H > H;.

iv) We evaluate the matrix (2£ g—g) at the bifurcation point (F4, H;) and we
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find that g—fl = (0,0,0)". It implies rank (2E 8H) = 2.

From i)-iv) (see [5]), we deduce that in R? X {H > 0} the branches of equilibria
E, and Fj intersect through a transcritical bifurcation at H = H; and change
their stable manifold when we pass the critical parameter value.

b) There are similar arguments. The condition b < %eO‘XO ensures the ex-
istence of the equilibrium Ey. Then H = Hy <= x5 = 25 > é Also only
one eigenvalue (see proof of Proposition 2.3) corresponding to Es is zero for

H=H,. U

These values of the parameters H = Hy, H = H,, b = aeD; delimitate

strata on parameters space induced by topological equivalence of the phase
portraits.
We are now investigating dynamic bifurcations. The equilibrium Fj is the
only one which may experience Hopf bifurcation because only the interior
equilibrium can have a pair of purely imaginary eigenvalues. This necessary
condition for F3 to undergo a Hopf bifurcation is equivalent to

A1A2 = A3,A2 > 0 (13)

(with A; given by (9)) together with the sufficient conditions for the existence
of the interior equilibrium (see Proposition 2.2). Also we need that the third
eigenvalue of F3 to be non-zero, i.e. Az # 0, which is satisfied if x3 < é with
g(x3) = 0. In this case, we have A3z > 0 and so the characteristic equation (8)
admits the roots A\ o = iw, w > 0 and A3 = —A4; < 0.

4. Numerical results

We take H as a control parameter. We fix the parameters in order to be

° (see Theorem 2.1): K = 1;a=1.2;7r =0.3;b =

0.66; D; = 0.2; 4 = 0.1; Xy = 1. This case corresponds with the existence of

two boundary equilibria E;(z},y;,0), i = 1,2. With a program in MAPLE,
aDq

we find the solutions of the equation re™®® = D1 2% = LambertW0.——57) —

b [
aDq
0.71276,25 = 2L 0.96679, then yi = 0.94789, y5 = 0.10958.

The static bifurcation parameters are Ho = 0.029628 < H; = 0.1459872.
We solve numerically the system

A1A2 = Ag
g(x3) =0 (14)

1
Ay > 0, 3 < —, brze " — Dy > 0
«

which are the necessary conditions for Hopf bifurcation of F3 and we find the
bifurcation parameter value H = H.. = 0.112115 and x3 = 0.81746422.

H.. € (Hy, Hy), Hi < Hy and we are in the hypothesis of Proposition 2.2
and its corollary. There is only one interior equilibrium for any H € (Hs, Hy).
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Then, we investigate the appearance of a limit cycle when H is in the
neighborhood of the critical parameter value. We find that for H < H.. an
asymptotically stable limit cycle appears.

For example, when H = 0.11 € (H,, H,,), the solution of equation
g(x3) = 0,bxge 3 > Dy is x3 = 0.822894. Then y3 = 0.5789; z3 = 0.00365.
With initial conditions close to F3, we integrate numerically the system. With
a program in MATLAB we obtain the phase portrait. The trajectories come
together close to the saddle connection between F; and F,, towards F; and
then tend to a stable limit cycle, while Ej3 is repelling. (see Figure 1)
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FIGURE 1. Left: A stable limit cycle when K = 1;a = 1.2;r =
0.3;b = 0.66;D; = 0.2;u0 = 0.1; Xy = I;H = 0.11 < H,.
Right: Time oscillations of populations corresponding to one of
the trajectories, with initial values (0.6228;0.7789;0.0136).
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FIGURE 2. Left: Trajectories tending to the attractive focus
Es5. The modified parameter is H = 0.13 > H,.. Right: Time
evolution of the three populations corresponding to one of the
trajectories, with initial values (0.7666;0.9647;0.0129).
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For H =0.13 € (H,,, Hy), trajectories initiated in a small neighborhood
of Fs3, come together very close to the saddle connection Fy — F; and tend
for t — oo to Ej as a focus. (see Figure 2)

In consequence, (Ej3, H..) is a point of supercritical Hopf bifurcation be-
cause, when H varies and passes the critical value, from a stable equilibrium
Es5 for H > H,,, it appears a stable limit cycle for H < H,,., while E3 loses its
stability.

5. Conclusions

The harvesting rate (H) of top predator can control the stable equilib-
rium point or periodic state of coexistence of the three species.

First of all, the model illustrates the phenomenon of biological overhar-
vesting when H > H; and in this case the top-predator goes to extinction.

If the detritus-detritivores conversion rate b is not high, D e <b< D%C;XO,
the scenario of extinction of both detritivores and top-predator is possible, for
any value of the harvesting rate, depending on initial population levels.

When we decrease H, for H € (H,,, Hy), all the populations coexist in a
form of a stable equilibrium, under certain initial conditions. When H passes
through a critical value, H,,, the system undergoes a Hopf bifurcation, namely
for H € (max(p, Hs), H.,), different populations of the system will start to
oscillate with a finite period around the equilibrium point of coexistence.

Since H = %, it turns out that also for increasing large values of
washout rate (a) of detritus, the system changes from a stable state to an
unstable state and the populations will survive through periodic fluctuations.

Mathematically, we would like to point out here that our analysis of the
model is a first look at the local bifurcations, but it is not complete. For
example a study of codimension 2 bifurcations will reveal richer dynamics.
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