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SOLUTION OF A FRACTIONAL ORDER INTEGRAL EQUATION VIA
FIXED POINT THEOREM IN PSEUDOMODULAR METRIC SPACE

Muhammad Usman Ali', Tayyab Kamran®, Wisam Kassab®

An existence theorem for a class of fractional order integral equations is estab-
lished in pseudomodular metric spaces. For this purpose, we first introduce the notion
of modular gauge space and prove some fized point theorems on this setting. We also

construct an example to support our result.
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1. Introduction

As we know, the theory of both differential and integral equations is based on nonlinear
analysis. If we have in mind existence and uniqueness theorems for the solutions of these
classes of equations, they can be obtained by means of fixed point theory; for instance,
see Ali et al. [1]. In the literature of fixed point theory we find several generalizations of
Banach contraction principle, either made by introducing weaker contraction conditions or
by using suitable structure which are more general than the metric space; Ciric [2], Suzuki
[3], Choudhury et al. [4], Chandok and Postolache [5], Shatanawi et al. [6, 7, 8]. Also, an
active research direction in this regard is the designing of numerical algorithms for specific
problems; Thakur et al. [9, 10, 11], Yao et al. [12, 13, 14, 15]. Frigon [16] generalized
the Banach contraction principle on gauge spaces. Later on Agarwal et al. [17], Cherichi
et al. [18], Cherichi and Samet [19], Chis and Precup [20], Chifu and Petrusel [21], Lazar
and Petrusel [22], and Jleli et al. [23] generalized the results of Frigon [16]. Jachymaski
[24] weakened the Banach contraction condition by introducing the notion of Banach G-
contraction and proved some fixed point theorems for such mappings on complete metric
spaces endowed with graph. Afterwards, many authors extended Banach G-contraction in
single as well as multivalued case, see for example: Kamran et al. [25, 26], Bojor [27, 28],
Nicolae et al. [29], Aleomraninejad et al. [30], Asl et al. [31]. The notion of modular metric
space was introduced by Chistyakov [32]. As in metric space, we know that the distance
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between two elements must be a finite positive real number but in modular metric spaces
it may be infinite, further it depends upon the parameter A (which is mentioned in the
definition). Modular metric spaces is very useful generalization of metric spaces because the
concept of modulars on linear spaces has been used in many nonlinear problems; for details,
please see Abdou and Khamsi [33]. Many authors appreciated the work of Chistyakov [32]
and proved fixed point theorems for different type of contractive mappings on modular metric
space: Alfuraidan [34], Chaipunya et al. [35], Chistyakov [36, 37], Khamsi and Kozlowski
[38].

The purpose of this paper is to introduce the notion of modular gauge space by using
pseudomodular metric spaces and prove some fixed point theorems in this new space. We
support our result by example. An existence theorem for a class of fractional order integral

equations is also established in this new setting.

2. Preliminaries

Now, we recollect some basic notions and definitions which are required in next sec-
tion.

Definition 2.1 ([32]). A function w: (0,00) x X x X — [0, 00] is known as a modular metric
on X if the following axioms hold:

(i) wA, z,y) =0 VA >0 if and only if z = y;

(ii) for each z,y € X, w(\, z,y) = w(A,y,x) YA > 0;

(iii) for each z,y,2z € X, w(A + p, 2, 2) < w(A, 2, y) + w(p, y, 2) YA, 1> 0.

A modular metric on X is regular if the following weaker form of (i) is satisfied:
2z =y if and only if w(\, z,y) = 0 for some A > 0.
If we replace (i) with
(i') for each x € X, w(\,z,2) =0 VA >0

then w is known as a pseudomodular metric on X.
Note that the function A — w(\, z,y) is nonincreasing for each A > 0 and z,y € X.
If 0 < p < A, then by using the triangle property we have

W()\,J}7Z) < W(A - ,U;,.T,ﬂ?) "‘W(Ha%Z) = w(u7x72)'

Also, when w is a pseudomodular metric on X and zg € X is a fixed element, then
the sets
X, =Xu(xo) ={r € X :w(A z9,2) > 0 as A = oo}
and
X=X (x0) ={x € X :3IXx = A(x) > 0 such that w(\, zg,z) < 0o}

are modular spaces (around ).

Definition 2.2 ([38]). Let (X,w) be a pseudomodular metric space. Then w is said to
satisfy:

(i) Ag-condition, lim,,— o w(A, Zp, ) = 0 for some A > 0 implies lim,, 0 w(A, Ty, x) =
0 for all A > 0.
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(ii) Fatou property if for any {x,} w-convergent to xz and {y,} w-convergent to y,
then w(l,z,y) < liminf, . w(1,Zn, yn)-

For brief study of modular metric spaces and fixed point theorems on it, we refer
the reader to Abdou and Khamsi [33], Alfuraidan [34], Chaipunya et al. [35], Chistyakov
[36, 37], Khamsi and Kozlowski [38]. It is important to note that contraction conditions on
modular metric spaces make sense on bounded subsets or one needs to define a condition
that the distance between any two elements must be finite.

3. Main results

In order to define the modular gauge space by using pseudomodular metrics we need
to introduce our setting.

Definition 3.1. Let w be a pseudomodular metric on X. The w-ball of radius u > 0
centered at z € X is the set

Blz,w,pl ={y € X : YA > 0w\, z,y) < u}.
Example 3.1. Let X = R be endowed with the pseudomodular metric w(A, z,y) = ‘a”;yl
for each z,y € X and A > 0. Then

Blzg,w,1]={y € X :VA >0, |zo —y| <A} = {zo}.
Example 3.2. Let X = R be endowed with the pseudomodular metric w(A, z,y) = ‘z(;]yl

for each z,y € X and A > 0. Then

Blzo,w, 1] ={y € X : VA> 0, |zo —y[ < [A[} ={y € X : [z —y| <1} = (=140, 1 +z0).

Definition 3.2. A family § = {w, : n € A} of pseudomodular metrics is said to be
separating if for each pair (z,y) with = # y, there exists w, € § such that w,(\, z,y) #
0 VA > 0.

Definition 3.3. Let X be a nonempty set and § = {w,, : n € A} be a family of pseudo-
modular metrics on X. The topology T(§) having subbases the family

B(F) = {Blz,wy, p] 2z € X, w, € Fand pp > 0}
of balls is called modular topology induced by the family § of pseudomodular metrics. The
pair (X, %(F)) is called a modular gauge space.

Before going towards a next definition we define the following notion:
X5 =X5(zo) ={z € X :¥n € A w,(\ zo,z) = 0 as X = oo}
where xq is fixed in X.

Definition 3.4. Let (X,%(F)) be a modular gauge space with respect to the family § =
{wy : 1 € A} of pseudomodular metrics on X and {z,} is a sequence in Xz and = € X5.
Then:

(i) the sequence {x,} w-converges to x if for each n € 2A and € > 0, there exists
Ny € N such that for some A > 0, we have w, (A, z,,z) < € for each n > Ny. We denote it

as T, —° x;
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(ii) the sequence {z,} is a w-Cauchy sequence if for each n € 2 and € > 0, there exists
Ny € N such that for some X > 0, we have wy (A, Zn, Zm) < € for each n, m > No;

(iii) X5 is w-complete if each w-Cauchy sequence in Xz is w-convergent in Xg;

(iv) a subset of X5 is said to be w-closed if it contains the limit of each w-convergent
sequence of its elements.

(v) a subset of M of X5 is said to be w-bounded if we have

0z3(M) = sup{w,(1,z,y) : x,y € M,n € A} < 0.

Note that if X is a nonempty set endowed with a separating modular gauge structure
of pseudomodular metrics § = {w, : n € A} and {z,} is w-convergent in Xz, then {z,}
w-converges to unique limit point.

Suppose on contrary that {x,} w-converges to a,b € Xz. Then for each n € 2, there
exist some A1, Ay > 0 such that lim, o wy (A1, Zn,a) = 0 and lim,, o0 wy (A2, 25,0) = 0. By
the triangle property we have

wy(A + A2, a,0) < wp(Ai,a,zy,) + wy(Ae, 2y, b) for each n € N and n € 2.

Letting n — oo we get wy(A1 + A2,a,b) = 0 for each n € A. Since § = {w, : n € A} is
separating, we have a = b.

Subsequently, in this paper, 2 is a directed set and X is a nonempty set endowed with
a separating modular gauge structure of pseudomodular metrics § = {w, : n € 2} satisfying
the As-condition and the Fatou property. Further, M is w-complete and w-bounded subset of
X under the modular gauge space (X, T(F)) induced by the § = {w,, : n € A}. Furthermore,
G = (V, E) is a directed graph in M x M, where the set of its vertices V is equal to M and
the set of its edges E contains {(x,x) : € V'}. Moreover, G has no parallel edges.

Theorem 3.1. Let T: M — M be a mapping such that for each n € A, we have

wy(1, Tz, Ty) < aywn(1, z,y)+bywy (1, 2, Tx)+cpw, (1, y, Ty )+enwy (2, 2, Ty)+Lywy (1, y, Tx)
(1)

for all (x,y) € E, where ay, by, cy,eq, Ly >0, and a, + by + ¢, + 2, < 1 YV € A. Further,
assume that the following conditions hold:

(1) there exists xo € M such that (zo,Tx0) € E;

(i1) T is edge preserving, that is, if (x,y) € E then (T'z,Ty) € E;

(i) if {x,} is a sequence in M such that (x,,x,11) € E for eachn € N and x,, =5 z
as n — oo, then (x,,x) € E for each n € N.

Then T has a fized point.

Proof. By hypothesis (i), there exists zg € M such that (z¢,Tx) € E. Since T is edge
preserving we get (Txg, T%xg) € E. Continuing we get (T"x¢, T" " 20) € E for each n € N.
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Define z,, = Txp_1 = T™x for each n € N. From (1) we have

Wn(lvxnyxn+1) = Wn(LTxnflaTxn)

IN

a,,w,,(l, Tn—1,Zn) + bnwn(lv Tp—1,TTp_1) + ann(la Ty, Tr)

+enwn (2, Tp_1,Txy) + Lyw, (1, 2n, Tap_1)

anwy (1, Tn—1, Zn) + bywy (1, Tpn_1,2n) + cywn(1, Tn, Tni1)
+enwn (2, Tn-1, Tny1) + Lywy (1, 20, zp)

< (an + by +eg)wy (L, xp—1,2n) + (cn + ey)wn(1, 20, Tpp1) + L0V € 2A
After some simplification we get

wn(laxmxn+1) < fnwn(lyfpn—hxn) vned

an+by+ey

where, &, = .

< 1. Tteratively we get
Wy (1, Zpy Tpg1) < (&))" "wy (L, z0,21) V€ A and n € N,

Now we show that {z,} is w-Cauchy sequence. For each m,p € N and 7 € 2, we have

m+p—1
w’r/(p7 xmaan—p) S § wr/(lyxiyxi+1)
i=m
m+p—1

Y (E)'wy(l,m,a1)

i=m

IN

< i(ﬁn)iég(M) — 0 as m — 0.

i=m
This shows that {x,} is w-Cauchy sequence in M. Since M is w-complete, there ex-

ists «* € M such that {z,} is w-convergent to z*, that is, for each n € 2 we have

limy, 00 Wy (A, 25, 2*) = 0 for some A > 0. Since § satisfies Ag-condition, thus we have

lim wy,(A, 2,,2") =0for all A > 0 and n € 2.

n—oo
By using hypothesis (iii), the triangular inequality and (1), we have
wyp(L,zmy1, T2™) = wy(1,Txy,, Ta")
< agwy (L, T, &%) + bywy (1, T, Tm) + ey (1, 2", Tx™)

+enwn (2, Tm, Tx*) + Lywy (1, 2%, Tay)

IN

anwy (1, T, &%) + bywy (1, Ty Trpg1) + cpwp (1,27, Ta™)
+epwn (1, Tm, %) + wy(1, 2", Tx™)] + Lyw, (1,2, Zmy1) Vi € 2L
Letting m — oo and by using the Fatou property on the left side of the above inequality,
we get

wy(L, 2, Tz*) < (¢ + en)wy(L, 2", Tr™) < wy(l, 2", Tx*) Ve,

which is not possible if w, (1, z*,Tz*) # 0. Thus, w,(1,z*,Tz*) =0V n € A. As we known
that the structure {w, : n € A} on X5 is separating, thus we conclude that z* =Tz*. O
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We denote by ¥ the family of nondecreasing functions, ©: [0,00) — [0, 00) such that
Yoo ™ (t) < oo for each t > 0, where ¢)™ is the nth iterate of ¢.

Note that in the following theorem it is not necessary that § satisfies the Fatou
property. Following theorem even holds without this condition.

Theorem 3.2. Let T: M — M be a mapping such that for each n € 2, we have

wy(1, Tz, Ty) + o(Tx) + o(Ty) < Y(wy(1,2,y) + p(z) + @(y)) for each (z,y) € B (2)

where ¥ € U and ¢ : M — [0,00) be a lower semi-continuous function. Further, assume
that the following conditions hold:

(i) there exists xo € M such that (xo,Txo) € E;

(ii) T is edge preserving, that is, if (z,y) € E, then (Tz,Ty) € E;

(ii) if {z,,} is a sequence in X such that (z,,Tn+1) € E for eachn € N and z,, =5 z
as n — oo, then (x,,x) € E for each n € N.

Then T has a fized point.

Proof. By hypothesis (i), there exists g € X such that (zg,Tz¢) € E. Since T is edge
preserving we get (Txg, T%xg) € E. Continuing we get (T"x¢, T"'20) € E for each n € N.
Define x,, = Tx,—1 = T™xy, for each n € N. From (2), for each n € N we have

wn(lv T, xn-&-l) + ‘P(xn) + ‘P(xn—&-l) = Wn(lv Tx,_1, Txn) + ‘P(Txn—l) + ‘P(Tl'n)
< l/f(wn(l,xn—lvxn) +@o(Tn_1) +o(zs)) V€

Iteratively, for each n € N we get

Wn(1, Tny Tpt1) +@(@n) + @(Tnr1) < " (wy(1, 20, 21) + (20) + @(21))
< PM(05(M) + @(zo) + @(z1) =9"(€)  (3)

for all n € A, where £ = dz(M) + ¢(zo) + ¢(z1). Letting n — oo in the above inequality,
we get

lim wy (1, Zpn, Tpy1) + @(@n) + @(@ny1) =0V n e A

n—oo

Consequently,

lim wy (1,2, Tp1) =0V € Aand lim ¢(z,) =0.
n— o0

n—oo
To prove that {z,} is w-Cauchy sequence, take arbitrary m,p € N, and by using the
triangle inequality and (3), for each ) € 2 we have
m+p—1
Wy (Ds Ty Tgp) < Z wy (1, 24, Ti41)

i=m

m+p—1
< DY wp(lmimig) + (@) + (wiga)
< (&) = 0 as m — 0.

This shows that {z,} is a w-Cauchy sequence in M. Since M is w-complete, there ex-
ists «* € M such that {z,} is w-convergent to z*, that is, for each n € 2 we have



Solution of a fractional order integral equation via fixed point theorem in pseudomodular metric space s

limy, 00 Wy (A, 25, 2*) = 0 for some A > 0. Since § satisfies the Ay-condition, we have

lim wy (A, ,,2%) =0 for all A > 0 and 1 € 2.

n—oo

As ¢ is lower semi-continuous, we have p(z*) < liminf, o ¢(z,) = 0. This implies that
o(z*) = 0. By using hypothesis (iii), the triangle inequality and (2), we have

wy (2,2, Tz*) < wy(l, 2", 2,) +wy(l,2,, Tx")

( )
= w,(1,2%,z,) +w,(1,Txp_1,Tx")
< wp(Lz", ) + (wn (L, 2n-1,27) + @(zn-1) + (z7))
< wp(l, 2", zn) +wy(L,zp_1,2%) + @(zn_1) + @(z") V€ A

Letting n — oo in the above inequality, we get wy (2, 2*,Tz*) =0V n € A. As the structure
{wy : m € A} is separating, thus we conclude z* = T'z*. O

The following remarks are necessary:

1. If M is a subset of X and § = {w, : n € A} is a family of pseudomodular metrics
on X such that for each 7 € 2, we have wy (A, z,y) < oo for all A > 0 and z,y € M, then
we may ignore the w-boundedness of M from above theorems. Because in this case distance
between any two points of M must be finite.

2. Hypothesis (iii) of the above theorems can be replaced by continuity of the operator.

As novel application, we prove the existence theorem for fractional-order integral
equation of the form:

() = f(t) + /t C " a(s))ds, ae(,1), tel (4)
0 I'(a)
where T' is the Euler gamma function given by I'(a) = fooo te~letdt, f: I — R is a con-
tinuous function and g: I x R — R is continuous and increasing function, that is, g(¢,-) is
increasing for all t € I.
Let X = (C[0,10],R) be the space of all continuous and bounded functions defined
on I = [0,10]. Define the family of pseudonorms by

el = max 2], neJ={123,..,9,10}
telo,n]

By using this family of pseudonorms we get a family of pseudomodular metrics as
Ov,) = Tlle = ol
Wn AT, Y) = T = Ylln-
[A]

Clearly, § = {wy : n € J} defines a modular gauge structure on X, which is w-complete,
separating and satisfying both As-condition and Fatou property. Define the graph G =
(V,E) such that V = X and F = {(z,y) : z(t) < y(t),Vt € I'}.

Theorem 3.3. Let X = (C0,10],R) and let the operator

T: X =X, Tz(t)=f@1)+ /t Lg(s,x(s))d& a€e(0,1), tel=]I0,10]
0
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where T' is the Euler gamma function given by T'(a) = fooo to~le~tdt, f: I = R is a con-
tinuous function and g: I Xx R — R is continuous and increasing function, that is, g(t,-) is
increasing for all t € I. Further, assume that the following conditions hold:

(1) for each t,s € [0,n] and z,y € X with (z,y) € E, we have
INa+1
o, 2() — gl (s))| < T
(ii) there exists xg € X such that (xg,Txo) € E.
Then the integral equation (4) has at least one solution.

|z — ylln for each n € J;

Proof. First we show that for each (z,y) € E, inequality (1) holds. For any (z,y) € E and
t € [0,n], for each n € J, we have
t
/

= /
0

{e%

P
— |z — yl|n-
10 Y

“}(S;;l[g(s,m(s)) ~ gls,y(s))|ds

(t—3s)* 1T (a+1)
T(a) 10

T(t) — Ty(t)]

[ = yllnds

Thus, we get wy, (X, Tz, Ty) < awy (X, z,y) for each (z,y) € E and n € J with a = 45 < 1.

This implies that (1) holds with a,, = a, and b,, = ¢, = e, = L, = 0 for each n € J. As
g(t,-) is increasing for all ¢ € I, thus for each (x,y) € F, we have (T'z,Ty) € E. Therefore,
by Theorem 3.1, there exists a fixed point of the operator T', that is the integral equation
(4) has at least one solution. O

r1 T2

Example 3.3. Let M = 1 x1,T2,T3,T4 € R 5 be the set of all 2 x 2 matrices.

Tr3 X4
Consider the family § = {w, : n € {1,2,3,4}} of pseudomodular metrics defined as

1
wn(/\7X7 Y) = W fgza'gxn“xl - yl|} VX7Y € M.

a

Define the operator T: M — M by TX = AX, where A = ( 0 2 ) such that a,b are

Ty T2

nonnegative real numbers with max{a,b} < 1 and X = It is easy to see

T3 T4
that all the conditions of Theorem 3.1 and inequality (1) with a,, = max{a,b} < 1, and
by, = ¢n = €, = L, =0 for each n € {1,2,3,4} hold. Thus the operator T has a fixed point.

4. Conclusion

In this paper, we introduce the notion of modular gauge space and prove some fixed
point theorems on this setting. An existence theorem for a class of fractional order integral
equations is established in pseudomodular metric spaces. We also construct an example to

support our result.
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