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SOLUTION OF A FRACTIONAL ORDER INTEGRAL EQUATION VIA

FIXED POINT THEOREM IN PSEUDOMODULAR METRIC SPACE

Muhammad Usman Ali1, Tayyab Kamran2, Wisam Kassab3

An existence theorem for a class of fractional order integral equations is estab-

lished in pseudomodular metric spaces. For this purpose, we first introduce the notion

of modular gauge space and prove some fixed point theorems on this setting. We also

construct an example to support our result.
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1. Introduction

As we know, the theory of both differential and integral equations is based on nonlinear

analysis. If we have in mind existence and uniqueness theorems for the solutions of these

classes of equations, they can be obtained by means of fixed point theory; for instance,

see Ali et al. [1]. In the literature of fixed point theory we find several generalizations of

Banach contraction principle, either made by introducing weaker contraction conditions or

by using suitable structure which are more general than the metric space; Ciric [2], Suzuki

[3], Choudhury et al. [4], Chandok and Postolache [5], Shatanawi et al. [6, 7, 8]. Also, an

active research direction in this regard is the designing of numerical algorithms for specific

problems; Thakur et al. [9, 10, 11], Yao et al. [12, 13, 14, 15]. Frigon [16] generalized

the Banach contraction principle on gauge spaces. Later on Agarwal et al. [17], Cherichi

et al. [18], Cherichi and Samet [19], Chis and Precup [20], Chifu and Petrusel [21], Lazar

and Petrusel [22], and Jleli et al. [23] generalized the results of Frigon [16]. Jachymaski

[24] weakened the Banach contraction condition by introducing the notion of Banach G-

contraction and proved some fixed point theorems for such mappings on complete metric

spaces endowed with graph. Afterwards, many authors extended Banach G-contraction in

single as well as multivalued case, see for example: Kamran et al. [25, 26], Bojor [27, 28],

Nicolae et al. [29], Aleomraninejad et al. [30], Asl et al. [31]. The notion of modular metric

space was introduced by Chistyakov [32]. As in metric space, we know that the distance
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between two elements must be a finite positive real number but in modular metric spaces

it may be infinite, further it depends upon the parameter λ (which is mentioned in the

definition). Modular metric spaces is very useful generalization of metric spaces because the

concept of modulars on linear spaces has been used in many nonlinear problems; for details,

please see Abdou and Khamsi [33]. Many authors appreciated the work of Chistyakov [32]

and proved fixed point theorems for different type of contractive mappings on modular metric

space: Alfuraidan [34], Chaipunya et al. [35], Chistyakov [36, 37], Khamsi and Kozlowski

[38].

The purpose of this paper is to introduce the notion of modular gauge space by using

pseudomodular metric spaces and prove some fixed point theorems in this new space. We

support our result by example. An existence theorem for a class of fractional order integral

equations is also established in this new setting.

2. Preliminaries

Now, we recollect some basic notions and definitions which are required in next sec-

tion.

Definition 2.1 ([32]). A function ω : (0,∞)×X×X → [0,∞] is known as a modular metric

on X if the following axioms hold:

(i) ω(λ, x, y) = 0 ∀λ > 0 if and only if x = y;

(ii) for each x, y ∈ X, ω(λ, x, y) = ω(λ, y, x) ∀λ > 0;

(iii) for each x, y, z ∈ X, ω(λ+ µ, x, z) ≤ ω(λ, x, y) + ω(µ, y, z) ∀λ, µ > 0.

A modular metric on X is regular if the following weaker form of (i) is satisfied:

x = y if and only if ω(λ, x, y) = 0 for some λ > 0.

If we replace (i) with

(i′) for each x ∈ X, ω(λ, x, x) = 0 ∀λ > 0

then ω is known as a pseudomodular metric on X.

Note that the function λ → ω(λ, x, y) is nonincreasing for each λ > 0 and x, y ∈ X.

If 0 < µ < λ, then by using the triangle property we have

ω(λ, x, z) ≤ ω(λ− µ, x, x) + ω(µ, x, z) = ω(µ, x, z).

Also, when ω is a pseudomodular metric on X and x0 ∈ X is a fixed element, then

the sets

Xω = Xω(x0) = {x ∈ X : ω(λ, x0, x) → 0 as λ→ ∞}

and

X∗
ω = X∗

ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that ω(λ, x0, x) <∞}

are modular spaces (around x0).

Definition 2.2 ([38]). Let (X,ω) be a pseudomodular metric space. Then ω is said to

satisfy:

(i) ∆2-condition, limn→∞ ω(λ, xn, x) = 0 for some λ > 0 implies limn→∞ ω(λ, xn, x) =

0 for all λ > 0.
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(ii) Fatou property if for any {xn} ω-convergent to x and {yn} ω-convergent to y,

then ω(1, x, y) ≤ lim infn→∞ ω(1, xn, yn).

For brief study of modular metric spaces and fixed point theorems on it, we refer

the reader to Abdou and Khamsi [33], Alfuraidan [34], Chaipunya et al. [35], Chistyakov

[36, 37], Khamsi and Kozlowski [38]. It is important to note that contraction conditions on

modular metric spaces make sense on bounded subsets or one needs to define a condition

that the distance between any two elements must be finite.

3. Main results

In order to define the modular gauge space by using pseudomodular metrics we need

to introduce our setting.

Definition 3.1. Let ω be a pseudomodular metric on X. The w-ball of radius µ > 0

centered at x ∈ X is the set

B[x, ω, µ] = {y ∈ X : ∀λ > 0 ω(λ, x, y) < µ}.

Example 3.1. Let X = R be endowed with the pseudomodular metric ω(λ, x, y) = |x−y|
λ

for each x, y ∈ X and λ > 0. Then

B[x0, ω, 1] = {y ∈ X : ∀λ > 0, |x0 − y| < λ} = {x0}.

Example 3.2. Let X = R be endowed with the pseudomodular metric ω(λ, x, y) = |x−y|
⌈λ⌉

for each x, y ∈ X and λ > 0. Then

B[x0, ω, 1] = {y ∈ X : ∀λ > 0, |x0 − y| < ⌈λ⌉} = {y ∈ X : |x0 − y| < 1} = (−1+x0, 1+x0).

Definition 3.2. A family F = {ωη : η ∈ A} of pseudomodular metrics is said to be

separating if for each pair (x, y) with x ̸= y, there exists ωη ∈ F such that ωη(λ, x, y) ̸=
0 ∀λ > 0.

Definition 3.3. Let X be a nonempty set and F = {ωη : η ∈ A} be a family of pseudo-

modular metrics on X. The topology T(F) having subbases the family

B(F) = {B[x, ωη, µ] : x ∈ X,ωη ∈ F and µ > 0}

of balls is called modular topology induced by the family F of pseudomodular metrics. The

pair (X,T(F)) is called a modular gauge space.

Before going towards a next definition we define the following notion:

XF = XF(x0) = {x ∈ X : ∀η ∈ A ωη(λ, x0, x) → 0 as λ→ ∞}

where x0 is fixed in X.

Definition 3.4. Let (X,T(F)) be a modular gauge space with respect to the family F =

{ωη : η ∈ A} of pseudomodular metrics on X and {xn} is a sequence in XF and x ∈ XF.

Then:

(i) the sequence {xn} ω-converges to x if for each η ∈ A and ϵ > 0, there exists

N0 ∈ N such that for some λ > 0, we have ωη(λ, xn, x) < ϵ for each n ≥ N0. We denote it

as xn →F x;
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(ii) the sequence {xn} is a ω-Cauchy sequence if for each η ∈ A and ϵ > 0, there exists

N0 ∈ N such that for some λ > 0, we have ωη(λ, xn, xm) < ϵ for each n,m ≥ N0;

(iii) XF is ω-complete if each ω-Cauchy sequence in XF is ω-convergent in XF;

(iv) a subset of XF is said to be ω-closed if it contains the limit of each ω-convergent

sequence of its elements.

(v) a subset of M of XF is said to be ω-bounded if we have

δF(M) = sup{ωη(1, x, y) : x, y ∈M,η ∈ A} <∞.

Note that if X is a nonempty set endowed with a separating modular gauge structure

of pseudomodular metrics F = {ωη : η ∈ A} and {xn} is ω-convergent in XF, then {xn}
ω-converges to unique limit point.

Suppose on contrary that {xn} ω-converges to a, b ∈ XF. Then for each η ∈ A, there

exist some λ1, λ2 > 0 such that limn→∞ ωη(λ1, xn, a) = 0 and limn→∞ ωη(λ2, xn, b) = 0. By

the triangle property we have

ωη(λ1 + λ2, a, b) ≤ ωη(λ1, a, xn) + ωη(λ2, xn, b) for each n ∈ N and η ∈ A.

Letting n → ∞ we get ωη(λ1 + λ2, a, b) = 0 for each η ∈ A. Since F = {ωη : η ∈ A} is

separating, we have a = b.

Subsequently, in this paper, A is a directed set and X is a nonempty set endowed with

a separating modular gauge structure of pseudomodular metrics F = {ωη : η ∈ A} satisfying

the ∆2-condition and the Fatou property. Further,M is ω-complete and ω-bounded subset of

XF under the modular gauge space (X,T(F)) induced by the F = {ωη : η ∈ A}. Furthermore,

G = (V,E) is a directed graph in M ×M , where the set of its vertices V is equal to M and

the set of its edges E contains {(x, x) : x ∈ V }. Moreover, G has no parallel edges.

Theorem 3.1. Let T : M →M be a mapping such that for each η ∈ A, we have

ωη(1, Tx, Ty) ≤ aηωη(1, x, y)+bηωη(1, x, Tx)+cηωη(1, y, Ty)+eηωη(2, x, Ty)+Lηωη(1, y, Tx)

(1)

for all (x, y) ∈ E, where aη, bη, cη, eη, Lη ≥ 0, and aη + bη + cη + 2eη < 1 ∀η ∈ A. Further,

assume that the following conditions hold:

(i) there exists x0 ∈M such that (x0, Tx0) ∈ E;

(ii) T is edge preserving, that is, if (x, y) ∈ E then (Tx, Ty) ∈ E;

(iii) if {xn} is a sequence in M such that (xn, xn+1) ∈ E for each n ∈ N and xn →F x

as n→ ∞, then (xn, x) ∈ E for each n ∈ N.
Then T has a fixed point.

Proof. By hypothesis (i), there exists x0 ∈ M such that (x0, Tx0) ∈ E. Since T is edge

preserving we get (Tx0, T
2x0) ∈ E. Continuing we get (Tnx0, T

n+1x0) ∈ E for each n ∈ N.
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Define xn = Txn−1 = Tnx0 for each n ∈ N. From (1) we have

ωη(1, xn, xn+1) = ωη(1, Txn−1, Txn)

≤ aηωη(1, xn−1, xn) + bηωη(1, xn−1, Txn−1) + cηωη(1, xn, Txn)

+eηωη(2, xn−1, Txn) + Lηωη(1, xn, Txn−1)

= aηωη(1, xn−1, xn) + bηωη(1, xn−1, xn) + cηωη(1, xn, xn+1)

+eηωη(2, xn−1, xn+1) + Lηωη(1, xn, xn)

≤ (aη + bη + eη)ωη(1, xn−1, xn) + (cη + eη)ωη(1, xn, xn+1) + Lη0 ∀ η ∈ A.

After some simplification we get

ωη(1, xn, xn+1) ≤ ξηωη(1, xn−1, xn) ∀ η ∈ A

where, ξη =
aη+bη+eη
1−cη−eη

< 1. Iteratively we get

ωη(1, xn, xn+1) ≤ (ξη)
nωη(1, x0, x1) ∀ η ∈ A and n ∈ N.

Now we show that {xn} is ω-Cauchy sequence. For each m, p ∈ N and η ∈ A, we have

ωη(p, xm, xm+p) ≤
m+p−1∑
i=m

ωη(1, xi, xi+1)

≤
m+p−1∑
i=m

(ξη)
iωη(1, x0, x1)

≤
∞∑

i=m

(ξη)
iδF(M) → 0 as m→ ∞.

This shows that {xn} is ω-Cauchy sequence in M . Since M is ω-complete, there ex-

ists x∗ ∈ M such that {xn} is ω-convergent to x∗, that is, for each η ∈ A we have

limn→∞ ωη(λ, xn, x
∗) = 0 for some λ > 0. Since F satisfies ∆2-condition, thus we have

lim
n→∞

ωη(λ, xn, x
∗) = 0 for all λ > 0 and η ∈ A.

By using hypothesis (iii), the triangular inequality and (1), we have

ωη(1, xm+1, Tx
∗) = ωη(1, Txm, Tx

∗)

≤ aηωη(1, xm, x
∗) + bηωη(1, xm, Txm) + cηωη(1, x

∗, Tx∗)

+eηωη(2, xm, Tx
∗) + Lηωη(1, x

∗, Txm)

≤ aηωη(1, xm, x
∗) + bηωη(1, xm, xm+1) + cηωη(1, x

∗, Tx∗)

+eη[ωη(1, xm, x
∗) + ωη(1, x

∗, Tx∗)] + Lηωη(1, x
∗, xm+1) ∀ η ∈ A.

Letting m → ∞ and by using the Fatou property on the left side of the above inequality,

we get

ωη(1, x
∗, Tx∗) ≤ (cη + eη)ωη(1, x

∗, Tx∗) < ωη(1, x
∗, Tx∗) ∀ η ∈ A,

which is not possible if ωη(1, x
∗, Tx∗) ̸= 0. Thus, ωη(1, x

∗, Tx∗) = 0 ∀ η ∈ A. As we known

that the structure {ωη : η ∈ A} on XF is separating, thus we conclude that x∗ = Tx∗. �
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We denote by Ψ the family of nondecreasing functions, ψ : [0,∞) → [0,∞) such that∑∞
n=1 ψ

n(t) <∞ for each t > 0, where ψn is the nth iterate of ψ.

Note that in the following theorem it is not necessary that F satisfies the Fatou

property. Following theorem even holds without this condition.

Theorem 3.2. Let T : M →M be a mapping such that for each η ∈ A, we have

ωη(1, Tx, Ty) + φ(Tx) + φ(Ty) 6 ψ(ωη(1, x, y) + φ(x) + φ(y)) for each (x, y) ∈ E (2)

where ψ ∈ Ψ and φ : M → [0,∞) be a lower semi-continuous function. Further, assume

that the following conditions hold:

(i) there exists x0 ∈M such that (x0, Tx0) ∈ E;

(ii) T is edge preserving, that is, if (x, y) ∈ E, then (Tx, Ty) ∈ E;

(iii) if {xn} is a sequence in X such that (xn, xn+1) ∈ E for each n ∈ N and xn →F x

as n→ ∞, then (xn, x) ∈ E for each n ∈ N.
Then T has a fixed point.

Proof. By hypothesis (i), there exists x0 ∈ X such that (x0, Tx0) ∈ E. Since T is edge

preserving we get (Tx0, T
2x0) ∈ E. Continuing we get (Tnx0, T

n+1x0) ∈ E for each n ∈ N.
Define xn = Txn−1 = Tnx0, for each n ∈ N. From (2), for each n ∈ N we have

ωη(1, xn, xn+1) + φ(xn) + φ(xn+1) = ωη(1, Txn−1, Txn) + φ(Txn−1) + φ(Txn)

≤ ψ(ωη(1, xn−1, xn) + φ(xn−1) + φ(xn)) ∀ η ∈ A.

Iteratively, for each n ∈ N we get

ωη(1, xn, xn+1) + φ(xn) + φ(xn+1) ≤ ψn(ωη(1, x0, x1) + φ(x0) + φ(x1))

≤ ψn(δF(M) + φ(x0) + φ(x1)) = ψn(ξ) (3)

for all η ∈ A, where ξ = δF(M) + φ(x0) + φ(x1). Letting n → ∞ in the above inequality,

we get

lim
n→∞

ωη(1, xn, xn+1) + φ(xn) + φ(xn+1) = 0 ∀ η ∈ A.

Consequently,

lim
n→∞

ωη(1, xn, xn+1) = 0 ∀ η ∈ A and lim
n→∞

φ(xn) = 0.

To prove that {xn} is ω-Cauchy sequence, take arbitrary m, p ∈ N, and by using the

triangle inequality and (3), for each η ∈ A we have

ωη(p, xm, xm+p) ≤
m+p−1∑
i=m

ωη(1, xi, xi+1)

≤
m+p−1∑
i=m

ωη(1, xi, xi+1) + φ(xi) + φ(xi+1)

≤
∞∑

i=m

ψi(ξ) → 0 as m→ ∞.

This shows that {xn} is a ω-Cauchy sequence in M . Since M is ω-complete, there ex-

ists x∗ ∈ M such that {xn} is ω-convergent to x∗, that is, for each η ∈ A we have
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limn→∞ ωη(λ, xn, x
∗) = 0 for some λ > 0. Since F satisfies the ∆2-condition, we have

lim
n→∞

ωη(λ, xn, x
∗) = 0 for all λ > 0 and η ∈ A.

As φ is lower semi-continuous, we have φ(x∗) ≤ lim infn→∞ φ(xn) = 0. This implies that

φ(x∗) = 0. By using hypothesis (iii), the triangle inequality and (2), we have

ωη(2, x
∗, Tx∗) ≤ ωη(1, x

∗, xn) + ωη(1, xn, Tx
∗)

= ωη(1, x
∗, xn) + ωη(1, Txn−1, Tx

∗)

≤ ωη(1, x
∗, xn) + ψ(ωη(1, xn−1, x

∗) + φ(xn−1) + φ(x∗))

< ωη(1, x
∗, xn) + ωη(1, xn−1, x

∗) + φ(xn−1) + φ(x∗) ∀ η ∈ A.

Letting n→ ∞ in the above inequality, we get ωη(2, x
∗, Tx∗) = 0 ∀ η ∈ A. As the structure

{ωη : η ∈ A} is separating, thus we conclude x∗ = Tx∗. �

The following remarks are necessary:

1. If M is a subset of X and F = {ωη : η ∈ A} is a family of pseudomodular metrics

on X such that for each η ∈ A, we have ωη(λ, x, y) < ∞ for all λ > 0 and x, y ∈ M , then

we may ignore the ω-boundedness of M from above theorems. Because in this case distance

between any two points of M must be finite.

2. Hypothesis (iii) of the above theorems can be replaced by continuity of the operator.

As novel application, we prove the existence theorem for fractional-order integral

equation of the form:

x(t) = f(t) +

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s))ds, α ∈ (0, 1), t ∈ I (4)

where Γ is the Euler gamma function given by Γ(α) =
∫∞
0
tα−1e−tdt, f : I → R is a con-

tinuous function and g : I × R → R is continuous and increasing function, that is, g(t, ·) is
increasing for all t ∈ I.

Let X = (C[0, 10],R) be the space of all continuous and bounded functions defined

on I = [0, 10]. Define the family of pseudonorms by

∥x∥n = max
t∈[0,n]

|x(t)|, n ∈ J = {1, 2, 3, . . . , 9, 10}.

By using this family of pseudonorms we get a family of pseudomodular metrics as

ωn(λ, x, y) =
1

⌈λ⌉
∥x− y∥n.

Clearly, F = {ωn : n ∈ J} defines a modular gauge structure on X, which is ω-complete,

separating and satisfying both ∆2-condition and Fatou property. Define the graph G =

(V,E) such that V = X and E = {(x, y) : x(t) ≤ y(t), ∀t ∈ I}.

Theorem 3.3. Let X = (C[0, 10],R) and let the operator

T : X → X, Tx(t) = f(t) +

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s))ds, α ∈ (0, 1), t ∈ I = [0, 10]
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where Γ is the Euler gamma function given by Γ(α) =
∫∞
0
tα−1e−tdt, f : I → R is a con-

tinuous function and g : I × R → R is continuous and increasing function, that is, g(t, ·) is

increasing for all t ∈ I. Further, assume that the following conditions hold:

(i) for each t, s ∈ [0, n] and x, y ∈ X with (x, y) ∈ E, we have

|g(s, x(s))− g(s, y(s))| ≤ Γ(α+ 1)

10
∥x− y∥n for each n ∈ J ;

(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E.

Then the integral equation (4) has at least one solution.

Proof. First we show that for each (x, y) ∈ E, inequality (1) holds. For any (x, y) ∈ E and

t ∈ [0, n], for each n ∈ J , we have

|Tx(t)− Ty(t)| ≤
∫ t

0

∣∣∣ (t− s)α−1

Γ(α)
[g(s, x(s))− g(s, y(s))]

∣∣∣ds
≤

∫ t

0

∣∣∣ (t− s)α−1

Γ(α)

Γ(α+ 1)

10

∣∣∣∥x− y∥nds

=
tα

10
∥x− y∥n.

Thus, we get ωn(λ, Tx, Ty) ≤ aωn(λ, x, y) for each (x, y) ∈ E and n ∈ J with a = tα

10 < 1.

This implies that (1) holds with an = a, and bn = cn = en = Ln = 0 for each n ∈ J . As

g(t, ·) is increasing for all t ∈ I, thus for each (x, y) ∈ E, we have (Tx, Ty) ∈ E. Therefore,

by Theorem 3.1, there exists a fixed point of the operator T , that is the integral equation

(4) has at least one solution. �

Example 3.3. LetM =

{(
x1 x2

x3 x4

)
: x1, x2, x3, x4 ∈ R

}
be the set of all 2×2 matrices.

Consider the family F = {ωn : n ∈ {1, 2, 3, 4}} of pseudomodular metrics defined as

ωn(λ,X, Y ) =
1

⌈λ⌉
max
1≤i≤n

{|xi − yi|} ∀X,Y ∈M.

Define the operator T : M → M by TX = AX, where A =

(
a 0

0 b

)
such that a, b are

nonnegative real numbers with max{a, b} < 1 and X =

(
x1 x2

x3 x4

)
. It is easy to see

that all the conditions of Theorem 3.1 and inequality (1) with an = max{a, b} < 1, and

bn = cn = en = Ln = 0 for each n ∈ {1, 2, 3, 4} hold. Thus the operator T has a fixed point.

4. Conclusion

In this paper, we introduce the notion of modular gauge space and prove some fixed

point theorems on this setting. An existence theorem for a class of fractional order integral

equations is established in pseudomodular metric spaces. We also construct an example to

support our result.
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